
Diplomarbeit

Analysis and Visualisation of Social Networks

Keyan Mahmoud Ghazi-Zahedi

Diplomarbeit im Fach Informatik

Analysis and Visualisation of Social Networks

vorgelegt von

Keyan Mahmoud Ghazi-Zahedi

April 2001

Betreuer: Prof. Dr. Michael Kaufmann

Wilhelm-Schickard-Institut
Arbeitsbereich Paralleles Rechnen

Eberhard-Karls-Universität Tübingen
Sand 13 · 72076 Tübingen

Erklärung

Hiermit versichere ich, diese Arbeit
selbständig verfaßt und nur die
angegebenen Quellen benutzt zu haben.

(Keyan Zahedi)

Contents

1 Introduction 5

2 Social Networks 9
2.1 History . 9
2.2 Modern social network analysis 10
2.3 Data and resources . 11

2.3.1 Actors . 11
2.3.2 Relations . 11

2.4 Why formal methods? . 13

3 Mathematical Foundations 15
3.1 Definitions . 15

4 Clustering 19
4.1 Clustering Algorithms . 20

4.1.1 Top-Down Approaches 20
4.1.2 Bottom-Up Approaches 21

4.2 The Clustering Algorithm . 23
4.2.1 Overview . 23
4.2.2 Clustering . 24
4.2.3 Calculating the residual graph 27
4.2.4 Merging clusters . 30

5 Centrality 33
5.1 Overview . 33

5.1.1 Degree Centrality . 34
5.1.2 Betweenness Centrality 35
5.1.3 Flow-betweenness Centrality 35

3

4 CONTENTS

5.1.4 Closeness Centrality 36
5.1.5 The Bonacich’s power index 37

5.2 Group centrality . 37
5.2.1 General Principles . 37

5.3 Method . 38
5.4 Algorithms . 39

5.4.1 Degree centrality . 39
5.4.2 Betweenness centrality 39
5.4.3 Flow-betweenness centrality 42

6 Visualisation 45
6.1 Data and Properties . 45

6.1.1 Data . 45
6.1.2 Properties . 46

6.2 Problems . 47
6.2.1 Types of Nodes . 47
6.2.2 Types of Clusters . 48
6.2.3 Type B Analysis . 49

6.3 Conclusion . 54
6.4 Single Cluster Layout . 54
6.5 Multi cluster visualisation . 56

6.5.1 Shared actors . 59
6.5.2 Group layout . 59

6.6 Conclusion . 59

7 Conclusions & Future Work 63

A YSocNet 65
A.1 Requirements . 65
A.2 Application Properties . 66
A.3 Architecture . 66

A.3.1 Data Input . 66
A.4 Modules . 68

A.4.1 SocNetData . 68
A.4.2 SocNet-Interface . 68
A.4.3 Clustering . 69
A.4.4 Centrality . 69
A.4.5 Visualisation . 69

CONTENTS 5

A.4.6 SocNetAnalysis . 69
A.5 Framework . 70

B Related Work 71
B.1 Social Network Analysis Programs 71

B.1.1 UCINET . 71
B.1.2 KrackPlot . 72

6 CONTENTS

Chapter 1

Introduction

Firms exchanging information forming a social network (Knoke Information
Exchange Data)

A social network is a formal representation of actors and the relations
between them. Actors, in this context, can be persons, like students in
a classroom, or companies, having economic relations (see Figure above).
Representing a social structure by a (social) network allows the analysis by
graph theoretical methods. In a social network, or more precise the graph of
a social network, actors are represented by nodes, and the relations between
actors are represented by edges between the according nodes. In the Chap-
ter Social Networks we briefly review the history of social network analysis,
discussing the data we have, and the advantages of formal methods.

7

8 CHAPTER 1. INTRODUCTION

In the Figure above, we see companies that have an information exchange
network. Having a brief look at the Figure, one can see, that there are actors
having a lot of direct connections to others, some receiving more or less
information as they offer, and some only having very few direct connections
to others. Social scientists are interested in determining the structure of a
social network, as well as determining the distribution of power among the
actors. The power of an actor arises from the structure of the relations in
the social network.

The structure of network is best shown using clustering methods. A
cluster is a group of actors in the network, that have more relations among
each other, then to actors that are not a member of the group. The network
is divided into distinguishable sub-networks. We assume, that an actor can
be part of more then one group. The clustering method must therefor be
able to extract overlapping clusters. In the Chapter Clustering we discuss
different approaches of clustering, finally choosing the k-plex approach as it
allows overlapping of the extracted clusters.

The next step in our analysis of the social network is to calculate the
distribution of power. An actors is said to have power, if he has an advan-
tageous position compared to others. The power of an actor is modelled by
centrality measures. The degree centrality, as an example, implies, that an
actor with more direct connections to other actors has more power, or is
more important, as he has access to more resources. In the picture above
the actor labelled with WRO would be said to be less powerful than the ac-
tor labelled with COMM, as WRO has less direct connections, and therefor
less access to information. In the Chapter Centrality we discuss different
approaches to model power, discussing in detail the algorithms to calculate
two basic (degree and betweenness) and one extension of a basic centrality
(flow-betweenness).

