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Gödel’s original incompleteness theorems

Gödel proves his first incompleteness theorem in “Über formal

unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I” in 1931 for a certain formal system P related to

Russell-Whitehead’s Principia Mathematica based on the simple

theory of types over the natural number series and the

Dedekind-Peano axioms.

A theory T is said to be ω-consistent if there is no formula

ϕ(x) such that T ` ∃xϕ(x), and for any n ∈ ω, T ` ¬ϕ(n̄).

Theorem 1 (Gödel’s original first incompleteness theorem

(G1))

For any formal theory T formulated in the language of P and

obtained by adding a primitive recursive set of axioms to the

system P, if T is ω-consistent, then T is incomplete.
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Theorem 2 (Gödel’s original second incompleteness

theorem (G2))

Let T be a formal theory formulated in the language of P and

obtained by adding a primitive recursive set of axioms to the

system P, if T is consistent, then the consistency of T is not

provable in T .

In Gödel’s 1931 paper, he sketches a proof of the second

incompleteness theorem without details and comments in a

footnote that it is a corollary of (and in fact a formalized version

of) the first incompleteness theorem.
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Robinson Arithmetic Q

Robinson Arithmetic Q is defined in the language {0,S,+, ·}
with the following axioms:

Q1 ∀x∀y(Sx = Sy → x = y);

Q2 ∀x(Sx 6= 0);

Q3 ∀x(x 6= 0→ ∃y(x = Sy));

Q4 ∀x∀y(x + 0 = x);

Q5 ∀x∀y(x + Sy = S(x + y));

Q6 ∀x(x · 0 = 0);

Q7 ∀x∀y(x · Sy = x · y + x).

PA consists of axioms Q1-Q2, Q4-Q7 and the following

axiom scheme of induction: (φ(0)∧∀x(φ(x)→ φ(Sx)))→ ∀x φ(x)

where φ is a formula with at least one free variable x .



Gödel’s theorems The influence Different proofs Generalizations The intensionality of G2 The limit of G1

The theory R

Let R be the theory consisting of schemes Ax1-Ax5 with

L(R) = {0, n,+, ·,≤} where m, n ∈ N.

Ax1 m + n = m + n;

Ax2 m 6= n if m 6= n;

Ax3 m · n = m · n;

Ax4 ∀x(x ≤ n→ x = 0 ∨ · · · ∨ x = n);

Ax5 ∀x(x ≤ n ∨ n ≤ x);

A theory T is locally finitely satisfiable if every finitely axiomatized

subtheory of T has a finite model.

Theorem 3 (Albert Visser)

Suppose T is an r.e. theory with finite signature. Then T is

locally finitely satisfiable iff T is interpretable in R.
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Gödel’s incompleteness theorems: modern versions

Theorem 4 (Gödel)

Let T be a recursive enumerable (r.e.) extension of PA.

G1 If T is ω-consistent, then T is incomplete (there is a

sentence θ such that T 0 θ and T 0 ¬θ).

G2 If T is consistent, then the consistency of T is not

provable in T .

Theorem 5 (Rosser’s first incompleteness theorem)

Let T be a consistent r.e. extension of R, then T is

incomplete.

We will freely use G1 and G2 to refer to both Gödel’s first and

second incompleteness theorems, and their different versions. The

meaning of G1 and G2 will be clear from the context in which we

refer to them.
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Arithmetization

• The three main ideas in Gödel’s proof of G1 are

arithmetization, representability and self-reference

construction. Let T be a r.e. extension of PA.

• Under arithmetization, any formula of the theory can be

coded by a natural number (called Gödel’s number). We use

](φ) to denote the Gödel number of φ, and use pφq to denote

the numeral of the Gödel number of φ.

• Then we could define some relations on N which express

syntactical properties of T . Define PrfT (m, n) iff n is the

Gödel’s number of a proof of the formula with Gödel number

m in T . We can show that PrfT (m, n) is r.e..
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Representability

• A n-ary relation R(x1, · · · , xn) on Nn is representable in T iff

there is a formula φ(x1, · · · , xn) such that T ` φ(m1, · · · ,mn)

if R(m1, · · · ,mn) holds; and T ` ¬φ(m1, · · · ,mn) if

R(m1, · · · ,mn) does not hold.

