
NOTICE: This is the author’s version of a work accepted for publication by
Springer. The final publication is available at Springer via

http://dx.doi.org/10.1007/978-3-319-11206-0 27



Planning in the Wild: Modeling Tools for PDDL

Volker Strobel, Alexandra Kirsch

Department of Informatics
Eberhard Karls Universität Tübingen

Abstract. Even though there are sophisticated AI planning algorithms,
many integrated, large-scale projects do not use planning. One reason
seems to be the missing support by engineering tools such as syntax high-
lighting and visualization. We propose myPddl— a modular toolbox for
efficiently creating pddl domains and problems. To evaluate myPddl,
we compare it to existing knowledge engineering tools for pddl and ex-
perimentally assess its usefulness for novice pddl users.

1 Introduction

A large community of researchers dedicate their efforts to AI planning. However,
the progress made in this community is often ignored when it comes to devel-
oping complete AI systems. Planning is a fundamental cognitive function that
is useful for most systems claiming to be intelligent, such as autonomous robots
or decision support systems.

The basics of AI planning are taught in any AI course and there are many
planners readily available, also due to the International Planning Competition1.
So why is planning not used in more systems? We believe that one reason is the
gap between modeling textbook toy problems and modeling complex, real-world
problems. The standard AI planning language pddl differentiates between do-
main files with definitions of types, predicates and actions, and problem files
with definitions of objects and goals. Realistic domains contain hundreds of ob-
jects, different agents with different capabilities, able to perform a large variety
of actions. Modeling such domains soon gets confusing: object and action defini-
tions depend on the type hierarchy, goals have to be compatible with predicate
and action definitions, etc.

This problem is not specific to planning, but poses a challenge to software
engineering in general. As projects grow in size, developers have to be supported
with appropriate tools in order to keep track of the overall structure. We think
that it is time to move AI planning from a purely scientific discipline into the
direction of Planning Task Engineering in the sense that planning becomes a
standard component of AI systems, readily usable for anyone wishing to build
intelligent systems.

In this paper we propose myPddl, a set of tools for modeling large domains
and associated problems. After a review of existing tools for pddl, we introduce

1 http://ipc.icaps-conference.org/



the myPddl modules. We then compare myPddl to the other existing tools
and present a user test for two myPddl modules. We conclude with an outlook
on further steps necessary to improve the availability of planning for intelligent
system development.

2 Existing Tools

There have been some attempts to provide modeling tools for pddl. We intro-
duce the three most sophisticated tools we found and use those as a benchmark
for myPddl in Section 4.1.

pddl studio2 [13] is an application for creating and managing pddl projects,
i.e. a collection of pddl files. The pddl studio integrated development environ-
ment (ide) was inspired by Microsoft Visual Studio and imperative programming
paradigms. Its main features are syntax highlighting, error detection, context
sensitive code completion, code folding, project management, and planner in-
tegration. pddl studio’s error detection can recognize both syntactic (missing
keywords, parentheses, etc.) and semantic (wrong type of predicate parameters,
misspelled predicates, etc.) errors.

A major drawback of pddl studio is that it is not updated regularly and
only supports pddl 1.2. Later pddl versions contain several additional features
such as durative actions, numeric fluents, and plan-metrics [6].

itSimple [20] follows a graphical approach using Unified Modeling Language
(uml) [3] diagrams. In the process leading up to itSimple, uml.p (uml in
a Planning Approach) was proposed, a uml variant specifically designed for
modeling planning domains and problems [19].

itSimple’s modeling workflow is unidirectional as changes in the pddl do-
main do not affect the uml model and uml models have to be modeled manu-
ally, meaning that they cannot by generated from pddl. However, [18] present
a translation process from a pddl domain specification to an object-oriented
uml.p model as a possible integration for itSimple. This translation process
makes extensive semantic assumptions for pddl descriptions. For example, the
first parameter in the :parameters section of an action is automatically de-
clared as a subclass of the default class Agent, and the method is limited to
predicates with a maximum arity of two. The currently version of itSimple
does not include the translation process from pddl to uml.

Starting in version 4.0 [21] itSimple expanded its features to allow the cre-
ation of pddl projects from scratch (i.e. without the uml to pddl translation
process). Thus far, the pddl editing features are basic. A minimal syntax high-
lighting feature recognizes pddl keywords, variables, and comments. itSimple
also provides templates for pddl constructs, such as requirement specifications,
predicates, actions, initial state, and goal definitions.