After analysing the data, the next step is a good visualisation of the
extracted information. We say that a visualisation is good, if the information,
extracted clusters and centrality of the actors, can bee seen by the viewer
without much interpretation needed. The result of the visualisation should
be able to support the analysis of a social network done by a social scientist,
as well as the presentation of the results. In the chapter Visualisation we
first discuss the problems that occur visualising overlapping clusters. We
then develop a method, starting with the visualisation of only one cluster,
extending it to handle multiple overlapping or non-overlapping clusters.

In the chapter Mathematical Foundations we introduce some definitions

9

and the terminology that is needed to describe and discuss the algorithms
used here.

In the Appendix A we discuss the architecture of the application YSocNet,
and related work is discussed in the Appendix B.

Acknowledgement

I would like to thank Prof. Dr. M. Kaufmann for giving me the chance to
work on this subject under his direction and for his help. My thanks also go
to Monika Lanik, from the Ethnological Institute of Tübingen, for helping in
any aspect concerning the usage of the application as well as helping in any
social scientific question, and to Markus Eiglsperger, Roland Wiese, Boris
Diebold and Frank Eppinger for their help, as well as to Olaf Peisker for his
help.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Social Networks

In this chapter we give a brief overview of the history of social network
analysis, the modern analysis, the data that social network scientist use, and
the advantages of formal methods in social network analysis.

2.1 History

Scott dates the development of social network analysis as an algebraic anal-
ysis with the breakthrough of the Harvard-structuralists around Harrison C.
White (ca. 1970) [Jan99]. Before this breakthrough was possible, a lot of
work was done by other researchers. The starting point probably was the
British scientist Radcliffe-Brown (1881-1955), who, together with Malinowski
is deemed to be the father of the functionalistic approach in sociology. The
structuralism stadardisises the behaviours of groups in fixed roles. They
were interested in how larger units like communities, villages or organisa-
tion function. Radcliffe-Brown was the first to use the term of network as a
metaphor:

”I use the term ,social structure’ to denote this network of actu-
ally existing relations.”[Radcliffe-Brown, 1940]

The ”Manchester-Group” (Gluckman, Barnes, Bott, Nadel, Mitchell) of the
British social-anthropology augmented the network approach in the fifties
and sixties as an alternative to the structure-formalism. They were interested
in specific behaviours and specific relationships instead of using attributes for
the analysis. Conflicts and power were main aspects of their research.

11

12 CHAPTER 2. SOCIAL NETWORKS

In their works Barnes (1972) and J. Clyde Mitchell (1969) discussed the
term of network at the end of the sixties, beginning of the seventies. They
developed an instrument to describe network-structure under the aspect of
the network terminology. Mitchell understands a network as

”a specific set of linkages among a defined set of persons, with
the additional property that the characteristics of these linkages
as a whole may be used to interpret the social behaviour of the
persons involved.”

2.2 Modern social network analysis

Moreno (1934, 1954) was the first to introduce sociograms as the mathe-
matical representation of social network data. These sociograms were drawn
graphs, representing actors and relations as we discuss them here. Drawing
even a small network of actors can be a difficult task, if the result should still
provide the viewer with information. Intuitively every viewer interpreted
something into the distance between the drawn actors, but early sociograms
did not code any information in the distance between actors. Social scientists
could also use any desired number of different visualisation criteria in their
sociograms [Jan99]. Early sociograms therefor did not provide any informa-
tion. Consequently social science, especially in Germany, did not use social
network analysis much, as the results did not promise to support the analysis
of social groups.

Today the analysis of social networks is said to be the most promising
approach in the sociology [Jan99]. The following ideas mark the analyse of
networks, as it is practised today, especially in the United States [Sch89].

1. The network analysis is understood as a general framework for the
structural analysis of volatile and tight relationships in a social system.

2. Formal analysis provides an important part of the ethnological network
analysis. Todays algorithms were developed in cooperation of mathe-
matic and ethnological scientist. They address the issue of ethnological
problems much better and are very powerful in the analysis of social
structures.

3. Social network analysis focus two main aspects:

2.3. DATA AND RESOURCES 13

• Gathering of complex and diffuse social structures

• Micro–macro linkage, explaining how local units are bound into
higher-level regional and national units.

2.3 Data and resources

A social network is described by actors and by the relations among the actors.

2.3.1 Actors

In the graph of the social network, actors are represented by nodes. Network
analysts do not focus on one individual and his attributes, but on the rela-
tions among actors. The nodes or actors in non-network studies tend to be
the result of independent probability sampling, whereas network studies are
much more likely to include all of the actors who occur within some, usually
naturally occurring boundary. Such a natural occurring boundary could be a
classroom. If we would like to examine the relationships between classmates,
we would include every actor in the class.