• A key fact we use is: every r.e. relation is representable in PA.

Let ProofT (x , y) be the formula which represents PrfT (m, n)

in PA.

• From the representation formula ProofT (x , y), we could

define the provability predicate ProvT (x) as

ProvT (x) , ∃yProofT (x , y).

• ProvT (x) satisfies the following conditions:

(1) If T ` ϕ, then T ` ProvT (pϕq);

(2) T ` ProvT (pϕq)→ (ProvT (pϕ→ ψq)→ ProvT (pψq));

(3) T ` ProvT (pϕq)→ ProvT (pProvT (pϕq)q).
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Self-reference construction

• Gödel constructs a Gödel sentence G which asserts its own

unprovability in T , i.e. T ` G↔ ¬ProvT (pGq).

• Gödel shows that if T is consistent, then T 0 G; and if T is

ω-consistent, then T 0 ¬G.

• Define Con(T ) , ¬ProvT (p0 6= 0q).

• From the above conditions (1)-(3), we can show that

T ` Con(T )↔ G.

• Thus, G2 holds: if T is consistent, then T 0 Con(T ).
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Some comments on G1 and G2

• The proof of G1 is constructive: given a consistent r.e.

extension T of Q, one can effectively find a true Π0
1 sentence

GT of arithmetic such that GT is independent of T .

• For Gödel’s proof, only assuming that T is consistent does not

suffice to show that Gödel sentence is independent of T .

• For any consistent r.e. extension T of PA, for each finite

sub-theory S of T , T ` Con(S).

• From G2, we cannot get that Con(T ) is independent of T : it

is not enough to show that ¬Con(T ) is not provable in T

only assuming T is consistent.
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Standard provability predicate

Definition 1

• Unless stated otherwise, we always assume that T is a

consistent r.e. extension of Q.

• We say that a formula PrT (x) is a provability predicate of T

if T ` φ iff T ` PrT (pφq).

• Define the canonical consistency statement Con(T ) as

¬PrT (p0 6= 0q).

Definition 2 (Hilbert-Bernays-Löb derivability condition)

D1 If T ` φ, then T ` PrT (pφq);

D2 If T ` PrT (pφ→ ϕq)→ (PrT (pφq)→ PrT (pϕq));

D3 T ` PrT (pφq)→ PrT (pPrT (pφq)q).
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D1-D3 is called the Hilbert-Bernays-Löb derivability

condition.

We say that provability predicate PrT (x) is standard if it

satisfies D2 and D3.

Unless stated otherwise, we always assume that PrT (x) is a

standard provability predicate, and Con(T ) is the canonical

consistency statement defined as ¬PrT (p0 6= 0q) via a standard

provability predicate PrT (x).
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Lemma 1 (The Diagnolisation Lemma, Gödel)

For any formula φ(x) with exactly one free variable, there

exists a sentence θ such that R ` θ ↔ φ(pθq).

Theorem 6 (Tarski’s theorem on the undefinability of

truth)

There does not exist a formula Tr(x) such that for any

formula φ, R ` φ↔ Tr(pφq).
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Truth and provability

Definition 3 (Truth and Prov)

We define Truth = {φ ∈ L(PA) : N |= φ} and

Prov = {φ ∈ L(PA) : PA ` φ}.

In summary, we have:

• Prov is definable in the standard model N of PA, and Truth

is not definable in N.

• Both Prov and Truth are not recursive.

• Both Prov and Truth are not representable in PA.

• Prov is arithmetic (a Σ1 relation), but Truth is not

arithmetic.
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Influence on foundations of mathematics

• Gödel’s incompleteness theorems reveal the independence

phenomenon which is common in mathematics and logic.

• Gödel’s incompleteness theorems show the essential limitation

of one given formal system.