Both pddl studio and itSimple do not build on existing editors and there-
fore cannot fall back on refined implementations of features that have been
modified and improved many times throughout their existence.

2 http://amis.mff.cuni.cz/PDDLStudio/



The pddl-mode for the widely used Emacs editor [17] builds on the sophisti-
cated features of Emacs and uses its extensibility and customizability. It provides
syntax highlighting by way of basic pattern matching of keywords, variables, and
comments. Additional features are automatic indentation and code completion
as well as bracket matching. Code snippets for the creation of domains, prob-
lems, and actions are also available. Finally, the pddl-mode keeps track of action
and problem declarations by adding them to a menu and thus intending to allow
for easy and fast code navigation.

pddl-mode for Emacs supports pddl versions up to 2.2, which includes de-
rived predicates and timed initial predicates [5], but does not recognize later
features like object-fluents.

In sum, there is currently no tool available supporting all features of PDDL 3.1,
nor all the steps in the modeling process.

3 MyPDDL

myPddl is designed as a modular framework. We first introduce the imple-
mented modules and then explain their details with respect to design guidelines
for knowledge engineering tools.

3.1 Modules

mypddl-ide is an integrated development environment for the use of myPddl
in Sublime Text3. Since mypddl-snippet and -syntax are devised explicitly
for Sublime Text, their integration is implicit. The other tools can be used
independently of Sublime Text with the command-line interface and any
pddl file, but were also integrated into the editor.

mypddl-syntax is a context-aware syntax highlighting feature for Sublime
Text. It distinguishes all pddl constructs up to version 3.1. Using regu-
lar expressions that can recognize both the start and the end of code blocks
by means of a sophisticated pattern matching heuristic, mypddl-syntax
identifies pddl code blocks and constructs and divides them into so called
scopes, i.e. named regions. Sublime Text colorizes the code elements via the
assigned scope names and in accordance with the current color scheme. These
scopes allow for a fragmentation of the pddl files, so that constructs are only
highlighted if they appear in the correct context. Thus missing brackets, mis-
placed expressions and misspelled keywords are visually distinct and can be
identified (see Figure 1).

mypddl-new helps to organize pddl projects by generating the following folder
structure:

3 http://www.sublimetext.com/



Fig. 1. Syntax highlighting in the mypddl-ide in the Sublime Text editor. White text
contains errors.

project-name/

domains/

problems/

p01.pddl

solutions/

domain.pddl

README.md
The domain file domain.pddl and the problem file p01.pddl initially con-
tain corresponding pddl skeletons which can also be customized. All prob-
lem files that are associated with one domain file are collected in the folder
problems/. README.md is a Markdown file, which is intended for (but not
limited to) information about the author(s) of the project, contact informa-
tion, informal domain and problem specifications, and licensing information.
Markdown files can be converted to html by various hosting services (like
GitHub or Bitbucket).

mypddl-snippet provides code skeletons, i.e. templates for often used pddl
constructs such as domains, problems, type and function declarations, and
actions. They can be inserted by typing a triggering keyword.

mypddl-clojure provides a preprocessor for pddl files to bypass pddl’s lim-
ited mathematical capabilities, thus reducing modeling time without over-
charging planning algorithms. We decided to use Clojure [7], a modern Lisp
dialect that runs on the Java Virtual Machine (JVM) [9], facilitating input
and output of the Lisp-style pddl constructs. mypddl-clojure is the basis
for mypddl-distance and mypddl-diagram.

mypddl-distance provides special preprocessing functions for distance calcu-
lations. For domains with spatial components, the distance of objects is often
important and should not be omitted in the domain model. However, cal-
culating distances from coordinates requires the square root function, which
is not supported by pddl (it only supports the four basic arithmetic oper-



object

(in ?o1 - object ?o2 - object)

software

(has-access ?p - person ?s - software)

person

(has-access ?p - person ?s - software)
(hungry ?p - person)

container food

hacker non-hacker box fridge pizza burgers fries

pepperoni supreme

Fig. 2. Type diagram generated by mypddl-diagram.

ators). More sophisticated calculations can be achieved with the supported
operators, but the solutions are rather inefficent and inelegant [12]. By cal-
culating the distances offline and including them as additional predicates in
the problem file using mypddl-distance, the distances between objects are
given to the planner as part of the problem description.

mypddl-diagram generates a png image from a pddl domain file as shown
in Figure 2. The diagrammatic representation of textual information helps
to quickly understand the connection of hierarchically structured items and
should thus be able to simplify the communication and collaboration between
developers. In the process of generating the diagrams, a copy of the pddl
file is created, so that a simple version control is also included.