Levels of analysis

One can think of individuals as being embedded into a network, which is
embedded into a network, etc. In the classroom-example, we have students
within classes, and classes within the school, and schools within a school-
district, etc. Such a structure is described as ”multi-modal”.

2.3.2 Relations

In the graph of the social network, relations are represented by edges. When
it comes to the relations between the actors, some sampling is very likely to
occur. Actors might be connected by many relations. In our example this
could be, who likes whom, who does not like whom, who plays with whom,
etc. Full network data allows very powerful description and analysis of social
structures, but requires that all possible information about each actor’s ties
with all other actors is obtained. Collecting full network data can be very
expensive and difficult in any other case than very small groups, as one has
to ask every actor about every connection he has to every other person. In

14 CHAPTER 2. SOCIAL NETWORKS

many cases the problems are not as severe as it might seems. Most persons,
groups and organisations tend to have only a limited number of ties, or at
least a limited number of strong ties. The reason might be, that actors often
have access to only a limited number of resources. The methods introduced
here are designed to work with full network data.

Scales of measurement

Different kind of scales have different mathematical properties. We can dis-
tinguish between different measurements, which we will describe here briefly.
These are:

• nominal

– binary

– multi-category

• ordinal

• interval

Binary measures: The most common measurement, where true denotes
an existing relation and false that the actors have no relation.

Multi-category: Each actor has a category, which describes the type or
strength of a relation to another actor. These categories are mainly described
by numbers, where 1,2,3,. . . could be weak, average, strong,. . . .

Grouped ordinal: One of the earliest traditions in social networks. Ac-
tors are asked to rate other actors as liked, neutral, disliked, represented by
1, 0,−1.

Full-rank ordinal: Actors are asked to give related actors numbers from
1, . . . , n starting with the lowest favoured actor or the actor with the weakest
tie to, to the most liked actor or the actor with to strongest tie to. Such
scales reflect differences in the degree of intensity, but not necessarily equal
differences.

2.4. WHY FORMAL METHODS? 15

Interval measures: A more precise level of measurement as the full-rank
ordinal measure. The difference between a ”1” and ”2” denotes the same
amount of real difference as between ”24” and ”25”.

2.4 Why formal methods?

There are three main reasons for using formal methods to analyse social
networks [Han98].

Systematic representation: For a small population of actors, the pat-
terns of relationships can be described completely and effectively using
words. For a large number of actors and/or relations between the ac-
tors, this can get very tedious. Formal representation ensures that all
the necessary information is systematically represented.

Computational Analysis: To analyse a large social network large amounts
of data must be manipulated. By hand this would take too long. The
usage of computers reduces the time needed significantly.

Patterns: The technique of graphing and the rules of mathematics them-
selves suggest things that we might look for in our data, that might not
have been seen if the data was presented using a description in words.
Describing the relations of actors by a matrix can show patterns of the
relations that otherwise may not have been seen. This can lead us to
ask other questions, which then may lead us to new insights.

16 CHAPTER 2. SOCIAL NETWORKS

Chapter 3

Mathematical Foundations

In this chapter we introduce some graph theoretical definitions, needed to
describe and discuss the algorithms of this work.

3.1 Definitions

The definitions are taken from [dBETT99],[CLR99] and [Har69]. The formal
representation of a social network is called a graph.

Definition 3.1 (graph)
A graph G = (V,E) consists of a finite set V of vertices and a finite multi-
set E of edges, that is, unordered pairs (u, v) or vertices. The vertices of a
graph are sometimes called nodes, edges are sometimes called links, arcs or
connections.

Here a node represents an actor, and an edge indicates a relationship between
two actors.

This definition is too general, as relations are directed. If an actor A calls
actor B , this does not automatically imply, that actor B will also call actor
A. So we have to regard directed relations between actors.

Definition 3.2 (digraph)
A directed graph, or digraph, is a graph, which elements of E are ordered
pairs of vertices, called directed edges. The directed edge (u, v) is an outgo-
ing edge of u and an incoming edge of v. Vertices without outgoing (resp.
incoming) edges are called sinks or targets (resp. sources).

17

18 CHAPTER 3. MATHEMATICAL FOUNDATIONS

If we talk about graphs in the following chapters, we always mean digraphs.
Given an undirected graph G = (V,E), the directed version of G is the
directed graph G′ = (V,E ′), where (u, v) ∈ E ′ if and only if (u, v) ∈ E. That
is, each undirected edge (u, v) ∈ E is replaced in the directed version by
the two directed edges (u, v) ∈ E ′ and (v, u) ∈ E ′. Given a directed graph
G = (V,E), the undirected version of G is the undirected graph G′ = (V,E ′),
where (u, v) ∈ E ′ if and only if u 6= v and (u, v) ∈ E or (v, u) ∈ E.

Now we need a notation for the direct neighbourhood of a node, concern-
ing the relations and the neighbours a node can have.