• Gödel’s incompleteness theorems reveal the essential

difference between the notion of “provability in PA” and the

notion of “truth in the standard model of arithmetic”.

• Gödel’s incompleteness theorems are a blow to

Whitehead-Russell’s program for proving that all mathematics

(or at least quite a lot of it) could be derived solely from logic

in their three-volume Principia Mathematica.

• Gödel’s incompleteness theorems have profound influence on

the development of Hilbert’s program.
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Influence on philosophy: Gödel’s theorems and the

mechanism thesis

• The mechanism thesis claims that human mind can be

mechanized.

• A popular misinterpretation of Gödel’s theorems is that it

implies that human mind cannot be mechanized: the

mathematical outputs of the idealized human mind outstrip

the mathematical outputs of any Turing machine.

• Lucas and Penrose argue for the anti-mechanism thesis (i.e.

human mind cannot be mechanized) based on Gödel’s

theorem.

• Lucas and Penrose’s arguments have been extensively

discussed and carefully analyzed in the literature, and are not

accepted by most logicians and most philosophers.
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Influence on philosophy: Gödel’s Disjunction

Gödel did not argue that his theorem implies that human

mind cannot be mechanized; instead he argued that his theorem

implies a weaker conclusion: Gödel’s Disjunction.

The first disjunct (FD) The mind cannot be mechanized;

The second disjunct (SD) There are absolutely undecidable

statements in the sense that there are mathematical

truths that cannot be proved by the idealized human

mind.

Gödel’s Disjunction (GD) Either the first disjunct holds or the

second disjunct holds.
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• For Gödel, he believes that human mind cannot be

mechanized, and human mind is sufficiently powerful to

capture all mathematical truths; but he thinks that he cannot

give a convincing argument for them.

• For Gödel, GD is a mathematically established fact of great

philosophical interest which follows from his incompleteness

theorem.

Peter Koellner proposes a consistent formal system DTK, and

shows that:

(1) DTK proves GD;

(2) Both Lucas’ argument and Penrose’s argument for the first

disjunct fail in DTK;

(3) Both the first disjunct and the second disjunct are independent

of DTK.
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Influence on mathematics

Gödel’s proof uses meta-mathematical method and Gödel’s

sentence has no real mathematical content.

A natural question is then: can we find true sentences not

provable in PA with real mathematical content?

Harvey Friedman proposed a research program on concrete

incompleteness:

the long range impact and significance of ongoing

investigations in the foundations of mathematics is going

to depend greatly on the extent to which the

Incompleteness Phenomena touche normal concrete

mathematics.
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Concrete incompleteness for PA

Paris-Harrington Paris-Harrington principle

Kirby and Paris The Goodstein sequence, The Hercules-Hydra

game

Kanamori-McAloon The Kanamori-McAloon principle

Beklemishev The Worm principle

Kirby The flipping principle

Mills The arboreal statement

Pudlák P.Pudlák’s Principle

Clote The kiralic and regal principles

Weiermann Variants of Paris-Harrington principle and Goodstein

sequence

Harvey Friedman Many examples in the book “Boolean relation

theory and incompleteness”
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Properties of mathematical examples

• Many of these naturally independent principles with real

mathematical contents are in fact provably equivalent in PA

to a certain metamathematical sentence.

• Let RfnΣ1(PA) denote the sentence which expresses the

reflection principle for Σ1 sentences. People have showed that

PA ` ϕ↔ RfnΣ1(PA) for many of the above independent

principles ϕ.

• Many of these independent principles are provable in some

fragments of second order arithmetic but are more complex

than Gödel’s sentence: Gödel’s sentence is equivalent to

Con(PA) in PA; but many of these principles are not only

independent of PA but also independent of PA + Con(PA).
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Concrete incompleteness for Higher-Order Arithmetic

Question 1

Can we find a mathematical theorem expressible in

Second-Order Arithmetic but not provable in Second-Order

Arithmetic?