3.2 Design Principles

As guidelines for design decisions, we used the seven criteria for knowledge engi-
neering tools proposed by Shah et al. [16] as well as general usability principles.

Operationality asks whether the generated models can improve the planning
performance. This is not a design principle for myPddl, because we assume that
myPddl does not improve the quality (with respect to planning performance)
of the resulting pddl specifications. Therefore, we replaced this criterion with
functional suitability from the iso/iec 25010 standard, which is defined as “the
degree to which the software product provides an appropriate set of functions
for specified tasks and user objectives” (iso 25010 6.1.1). myPddl supports the
current version 3.1 of pddl. It encompasses and exceeds most of the functionality
of the existing tools. It specifically supports basic editor features with a high
customizability as well as visualization support.

Collaboration: With the growing importance of team work and team mem-
bers not necessarily working in the same building, or in the same country, there
is an increasing need for tools supporting the collaboration effort. In develop-
ing myPddl, this need was sought to be met by mypddl-diagram. Complex
type hierarchies can be hard to overlook, especially if they were constructed by
someone else. Therefore, a good way of tackling this problem seemed to be by
providing a means to visualize such hierarchies in the form of type diagrams.



Experience: myPddl was designed specifically for users with a background
in AI, but not necessarily in pddl. The tools are similar to standard software
engineering tools and should thus be easily learnable. The user evaluation (Sec-
tion 4.2) confirms that myPddl helps novices in pddl to master planning task
modeling. In addition, it is also possible to customize myPddl so as to adapt its
look and feel to other programs one is already familiar with, or simply to make it
more enjoyable to use. The project site4 provides myPddl video introductions
and a manual to get started quickly.

Efficiency: All myPddl tools are intended to increase the efficiency with
which pddl files are created. mypddl-snippet enables the fast creation of large
and correct code skeletons that only need to be complemented. mypddl-syntax
can reduce the time spent on searching errors. Code folding allows users to
hide currently irrelevant parts of the code and automatic indentation increases
its readability. To easily keep track of all the parts of a project, folders are
automatically created and named with mypddl-new. mypddl-clojure and -
distance allow for a straightforward inclusion of numerical values in the problem
definition.

Debugging: mypddl-syntax highlights all syntactically correct constructs
and leaves all syntactical errors non-highlighted. In contrast, pddl-mode for
Emacs and itSimple only provide basic syntax highlighting for emphasizing the
structure. pddl studio explicitly detects errors, but the user is immediately
prompted when an error is detected. Often, such error messages are premature,
for example, just because the closing parenthesis was not typed yet, does not
mean it was forgotten. myPddl indicates errors in a more subtle way: syntactic
errors are simply not highlighted, while all correct pddl code is. The colors are
customizable, so that users can choose how prominently the highlighting sticks
out.

Maintenance: The possibility to maintain pddl files is a key aspect of myPddl.
The automatically generated type diagram (mypddl-diagram) gives an overview
of the domain structure and thereby serves as a continuous means of docu-
mentation. Helping to understand foreign code, though, it follows logically that
mypddl-diagram also helps in coming back and changing one’s own models if
some time has elapsed since they were last edited. The basic revision control fea-
ture of mypddl-diagram keeps track of changes, making it easy to revert to a
previous domain version. Furthermore, mypddl-new encourages adhering to an
organized project structure and stores corresponding files at the same location.
The automatically created readme file can induce the user to provide further
information and documentation about the pddl project.

Support: mypddl-ide can be installed using Sublime Text’s Package Control
[2]. This allows for an easy installation and staying up-to-date with future ver-
sions. In order to provide global access and with it the possibility for developing
an active community, the project source code is hosted on GitHub5. Additionally,
the project site provides room for discussing features and reporting bugs.

4 http://pold87.github.io/myPDDL/
5 https://github.com/Pold87/myPDDL



4 Validation and Evaluation

To assess the utility of myPddl, we used the criteria listed in Section 3.2. We
show the functional suitability in a benchmark validation, comparing myPddl’s
functionality with the tools described in Section 2. The criteria collaboration,
experience, efficiency and debugging were evaluated in a user test. The myPddl
components supporting maintenance are the same that are used in the user
test, but their long-term usage is difficult to evaluate. The support criterion
depends primarily on the infrastructure, which has been established as explained
in Section 3.2.