Definition 3.3 (incident)
If (u, v) is and edge in a directed graph G = (V,E), we say that (u, v) is
incident from or leaves vertex u and is incident to or enter vertex u. If (u, v)
is an edge in an undirected graph G = (V,E), we say that (u, v) is incident
on vertices u and v.

Definition 3.4 (adjacent)
If (u, v) is an edge in a graph G = (V,E), we say that vertex v is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric.

Definition 3.5 (neighbour)
In a directed graph G = (V,E), a neighbour of a vertex u is any vertex that
is adjacent to u in the undirected version of G. That is, v is a neighbour
of u if either (u, v) ∈ E or (v, u) ∈ E. In an undirected graph, u and v are
neighbours if they are adjacent.

Definition 3.6 (degree)
The degree of a vertex in an undirected graph is the number of edges incident
on it. In a directed graph, the out-degree of a vertex is the number of edges
leaving it, and the in-degree of a vertex is the number of edges entering it.
The degree of a vertex in a directed graph is its in-degree plus its out-degree.

Definition 3.7 (path)
A path of length k from a vertex u to a vertex u′ in a graph G = (V,E) is a
sequence 〈v0, v1, . . . , vk〉 of vertices such that u = v0, u

′ = vk, and (vi−1, vi) ∈
E for i = 1, 2, . . . , k. The length of the path is the number of edges in the
path. The path contains the vertices v0, v1, . . . , vk and the corresponding
edges (v0, v1), (v1, v2), . . . , (vk−1, vk). If there is a path p from u to u′, we

say u′ is reachable from u via p, which we sometimes write as u
p
 v if G is

directed. A path is simple if all vertices in the path are distinct. A shortest

3.1. DEFINITIONS 19

path u, u′ is often called a geodesic. The diameter d(G) of a connected graph
G is the length of any longest geodesic. A undirected graph is connected if
every pair of vertices is connected by a path.

Definition 3.8 (complete graph)
A complete graph is an undirected graph in which every pair of vertices is
adjacent.

Definition 3.9 (flow network)
A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈
E has a nonnegative capacity c(u, v) ≥ 0. If (u, v) 6∈ E, we assume that
c(u, v) = 0. We distinguish two vertices in a flow network: a source s ∈ V
and a sink t ∈ V .

Definition 3.10 (flow)
A flow in G is a real-valued function f : V × V 7→ R that satisfies the
following three properties:

Capacity constraint: For all u, v ∈ V , we require f(u, v) ≤ c(u, v).

Skew symmetry: For all u, v ∈ V , we require f(u, v) = −f(v, u).

Flow conservation: For all u ∈ V \s, t, we require
∑
v∈V

f(u, v) = 0.

20 CHAPTER 3. MATHEMATICAL FOUNDATIONS

Chapter 4

Clustering

Social scientists are interested in the structure of relations between actors.
By grouping the actors, that have more relations among each other, the
structure of the social network can be presented well, as we divide the graph
into distinguishable sub-graphs. Actors are understood as strategists, and
their position in the network as well as their power allows a social scientist
to draw conclusions about the tactics and possibilities of acting. Therefor
the first step in our social network analysis is the clustering of nodes. But
before we discuss the clustering, we should first define what a cluster is.

Definition 4.1 (cluster)
Let G = (V,E) be a graph, where V is the set of nodes, and E is the set
of edges. A cluster Ci is a list of nodes vi ∈ V , where the elements of
Ci are sorted by their degree in an increasing order. The set of clusters
C = {C0, C1, . . . , Ck} is called a clustering of G, if

⋃
Ci∈C Ci = V . A cluster

Ci ∈ C includes all sub-cluster, so that Cj 6∈ C, if Cj ⊂ Ci.

We have 2 main goals in clustering:

1. Finding the maximum number of clusters

2. Maximise each cluster in size

To be sure not to find just a single cluster, we would like to have the maximal
number of clusters. This would be fulfilled, if every node declares a cluster
on its own. In order to prevent this, we also require that each group is
maximised in size.

Overlapping of clusters is wanted, as we assume that a single actor can
be part of more than just one group.

21

22 CHAPTER 4. CLUSTERING

4.1 Clustering Algorithms

There are two main categories of clustering algorithms, bottom-up and top-
down. The bottom-up methods start with a single node, trying to find dyads,
which is a cluster formed by only two nodes. The dyads are then extended
to triads and higher-numbered clusters, if possible.

The top-down methods divide the graph into clusters, by analysing the
structure of the graph, identifying sub-structures as parts that are locally
denser than the graph as a whole.

4.1.1 Top-Down Approaches

Components

A component of a graph G is a completely connected sub-graph. It does not
matter how closely connected the nodes are. Each component determines a
cluster.

Blocks and Cut-points

A cut-point of a graph G is a node, which, if removed, divides the graph into
an unconnected system. The sets of nodes into which the graph is divided
are called blocks.