Harvey Friedman has found many examples of concrete

incompleteness over different fragments of ZFC (refer to his book

“Boolean relation theory and incompleteness”).

Theorem 7 ([1])

There is a concrete mathematical theorem which is expressible

in Second-Order Arithmetic, not provable in Second-Order

Arithmetic, not provable in Third-Order Arithmetic, but provable

in Fourth-Order Arithmetic.
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Different proofs of incompleteness

After Gödel, people have found many different proofs of the

incompleteness theorems with varied properties:

• Proof via proof theoretic method;

• Proof via recursion theoretic method;

• Proof via model theoretic method;

• Proof via arithmetization;

• Proof via the Diagnolisation Lemma;

• Proof via logical paradox;

• Proof via constructive method;

• Proof only assuming that the base theory is consistent;

• Independent sentences with real mathematical content.



Gödel’s theorems The influence Different proofs Generalizations The intensionality of G2 The limit of G1

Characteristics of Gödel’s proof

Gödel’s proof of G1 has the following properties:

• Proof via proof theoretic (meta-mathematical) method;

• Proof via arithmetization;

• Proof without the direct use of the Diagnolisation Lemma;

• Proof “based” on the Liar Paradox;

• Proof via constructive method;

• Proof assuming that the base theory is ω-consistent;

• Gödel’s sentence has no real mathematical content.
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Incompleteness and logical paradox

• Incompleteness is closely related to paradox.

• Gödel claimed: “Any epistemological antinomy could be used

for a similar proof of the existence of undecidable

propositions”.

Different proofs of incompleteness theorems via paradox:

Gödel Liar Paradox

Boolos, Chaitin, Kikuchi, Vopenka, Kurahashi, Sakai, Tanaka

Berry’s paradox

Priest, Cieśliński and Urbaniak Yablo’s Paradox

Kritchman-Raz Unexpected Examination Paradox

Cieśliński Grelling-Nelson’s Paradox

More in the future
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Some definitions

Definition 4

Let T be a consistent extension of Q.

• T is Σ0
n-definable if there is a Σ0

n formula φ(x) such that n is

the Gödel number of some sentence of T if and only if

N |= φ(n).

• T is Σ0
n-sound if for all Σ0

n sentences φ, T ` φ implies N |= φ;

T is sound if T is Σ0
n-sound for any n ∈ ω.

• T is Σ0
n-consistent if for all Σ0

n formulas φ with φ = ∃xθ(x)

and θ ∈ Π0
n−1, if T ` ¬θ(n) for all n ∈ ω, then T 0 φ.

• T is Π0
n-decisive if for all Π0

n sentences φ, either T ` φ or

T ` ¬φ holds.
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Gödel-Rosser’s G1 can be reformulated as follows:

If the theory T is Σ0
1-definable and consistent, then

T is not Π0
1-decisive.

The following theorems generalize G1 from Σ0
1-definable

theories to Σ0
n+1-definable theories.

Theorem 8 (Kikuchi and Kurahashi)

If T is a Σ0
n+1-definable and Σ0

n-sound extension of Q, then T

is not Π0
n+1-decisive.

Theorem 9 (Salehi and Seraji)

If T is a Σ0
n+1-definable and Σ0

n-consistent extension of Q,

then T is not Π0
n+1-decisive.
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The intuitive notion of interpretation

• Interpretability can be accepted as a measure of strength of

different theories.

• An interpretation of a theory T in a theory S is a mapping

from formulas of T to formulas of S that maps all axioms of

T to sentences provable in S .

• S � T denotes that S is interpretable in T .

• S � T denotes that S is interpretable in T but T is not

interpretable in S (i.e. S is weaker than T w.r.t.

interpretation).

• S and T are mutually interpretable if S � T and T � S .

Fact 1 (Folklore)

For theories with finite signature, if S is essentially

undecidable and S � T , then T is also essentially undecidable.

If without specification, in the following, we work in theories

with finite signature.