4.1 Benchmark Validation

Functional suitability encompasses the set of functions to meet the user objec-
tives. The tools of Section 2 basically all follow the same objectives as myPddl:
creating pddl domains and problems. They intend to support this process in
general and the various stages of the design cycle to different degrees. The fea-
tures offered by each tool are summarized in Table 1.

Besides supporting the latest pddl version, a strength of myPddl is its
high customizability, which comes with the Sublime Text editor. Being the only
one of the four tools capable of visualizing parts of the pddl code, it must be
understood as complementary to itSimple, which takes the opposite approach
of transforming uml diagrams into pddl files. The fact that myPddl does not
check for semantic errors is not actually a drawback as planners will usually
detect semantic errors. All in all, myPddl combines the most useful tools of
pddl studio, itSimple, and pddl-mode for Emacs and strives to support the
planning task engineer during all phases of the modeling process. Additionally,
it features some unique tools, such as domain visualization. It can therefore be
concluded that myPddl provides an appropriate set of functions for developing
pddl files and is thus functionally suitable.

4.2 User Evaluation

The two most central modules of myPddl are mypddl-syntax and mypddl-
diagram, since they support collaboration, efficiency and debugging indepen-
dently of the user’s experience with pddl.

Procedure. We invited eight participants6 to a user test (three female, average
age 22.9, standard deviation 0.6), who had some basic experience with at least
one Lisp dialect (in order not to be confused with the many parentheses), but
no experience with pddl or AI planning in general.

6 In Usability Engineering, a typical number of participants for user tests is five to
ten. Studies have shown that even such small sample sizes identify about 80% of the
usability problems [10, 8]. Our study design required at least eight participants.



Table 1. Comparison of knowledge engineering tools and their features.

Feature pddl
studio

itSimple pddl-
mode

myPddl

latest supported pddl version 1.2 3.1 2.2 3.1
syntax highlighting yes basic basic yes
semantic error detection yes no no no
automatic indentation no no yes yes
code completion yes no yes yes
code snippets no yes yes yes
code folding yes no yes yes
domain visualization no planned no yes
project management yes yes no yes
uml to pddl code translation no yes no no
planner integration basic yes no basic
plan visualization no yes no no
dynamic analysis no yes no no
declaration menu no no yes no
interface with programming language no no no yes
customization features basic no yes yes

No earlier than 24 hours before the experiment was to take place, participants
received the web link to a 30-minute interactive video tutorial on AI planning
and pddl7. This method was chosen in order not to pressure the participant
with the presence of an experimenter when trying to understand the material.

We defined four tasks: two debugging tasks and two type hierarchy tasks
asking for details of a given domain (e.g. “Can a Spleus be married to a Schlok?”).
As a within-subjects design was considered most suited (to control for individual
differences within such a small sample), it was necessary to construct two tasks
(matched in difficulty) for each of these two types to compare the effects of
having the tools available. The two tasks to test syntax highlighting presented
the user with domains that were 54 lines in length, consisted of 1605 characters
and contained 17 errors each. Errors were distributed evenly throughout the
domains and were categorized into different types. The occurrence frequencies
of these types were matched across domains as well, to ensure equal difficulty for
both domains. To test the type diagram generator, two fictional domains with
equally complex type hierarchies consisting of non-words were designed (five and
six layers in depth, 20 and 21 types). The domains were also matched in length
and overall complexity (five and six predicates with approximately the same
distribution of arities, one action with four predicates in the precondition and
two and three predicates in the effect).

Each participant started either with a debugging or type hierarchy task and
was given the myPddl tools either in the first two tasks or the second two
tasks, so that each participant completed each task type once with and once

7 http://www.youtube.com/playlist?list=PL3CZzLUZuiIMWEfJxy-
G6OxYVzUrvjwuV



without myPddl. This results in 2 (first task is debugging or hierarchy) × 2
(task variations for debugging and hierarchy) × 2 (starting with or without
myPddl) = 8 individual task orders, one per participant.