Lambda Sets and Bridges

Each relationship in the network is ranked in terms of importance by evalu-
ating how much of the flow among the actors in the network is going through
each link. The network is divided by the set of actors who, if disconnected,
would significantly disrupt the flow among all actors. These actors are
called bridges and the resulting sets are called Lambda sets. One property of
Lambda sets is that each node in the set has more edge independent paths
to every other node in the set than to nodes outside the set.

Conclusion

The top-down algorithms divide the complete graph into non-overlapping
sub-graphs. As we would like to allow overlapping, none of the algorithms
introduced above seem appropriate.

4.1. CLUSTERING ALGORITHMS 23

4.1.2 Bottom-Up Approaches

Cliques

A clique in a graph G is a maximal complete sub-graph of G. That is, a set
of nodes C ⊆ V is a clique, if

∀v ∈ C : degC(v) = |C| − 1,

where degC(v) is the degree of the node v ∈ V in the cluster C:

degC(v) = |{u|u ∈ C, (u, v) ∈ E ∨ (v, u) ∈ E}|.

N-Cliques

The N -clique loosens the very hard constraint of a maximal fully connected
sub-graph to form a cluster. We could say, an actor is part of a group, if he
knows everyone in the group through someone else, which would correspond
to being a ”friend of a friend”. This approach of defining sub-structures is
called N -clique, where N stands for the length of the path allowed to make
a connection to all other members. A set of nodes C ⊆ V is a N -clique, if

∀v ∈ C : ∀u ∈ C : distC(u, v) ≤ N.

N-Clan

The N -clique approach tends to find long and stringy groupings rather than
the tight and discrete ones of the maximal sub-graph approach. In some
cases, N -cliques can be found, that have a property that is probably unde-
sirable for many purposes: it is possible for a member of N -cliques to be
connected by actors who are not members of the clique themselves.

Therefor some analysts have suggested to insert a restriction of the total
span or diameter of a N -clique. This forces all ties among members of a
N -clique to pass only over actors, who are themselves members of the group.
N -Clans are also known as distance k-cliques [ESB99]. A set of nodes C ⊆ V
is a N -clan, if

∀v ∈ C : ∀u ∈ C : distC(u, v) ≤ N

and

diameterC(C) ≤ N.

24 CHAPTER 4. CLUSTERING

1−plex

5−plex

4−plex

Figure 4.1: k-plex

k-plex

An alternative way of relaxing the strong constraints of the maximal complete
sub-graph is to loosen the number of needed neighbours in the cluster. Using
the k-plex approach, each node v ∈ C in a cluster has a direct link to n− k
other members of the cluster C ∈ C, where n = |C| is the number of elements
in the clusters C, and k is the k-plex parameter (see Figure 4.1). A 1-plex is
a clique. A set of nodes C ⊆ V is a k-plex, if

∀v ∈ C : degC(v) ≥ |C| − k.

k-core

A subgraph H = (W,E|W) induced by the set W is a k-core or a core of
order k if ∀v ∈ W : degH(V) ≥ k and H is a maximum subgraph with this
property [BMZ99].

The degree degH(v) can be: in-degree, out-degree, in-degree + out-degree,
min(in-degree,out-degree),. . . determining different types of cores. The cores
have the following properties:

• The cores are nested: i < j ⇒ Hi ⊆ Hj, where Hi is a core of order i.

• There exists an efficient algorithm to determine the core hierarchy
(O(m), see [BMZ99])

4.2. THE CLUSTERING ALGORITHM 25

• Cores are not necessarily connected sub-graphs

Conclusion

From all bottom-up approaches only the N -clan, N -clique and the k-plex
algorithm would allow overlapping of the resulting clusters. Using the N -
clan/-clique, we would demand, that every node has a limited path to every
other node in the cluster, but the path may have a length greater than one.
The k-plex on the other hand emphasises the direct connection a node has
in a cluster. Which algorithm to choose is a personal decision, as they just
highlight different aspects. In consultation with the Ethnological Institute of
Tübingen, we decided, that the number of direct neighbours an actor must
have would better match our understanding of a group.

4.2 The Clustering Algorithm

4.2.1 Overview

The clustering algorithm used here is based on the k-plex algorithm. That
is, each cluster fulfils the k-plex constraint

∀v ∈ Ci : degCi(v) ≥ ni − k (4.1)

during the clustering, where ni = |Ci| is the size of the cluster Ci, and k is
given externally. With degCi(v) we denote the degree of the node v ∈ V in
the cluster Ci ∈ C. If k = 1, then each node has a link to every other node
in the cluster. We have two goals for the clustering:

1. maximise the number of clusters

2. maximise each cluster in size

In order to achieve these goals, we declare every node as a cluster on its own.
In every clustering-step, the cluster will be extended by all neighbours, that
obey the Constraint 4.1. So at the beginning we receive every possible dyad
as a initial cluster-core. As we will see later, the dyads are very important
for the overlapping between clusters, consequently we will keep them, and
only copies will be extended. If no nodes which can be added are found, k is
increased by one, until the increasing of k does not change the set of clusters