Gödel’s theorems The influence Different proofs Generalizations The intensionality of G2 The limit of G1

The precise notion of interpretation

• Let T be a theory in the language L(T ), and S a theory in

the language L(S). A translation I of language L(T ) into

language L(S) is specified by: (1) an L(S)-formula δI (x)

denoting the domain of I ; (2) for each relation symbol R of

L(T ), an L(S)-formula RI of the same arity; (3) for each

function symbol F of L(T ) of arity k , an L(S)-formula FI of

arity k + 1.

• A translation I of L(T ) into L(S) is an interpretation of T in

S if S proves the following facts: (1) for each function symbol

F of L(T ) of arity k, the formula expressing that FI is total

on δI : ∀x0, · · · ∀xk−1(δI (x0) ∧ · · · ∧ δI (xk−1)→
∃y(δI (y) ∧ FI (x0, · · · , xk−1, y))); (2) the I -translations of all

axioms of T .

• This describes only one-dimensional, parameter-free, and

one-piece translations.
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Generalizations of G1 to weak arithmetic

We know that there exists a consistent r.e. weak sub-theory

T of PA (e.g. Robinson’s Arithmetic Q) such that each r.e. theory

S in which T is interpretable is incomplete.

Let T be a consistent r.e. theory. To generalize G1 to weak

arithmetic, we introduce a new notion “G1 holds for T ”.

Definition 5

G1 holds for a r.e. theory T iff for any consistent r.e. theory S,

if T is interpretable in S, then S is incomplete.

Proposition 1

G1 holds for T iff T is essentially incomplete iff T is

essentially undecidable.
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Some key properties of R

Theorem 10 (Forklore, many authors)

• The theory R is locally finitely satisfiable and hence R is not

finitely axiomatizable.

• R�Q since Q is not interpretable in R.

• Σ0
1-completeness holds for R.

• All recursive functions are representable in R, and hence R is

essentially incomplete.

• (Cobham) Any r.e. theory that weakly interprets R is

undecidable.

• For each pair 〈A,B〉 of r.e. sets, there exists a formula φ(x)

such that R ` φ(n) for n ∈ A \ B, and R ` ¬φ(n) for

n ∈ B \ A.

• The Lindenbaum algebras of all r.e. theories that interpret R

are recursively isomorphic.
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Summary

In summary, we have the following picture:

• Q� I Σ0 + exp� I Σ1 � I Σ2 � · · ·� I Σn � · · ·� PA, and G1

holds for them.

• The theories

Q, I Σ0, I Σ0 + Ω1, · · · , I Σ0 + Ωn, · · · ,BΣ1,BΣ1 + Ω1, · · · ,
BΣ1 + Ωn, · · · are all mutually interpretable, and G1 holds for

them.

• Theories PA−,Q+,Q−,TC,AS,S1
2 and Q are all mutually

interpretable, and G1 holds for them.

• R�Q� EA� PRA� PA.

For the definition of these weak theories, refer to [2].
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Generalizations of G2

Theorem 11 (Löb’s theorem)

Let T be a consistent r.e. extension of Q and PrT (x) be a

standard provability predicate. For any sentence φ, if

T ` PrT (pφq)→ φ, then T ` φ.

• Similarly as G1, G2 can also be generalized to some

arithmetically definable theories.

• Similarly as G1, G2 can also be generalized to weak arithmetic

via interpretation.

Theorem 12 (Pudlák)

There is no consistent r.e. theory S such that

(Q + Con(S)) � S.

• As a corollary, G2 holds for any consistent r.e. theory that

interprets Q.

• But it is not true that G2 holds for any consistent r.e.

interpreting R.
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The status of G2

• G1 and G2 are of a rather different nature and scope. Both

mathematically and philosophically, G2 is more problematic

than G1.

• In the case of G1, we are mainly interested in the fact that

some sentence is independent of PA. We make no claim to

the effect that that sentence “really” expresses what we would

express by saying “PA cannot prove this sentence”.

• We can say that G1 is extensional in the sense that we can

construct a concrete independent mathematical statement

without referring to arithmetization and provability predicate.