For the debugging tasks, participants were given six minutes8 to detect as
many of the errors as possible. They were asked to record each error in a table
(pen and paper) with the line number and a short comment and to immediately
correct the errors in the code if they knew how to, but not to dwell on the
correction otherwise. For the type hierarchy task, participants were asked to
answer five questions concerning the domains, all of which could be facilitated
with the type diagram generator, but one of which also required looking into
the code. Participants were told that they should not feel pressured to answer
quickly, but to not waste time either. Also they were asked to say their answer
out loud as soon as it became evident to them. They were not told that the time
it took them to come up with an answer was recorded, since this could have
made them feel pressured and thus led to more false answers. At the end of the
usability test they were asked to evaluate the perceived usability of myPddl
using the system usability scale [4].

Results.

1. Debugging Tasks
As shown in Figure 3(a), on average participants found 7.6 errors without
syntax highlighting and 10.3 errors with syntax highlighting (i.e. approxi-
mately 36 % more errors were found with syntax highlighting).
Two participants remarked that the syntax highlighting colors confused them
and that they found them more distracting than helpful. One of them men-
tioned that the contrast of the colors used was so low that they were hard
for her to distinguish. She found the same number of errors with and with-
out syntax highlighting. The other of the two was the only participant who
found fewer errors with syntax highlighting than without it. With mypddl-
syntax, two participants found all errors in the domain, while none achieved
this without syntax highlighting.

2. Type Hierarchy Tasks
Figure 3(b) shows the geometric mean9 of the completion time of successful
tasks for each question with and without the type diagram generator.
With the type diagram generator participants answered all questions (except
Question 4) on average nearly twice as fast. The fact that the availability of
tools did not have a positive effect on task completion times for Question 4
can probably be attributed to the complexity of this question. In contrast
to the other four questions, to answer Question 4 correctly, the participants
were required to look at the actions in the domain file in addition to the
type diagram. Most participants were confused by this, because they had
assumed that once having the type diagram available, it alone would suffice

8 A reasonable time frame tested on two pilot tests.
9 The geometric mean is a more accurate measure of the mean for small sample sizes

as task times have a strong tendency to be positively skewed [15].



(a) Comparison of detected errors
with and without the syntax high-
lighting feature. The bars display
the arithmetic mean.

100%100% 100%100% 87.5%87.5% 50%62.5% 100%100%0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

Q1 Q2 Q3 Q4 Q5
Question

S
ec

on
ds myPDDL−diagram

without

with

Task Completion Time per Question
(Geometric Mean)

(b) Task completion time for the type hierarchy
tasks. The bars display the geometric mean. The
percent values at the bottom of the bars show
the the percentage of users that completed the
task successfully.

Fig. 3. Results of the user test. The crosses (×) represent single participants. red: with
myPddl, blue: without myPddl

to answer all questions. This initial confusion cost some time, thus negatively
influencing the time on the task.

3. System Usability Scale
myPddl reached a score of 89.6 on the system usability scale 10, with a
standard deviation of 3.9. Since the overall mean score of the system usability
scale has an approximate value of 68 with a standard deviation of 12.5 [14],
the score of myPddl is well above average with a small standard deviation. A
score of 89.6 is usually attributed to superior products [1]. Furthermore, 89.6
corresponds approximately to a percentile rank of 99.8 %, meaning that it
has a better perceived ease-of-use than 99.8 % of the products in the database
used by Sauro [14].

Discussion. The user test shows that overall myPddl provides very useful tools
for novices in AI planning and pddl. It also shows that customizability is im-

10 The range of possible values for the system usability scale is 0 to 100.



portant, as not all users prefer the same colors or syntax highlighting at all and
their personal preferences seem to correlate with the effectiveness of the tools.

Visualization tools such as mypddl-diagram can improve the understand-
ing of unknown pddl code and thus support collaboration. But users may be
unaware of the limitations of such tools. A possible solution is to extend mypddl-
diagram to display actions, but this can overload the diagram and especially
for large domains render it unreadable. Different views for different aspects of
the domain or dynamically displayed content could integrate more data, but this
also hides functionality, which is generally undesired for usability [11].