26 CHAPTER 4. CLUSTERING

anymore. At the beginning we are looking for highly connected clusters. At
every clustering-step, k is increased, which means, every new member needs
less direct neighbours in order to be added to the cluster. While maximising
the number of nodes for each cluster, we check if a cluster is equal to or
completely part of another cluster. If we find such a cluster, we delete it
from the list of clusters, as the size of the set of clusters is a very critical
factor in the running time of the clustering. At the end, we give up the k-plex
constraint to perform a post processing, which merges clusters, that have a
significant percentage of shared nodes in respect of the smaller cluster. Why
the merging of the clusters is needed is explained in the Section 4.2.4 at the
end of this chapter.

4.2.2 Clustering

The first step of the clustering algorithm is to create a cluster from every
node v ∈ V . After that, we only need an algorithm capable of extending a
cluster in respect of a given parameter k.

Finding k-plex

The algorithm introduced here (see Algorithm 1) is inspired by the clustering
algorithm introduced in ”Improved Graph Drawing Via Clustering” by Six
and Tolles in [ST] regarding the Constraint 4.1.

The input of the algorithm is a set of clusters C(k−1) in respect of k − 1.
The output is the set of clusters C(k) in respect of k.

For every cluster Ci ∈ C we need to find new members in the set of
neighbours of the nodes v ∈ Ci. The goal is to perform this without checking
every neighbour of every node in each cluster as a potential new member.
The good thing is, that we do not have to. As a new member needs at
least n − k − 1 direct neighbours in the cluster, we only have to check for
neighbours of k + 1 members of each cluster. If none of the k + 1 members
has a neighbour, that has enough direct connections into the cluster, we can
stop, as for any potentially new member the maximal number of possible
neighbours in the clusters is n − k − 2. If we choose the k + 1 members
with the lowest degree, we have reduced the cost for expanding a cluster
to a minimum. Let L

(k+1)
D = Ci|k+1 be the set of the k + 1 lowest degree

members of the cluster Ci, which is equal to the first k + 1 elements of Ci.
For every node v ∈ L

(k+1)
D , we have to create the set of neighbours not in

4.2. THE CLUSTERING ALGORITHM 27

Ci of v; N(v, V \Ci) = {u|u ∈ V \Ci, (v, u) ∈ E ∧ (u, v) ∈ E}. For every
u ∈ N(v, V \Ci), we have to calculate the size of the set of neighbours of u
in Ci; N(u,Ci). If |N(u,Ci)| exceeds n − k − 1 then u will be added to the
cluster Ci.

A cluster Ci with size one will not be extended itself, but a copy will be
added and extended, as we need the single node to receive every possible
dyad. Deleting the single nodes, if they and all their neighbours are part of
one cluster did not show any significant speed-up. The algorithm is listed in
Algorithm 1.

To avoid too much overlapping, a residual graph is calculated for every
cluster (see Section 4.2.3), only including the nodes of the clusters, that the
current cluster does not share any nodes with. New members can only be
found within the residual graph.

Worst-case runtime analysis

The first loop is calledO(|C|) times, creating the set of lowest degree members
LD in O(k) time. The time needed to create the rest-graph is discussed later
in Section 4.2.3, and is here denoted by O(R). For each member v ∈ LD
we create the set of member N(v, V \C) in O(n) time. For each node u ∈
N(v, V \C) we create the set of neighbours of u in the cluster C in O(n)
time. The rest of the inner loop can be approximated by O(n). At the end
we clean up after each cluster, which takes O(|C|) · O(n2) time. This sums
to an overall worst case running-time of

O(|C|) · (O(R) +O(k) · O(n2) +O(|C|) · O(n2))

Maximising the clusters

We assume, that it is not possible to find the best clustering by finding all
k-plexes for a given k. Choosing a too small value for k ∈ N could yield in
receiving many small clusters (especially dyads), as each cluster has to be
highly connected. On the other hand, choosing a too high value for k is very
likely to produce only a few or just one very large cluster (in respect of the
size of the graph) as each cluster is only very slightly connected. Instead it
seems promising to start with the smallest possible value k = 1 and increase
k after every clustering-step. A clustering-step is over, if no node can be
added to any cluster in respect to k.