• We say that G2 holds for T if the consistency statement of T

is not provable in T .

• G2 is essentially different from G1 due to the intensionality

problem: whether G2 holds for T depends on how we

formulate the consistency statement.
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Unless stated otherwise, we assume the following:

• T is a consistent r.e. extension of Q;

• the canonical numbering we use is Gödel’s numbering;

• the provability predicate we use is standard;

• the canonical arithmetic formula to express the consistency of

the base theory T is Con(T ) , ¬PrT (0 6= 0);

• the formula representing the set of axioms is Σ0
1.

• the logic we work on is classic first order logic.
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The intensionality of G2

“Whether G2 holds for theory T ” depends on the following

factors:

(1) the choice of the base theory;

(2) the choice of numberings;

(3) the choice of provability predicate;

(4) the choice of an arithmetic formula to express consistency;

(5) the choice of a specific formula representing (numerating) the

axiom set.

(6) the choice of logic we use (to be confirmed)

These factors are not independent, and a choice made at an earlier

stage may have effects on the choices available at a later stage.

In the following, unless stated otherwise, when we discuss how

G2 depends on one factor, we always assume that other factors are

fixed, and only the factor we are discussing is varied.
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G2 and the choice of base theory

• An foundational question about G2 is: how much of

information about arithmetic is required for the proof of G2. If

the base theory does not contain enough information about

arithmetic, then G2 may fail.

• Dan Willard has constructed examples of c.e. arithmetical

theories that couldn’t prove the totality of successor function

but could prove their own canonical consistency.

• Fedor Pakhomov defined a weak set theory H<ω and showed

that it proves its own consistency.
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G2 and the choice of numberings

• Any injective function γ from a set of L(PA)-expressions to N
qualifies as a numbering.

• Gödel’s numbering is a special kind of numberings under which

the Gödel number of the set of axioms of PA is recursive.

• “Whether G2 holds for T ” depends on the choice of

numberings.

• Grabmayr shows that G2 holds for acceptable numberings;

But G2 fails for some non-acceptable numberings.
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G2 and the definition of provability predicate

• The consistency statement Con(T ) is usually defined as

¬PrT (p0 6= 0q).

• G2 holds for any standard provability predicate (i.e. satisfying

the Hilbert-Bernays-Löb Derivability Condition D1-D3).

• G2 may also hold for some non-standard provability predicates.

• Define the Rosser provability predicate PrRT (x) as the formula

∃y(PrfT (x , y) ∧ ∀z ≤ y¬PrfT (¬̇(x), z)).

• G2 fails for Rosser provability predicate:

T ` ConR(T ) , ¬PrRT (p0 6= 0q).
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G2 and the choice of arithmetic formulas to express

consistency
Sergei Artemov argues that in Hilbert’s consistency program,

the original formulation of consistency “no sequence of formulas is

a derivation of a contradiction” is about finite sequences of

formulas, not about arithmetization, proof codes, and internalized

quantifiers.

Sergei Artemov concludes that G2 does not actually exclude

finitary consistency proofs of the original formulation of

consistency.

Three arithmetic formulas to express consistency:

(1) Con0(T ) , ∀x(Fml(x) ∧ PrT (x)→ ¬PrT (¬̇x));

(2) Con(T ) , ¬PrT (p0 6= 0q);

(3) Con1(T ) , ∃x(Fml(x) ∧ ¬PrT (x)).

Note that Con0(T ) implies Con(T ), and Con(T ) implies

Con1(T ).
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Definition 6 (The Hilbert-Bernays Derivability Condition)

HB1: If T ` φ→ ϕ, then T ` PrT (pφq)→ PrT (pϕq).

HB2: T ` PrT (p¬φ(x)q)→ PrT (p¬φ(ẋ)q).

HB3: T ` f (x) = 0→ PrT (pf (ẋ) = 0q) for every primitive

recursive term f (x).

• Hilbert-Bernays-Löb derivability condition is sufficient to show

that T 0 Con(T ) (and hence T 0 Con0(T )), but is not

sufficient to show that T 0 Con1(T ).