5 Conclusion

myPddl was designed with the goal to support plan engineers in modeling do-
mains and planning problems as well as in understanding, modifying, extending,
and using existing planning domains. This was realized with a set of tools com-
prising code editing features, namely syntax highlighting and code snippets, a
type diagram generator, and a distance calculator. To also have all tools ac-
cessible from one place, they were made available in the Sublime Text editor.
The different needs and requirements of knowledge engineers are met by the
modular, extensible, and customizable architecture of the toolkit and Sublime
Text. The evaluation of myPddl has shown some initial evidence that it al-
lows a faster understanding of the domain structure, which could be beneficial
for the maintenance and application of existing task specifications and for the
communication between engineers. Users perceive it as easy and enjoyable to
use, and the increase in their performance when using myPddl underpins their
subjective impressions.

Despite myPddl already providing a rich modeling environment, there are
still numerous features that could be added in the future. Especially mypddl-
clojure offers multiple interesting further research directions: It provides a
basis for dynamic planning scenarios. Applications could be the modeling of
learning and forgetting (by adding facts to or retracting facts from a pddl file)
or the modeling of an ever changing real world via dynamic predicate lists.
Another way of putting the interface to use would be by making the planning
process more interactive, allowing for the online interception of planning software
in order to account for the needs and wishes of the end user.

We hope that myPddl will be accepted in the planning community, but
especially that it will be used by people who create integrated AI systems and
are not necessarily planning experts. We are looking forward to feedback for
continual improvements.

Project website: http://pold87.github.io/myPDDL/

References

1. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system
usability scale. Intl. Journal of Human - Computer Interaction 24(6), 574–594
(2008)



2. Bond, W.: (2013), https://sublime.wbond.net/about
3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User

Guide. Pearson Education India (1999)
4. Brooke, J.: SUS — a quick and dirty usability scale. Usability evaluation in industry

189, 194 (1996)
5. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the

4th international planning competition. 4th International Planning Competition
(IPC’04), at ICAPS’04 (2004)

6. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res.(JAIR) 20, 61–124 (2003)

7. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 Sym-
posium on Dynamic languages. ACM (2008)

8. Hwang, W., Salvendy, G.: Number of people required for usability evaluation: The
10±2 rule. Communications of the ACM 53(5), 130–133 (2010)

9. Lindholm, T., Yellin, F., Bracha, G.: Virtual machine specification. Java CardTM
Platform, Version 2(2) (2011)

10. Nielsen, J.: Estimating the number of subjects needed for a thinking aloud test.
International Journal of Human-Computer Studies 41(3), 385–397 (1994)

11. Norman, D.: The Design of Everyday Things. Basic Books, New York (1988)
12. Parkinson, S., Longstaff, A.P.: Increasing the numeric expressiveness of the plan-

ning domain definition language. In: Proceedings of The 30th Workshop of the UK
Planning and Scheduling Special Interest Group (PlanSIG2012). UK Planning and
Scheduling Special Interest Group (2012)

13. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL doc-
uments: Simply and efficiently with PDDL studio. In: System Demonstrations and
Exhibits at ICAPS 2012 (2012)

14. Sauro, J.: A Practical Guide to the System Usability Scale: Background, Bench-
marks & Best Practices. Measuring Usability LCC (2011)

15. Sauro, J., Lewis, J.R.: Quantifying the User Experience: Practical Statistics for
User Research. Elsevier (2012)

16. Shah, M., Chrpa, L., Jimoh, F., Kitchin, D., McCluskey, T., Parkinson, S., Vallati,
M.: Knowledge engineering tools in planning: State-of-the-art and future chal-
lenges. Knowledge Engineering for Planning and Scheduling p. 53 (2013)

17. Singhi, S.: Emacs mode for PDDL (2005), http://rakaposhi.eas.asu.edu/planning-
list-mailarchive/msg00085.html

18. Tonidandel, F., Vaquero, T.S., Silva, J.R.: Reading PDDL, writing an object-
oriented model. In: Advances in Artificial Intelligence-IBERAMIA-SBIA 2006, pp.
532–541. Springer (2006)

19. Vaquero, T.S., Tonidandel, F., de Barros, L.N., Silva, J.R.: On the use of UML.p
for modeling a real application as a planning problem. In: International Conference
on Automated Planning and Scheduling (ICAPS). pp. 434–437 (2006)

20. Vaquero, T.S., Tonidandel, F., Silva, J.R.: The itSIMPLE tool for modeling plan-
ning domains. Proceedings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, Califormia, USA (2005)

21. Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: it-
simple4.0: Enhancing the modeling experience of planning problems. In: System
Demonstration–Proceedings of the 22nd International Conference on Automated
Planning & Scheduling (ICAPS-12) (2012)