28 CHAPTER 4. CLUSTERING

Algorithm 1: clustering

Data: C, k, G = (V,E)

didCluster = false;
foreach C ∈ C do

m = |C| − k − 1;
LD = |C|k+1;
R = calcRGraph(C);
foreach v ∈ LD do

if directed then
N(v, V \C) = {u|u ∈ R ∩ V \C, (u, v) ∈ E ∧ (v, u) ∈ E};

else
N(v, V \C) = {u|u ∈ R ∩ V \C, (u, v) ∈ E ∨ (v, u) ∈ E};

end
foreach u ∈ N(v, C) do

if directed then
N(u,C) = {w|w ∈ C, (u,w) ∈ E ∧ (w, u) ∈ E};

else
N(u,C) = {w|w ∈ C, (u,w) ∈ E ∨ (w, u) ∈ E};

end
if |N(u,C)| ≥ m then

LD = LD ∪ {u};
m = m+ 1;
didCluster = true;
if |C| = 1 then

C̃ = C ∪ {u};
C = C ∪ {C̃};
C = C̃;

else
C = C ∪ {u};

end
end

end
end
foreach Ĉ ∈ C\C do

if Ĉ = C then
C = C\Ĉ;

end
end

end
return didCluster;

4.2. THE CLUSTERING ALGORITHM 29

The maximal possible value for k would be n − 1, n = |V | being the
number of vertices in the graph, as each node would only need one incident
node in any cluster, no matter how large.

A more efficient way to limit the number of iterations is to stop as soon
as no node was being added to any cluster in one clustering step. The
resulting clustering is not optimal, as clusters can not include others, even
if the structure of the graph would indicate that. Thus we need a post
processing, which merges clusters, that have enough overlapping, so that
they can be considered to be one cluster (see Section 4.2.4).

One can imagine different ways of letting the clusters grow. They were
implemented, but did not show any differences in their results. A possi-
bly cause is the merging that is performed at the end. For the reason of
completeness they are listed here. The Algorithms 2,3, and 4 only differ in
how the sets of neighbours of N(v, V \C) and N(u,C) are calculated in the
algorithm, which extracts k-plexes (see Algorithm 1).

Algorithm 2: G1: undirected

Data: C, k, G = (V,E)

directed = false;
while(clustering(k++,C,G));

Algorithm 3: G2: directed, then undirected

Data: C, k, G = (V,E)

directed = true;
while(clustering(k++,C,G));
directed = false;
while(clustering(k++,C,G));

4.2.3 Calculating the residual graph

The calculation of the residual graph is needed in order to avoid too much
overlapping between the clusters. The more overlapping we have, the more
the quality of the visualisation is reduced (see Chapter 6). We therefor require

30 CHAPTER 4. CLUSTERING

Algorithm 4: G3: directed, reset k, then undirected

Data: C, ki, G = (V,E)

directed = true;
k = ki;
while(clustering(k++,C,G));
directed = false;
k = ki;
while(clustering(k++,C,G));

that two clusters, which share nodes at a certain clustering-step, denoted by
the corresponding k-plex parameter k̂, will not be allowed to have any further
overlapping for any k > k̂. To ensure this, the remaining graph R ⊂ G must
be calculated once for every cluster at every clustering-step. The residual
graph R includes only nodes of clusters that have no node in common with
the current one.

To calculate the residual graph R, we need a binary array that indicates,
which clusters overlap, and which do not. This array is denoted by AO and
must be re-initialised every time R is calculated, because the size of the set
of clusters C may vary. New dyads are added to the set of clusters and
dispensable clusters are removed. After the overlapping-array AO is created
and filled with values indicating the overlapping, the residual graph R can
be created by merging all clusters having a false entry in the array. The
algorithm is shown in Algorithm 5.

Worst-case running time

With |Cm| we denote the size of the largest cluster in the set of clusters
C. Initialising and filling of the overlap-array AO takes O(|C|) · O(|Cm|2)
time, as for every cluster Cj ∈ C in the set of clusters, the intersection
with the current cluster Ci is calculated. The residual graph R is created in
O(|C|) · O(n) · O(|Cm|), as for every cluster Cj ∈ C in the set of clusters, the
cluster Cj is merged with the residual graph R if it does not share any nodes
with the current cluster Ci. This gives us an overall worst case running-time
of

O(R) = O(|C|) · O(n) · (|Cm|).

4.2. THE CLUSTERING ALGORITHM 31

Algorithm 5: calculate residual graph

Data: |C|, Ci
Result: R
m = |C|;
i = index(Ci);
AO = BinArray(m);
foreach Cj ∈ C do

if i = j then
AO(j) = 1;

else
if |Ci ∩ Cj| > 1 then

AO(j) = 1;

else
AO(j) = 0;

end
end

end
R = ∅;
foreach Cj ∈ C do

if AO(j) = 0 then
R = R ∪ Ci;

end
end

32 CHAPTER 4. CLUSTERING

Figure 4.2: Clustering if no merging is performed. The resulting clusters are:
CM = {{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 9}, {3, 10}, {3, 11}, {5, 9}, {5, 10}, {5, 11}},
indicated by the filled areas. With merging the resulting cluster are:
CM = {{1, 2, 3, 4, 9, 10, 11}, {5, 6, 7, 8, 9, 10, 11}}, indicated by the surround-
ing lines.