• Hilbert-Bernays derivability condition is sufficient to show that

T 0 Con0(T ), but it is not sufficient to show that

T 0 Con1(T ).

• Kurahashi constructed a Rosser provability predicate satisfying

the Hilbert-Bernays derivability condition. Thus, the

Hilbert-Bernays derivability condition is not sufficient to show

that T 0 Con(T ).
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A general definition of provability predicate

Definition 7

Let α(x) be a formula in L(T ).

(1) Define the formula Prfα(x , y) saying “y is the Gödel number

of a proof of the formula with Gödel number x from the set of

all sentences satisfying α(x)”.

(2) Define the provability predicate Prα(x) of α(x) as

∃yPrfα(x , y) and consistency statement Conα(T ) as

¬Prα(p0 6= 0q).

(3) α(x) is a numeration of T if for any n,PA ` α(n) iff n is the

Gödel number of some φ ∈ T .
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G2 and the numeration of base theory

Theorem 13 (Gödel)

Let T be any consistent r.e. extension of Q. If α(x) is any Σ1

numeration of T , then T 0 Conα(T ).

• G2 holds for any Σ1 numeration of PA, but fails for some Π1

numerations of PA.

• Feferman showed that there is a Π1 numeration τ(u) of PA

such that G2 fails: PA ` Conτ (PA).
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The limit of the applicability of G1

• Whether a theory is complete depends on the language of the

theory. In the languages L(0,S), L(0,S, <) and L(0,S, <,+),

there are, respectively, recursively axiomatized complete

arithmetic theories. For example, Presburger arithmetic is a

complete theory of the arithmetic of addition in the language

of L(0,S,+).

• Recall that G1 holds for some arithmetically definable

extensions of Q, but it is not true that any arithmetically

definable extension of Q is incomplete.
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The limit of G1 w.r.t. Turing degree

Question 2

A natural question: is there a minimum (or minimal) r.e.

theory in some sense for which G1 holds?

Define D = {S : S <T R and G1 holds for a r.e. theory S}.

Question 3

(1) Is (D, <T ) well founded? i.e. could we find a minimal theory S

w.r.t. Turing degree such that G1 holds for S?

(2) Are any two elements of (D, <T ) comparable?

(3) Is there an infinite descending chain in (D, <T )?
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Theorem 14 (Shoenfield)

If A ⊆ N is a non-recursive r.e. set, then there is a recursively

inseparable pair 〈B,C 〉 such that A, B and C have the same

Turing degree.

Theorem 15 (Shoenfield)

Let A ⊆ N be a non-recursive r.e. set. Then there is a

consistent axiomatizable theory T having one non-logical symbol

which is essentially undecidable and has the same Turing degree as

A.

From Theorem 15, for any Turing degree 0 < d < 0′, there is

a theory U ∈ D such that U has Turing degree d.

Thus, there is one-to-one correspondence between {d : d is

r.e. and 0 < d < 0′} and D.

Hence, the structure 〈D,≤T 〉 is as complex as the Turing

degree structure of r.e. sets.
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Theorem 16

(1) (D, <T ) is not well founded (or 〈D, <T 〉 has no minimal

element).

(2) (D, <T ) has infinite many incomparable elements.

(3) There is an infinite descending chain in (D, <T ).

(4) 〈D, <T 〉 is dense: for any theory A,B ∈ D such that A <T B,

there is a theory C ∈ D such that A <T C <T B.

(5) For any theory A ∈ D, there exists a theory B ∈ D such that

B is incomparable with A under ≤T .

(6) Given theories A,B ∈ D such that A <T B, there is an infinite

r.e. sequence of theories Cn ∈ D such that A <T Cn <T B

and Cn are not comparable.

(7) Given theories A,B ∈ D such that A <T B, any countably

partially ordered set can be embedded in 〈D, <T 〉 between A

and B.
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G1 holds for many theories weaker than R

We know that G1 holds for R and many weak arithmetics

below PA. A natural question is:

Question 4

Could we find a theory S such that G1 holds for S and S �R?

Definition 8

〈S ,T 〉 is a recursively inseparable pair if S and T are disjoint

r.e. sets, and there is no recursive set X ⊆ N such that S ⊆ X and

X ∩ T = ∅.

Theorem 17

For any recursively inseparable pair 〈A,B〉, there is a theory

U〈A,B〉 such that G1 holds for U〈A,B〉 and U〈A,B〉 � R.
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The limit of G1 w.r.t. interpretation

Define D = {S : S � R and G1 holds for a r.e. theory S}.
As a corollary of Theorem 17, D has continuum many

elements.

Question 5

(1) Is (D,�) well founded? i.e. could we find a minimal theory S

w.r.t. interpretation such that G1 holds for S?

(2) Are any two elements of (D,�) comparable?

(3) Is there an infinite descending chain in (D,�)?

The interpretation degree structure of r.e. theories extending

Robinson’s arithmetic Q is well known (in fact, a dense distributive

lattice under some operations). However, the interpretation degree

structure of r.e. theories weaker than Robinson’s theory R is much

more complex and not well known.
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We say a r.e. theory U is Turing persistent iff for any

consistent r.e. theory V , if U ⊆ V , then U ≤T V . As a corollary,

we have if U is Turing persistent, then for any r.e. theory V , if

U � V , then U ≤T V .

Theorem 18 (Shoenfield, Visser)

For any r.e. set A, there are disjoint r.e. sets B and C with

B,C ≤T A such that for any r.e. D which separates B and C , we

have A ≤T D.

Theorem 19

For any r.e. Turing degree 0 < d < 0′, there exists a Turing

persistent theory Td with Turing degree d such that Td � R and

G1 holds for Td .
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The infimum A⊕ B is defined as follows: A⊕ B is a theory in

the disjoint sum of the signatures of A and B plus a fresh 0-ary

predicate symbol P. The theory is axiomatised by all P → ϕ,

where ϕ is an axiom of A plus ¬P → ψ, where ψ is an axiom of B.

The supremum A⊗ B is defined as follows: A⊗ B is a theory

in the disjoint sum of the signatures of A and B plus two new

predicates P0 and P1. We have axioms that say that P0 and P1

form a partition of the domain and the axioms of A relativised to

P0 and the axioms of B relativised to P1.

• The degrees of interpretability form a distributive lattice with

these two operations.

• For r.e. theories A and B, if A and B both are essentially

undecidable, then A⊕ B is also essentially undecidable.
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About the structure of 〈D,�〉, we have the followings which

answer some open questions:

• There are countably many elements of D which are

incomparable under �.

• There are an descending chain of elements of D under � with

countable length.

• If 〈D,�〉 has a minimal element, then it is also a minimum,

and it is not Turing persistent.

• 〈D,�〉 has no minimal element if we restrict to finitely

axiomatized theories.

• 〈D,�〉 restricted to finitely axiomatized theories is a dense

distributive lattice.
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The case for infinite signature

We find that whether 〈D,�〉 has a minimal element depends

on the signature of the language. If the signature of the language

is infinite, then 〈D,�〉 has a minimum element.

Theorem 20

For any recursively inseparable pair 〈X ,Y 〉, there is a theory

T〈X ,Y 〉 with infinite signature such that G1 holds for T〈X ,Y 〉 and

T〈X ,Y 〉 is interpretable in any first order theory.

This shows that if without further restrictions, interpretation

is not a good notion for comparing essentially incomplete theories

since an essentially undecidable theory may be interpretable in a

decidable theory.
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About the question whether 〈D,�〉 has a minimal element, it

is related to the following factors:

• whether the signature is infinite;

• the complexity of the signature for finite signature;

• the class of theories we consider (e.g. finite axiomatized

theory);

• the notion of interpretation we use (e.g. multi-dimensional,

piece-wise interpretation with parameters).
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Thanks for your attention!
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