4.2.4 Merging clusters

There is one main reason why the merging is needed. The restricted over-
lapping of groups prevents clusters of including other clusters while they are
extended, even if the structure of the graph would indicate it. This could lead
to an unwanted clustering, that is, we may get good large clusters, but also
plenty of small cluster, mainly dyads. This happens when we have bridges
or strings in the graph. One example is shown in the Figure 4.2, listing the
result of the clustering with and without merging.

Let Ci, Cj, Ck ∈ C be clusters out of the set of clusters, such that |Ci| <
|Cj| and |Ci| < |Ck|. We then say Ci is the smaller cluster, and we mean
that in respect of Cj, Ck. We also say that Cj or Ck is the larger cluster, and
we mean that in respect of Ci.

To merge two clusters, the smaller cluster must share a certain percent-
age of its elements with the larger cluster. This percentage is called merge
percentage and is denoted by pmij ∈ [0, 1] , where i ∈ N is the index of the
smaller cluster, and j ∈ N is the index of the larger clusters. Only if the
merge percentage pmij is higher or equal to a merge constant εm ∈ [0, 1] the
cluster will be merged. Obviously a value of 1 for εm suppresses any merging.
The cluster Ci is then added to the cluster with the highest merge percentage
exceeding the merge constant. In some cases the merge percentages are equal
pmij = pmik for the three clusters Ci, Cj and Ck . This happens especially
when many dyads are in the set of clusters. The cluster Ci could be added to
the larger cluster of the clusters Cj, Ck. But that would lead to an unpleas-

4.2. THE CLUSTERING ALGORITHM 33

ant clustering, as the shared nodes in Figure 4.2 would be added completely
to one of the two clusters {1, 2, 3, 4} or {5, 6, 7, 8}, depending which cluster
would first include one of the dyads. In this case node 3 or node 5 would be
the shared node of the resulting two clusters.

Better results are achieved if the diameters of the candidate clusters are
compared. The diameter D(C) of the candidate clusters merged with the
smaller cluster are compared, and the candidate with the smaller resulting
diameter is chosen. This is done, until no clusters can be merged anymore
(see Algorithm 6).

Algorithm 6: Merging clusters

Data: C
Result: C
repeat

n = |C|;
foreach Ci ∈ C do

O = {Cj|Cj ∈ C, pmij = max
Ck∈C

(pmik) ∨ |Cj| > |Ci|, pmij =

|Ci∩Cj |
|Ci| };

D = {Cj|Cj ∈ O,D(Cj ∪ Ci) = minCk∈C (D(Ck ∪ Ci))};
if D 6= ∅ then

Cm ∈ D;
C = C\Ci;
Cm = Cm ∪ Ci;

end
end

until n 6= |C|;

34 CHAPTER 4. CLUSTERING

Chapter 5

Centrality

Once we have the clusters extracted, it is very interesting to know, how the
power is distributed within the clusters, and how the power is distributed
among the groups. The power is an index of the importance of the actor
in the network and allows to draw conclusions about the activity of the
actors, showing if they are passive or active. Concerning the distribution of
power in the complete network, it shows if the network is homogeneous or
heterogeneous.

5.1 Overview

Power is the consequence of patterns of relations [Han98]. We will discuss
the degree-, betweenness-, closeness- and flow-betweenness-centrality, as the
basic centrality measurements. The problems of the closeness-centrality are
discussed in the Section 5.1.4. The Bonacich power index is introduced as
an alternative measurement, but is not included in the analysis.

To understand the principles of a power centrality measurement, we take
a look at three basic types of networks, the star, line, and circle (see Figure
5.1). Having a short look at the basic networks, a viewer would probably
say, that actor A has the most power in the star-network. In the following
we should find enough arguments that validate our assumption.

We then discuss how the centrality measurement can be adopted to calcu-
late the group-centrality, ending the chapter with the algorithms to calculate
the basic centrality measurements.

35

36 CHAPTER 5. CENTRALITY

B

E D

C

A

F

G

A

B C

D

EF

G

A B C D E F G

Figure 5.1: The upper left picture shows the circle, next to it the star, and
the diagram at the bottom shows the line-network

5.1.1 Degree Centrality

The idea of the degree centrality is, that the more ties an actor has, the more
opportunities he has. In our example, actor A can access resources from every
other actor in the star network. But the other actors muss exchange with
actor A in order to be able to exchange at all. Actors with a higher degree
have more choices. This autonomy makes them less dependent on any specific
other actor, and hence more powerful.

Considering the circle-network, every actor has exactly the same number
of neighbours, so all actors are equally advantaged or disadvantaged. Con-
sidering the line-network and the degree centrality, only the actors at the end
(A and G) have disadvantaged positions compared to the rest of the nodes,
as they have only one direct neighbour.

Let n = |V | be the number of actors in the graph G = (V,E), then the
value of the degree centrality of a node v is defined as

CD(v) =
deg(v)

n− 1
(5.1)

where the function deg(v) may be in-degree, out-degree, in-degree + out-
degree . . . , defining different degree centrality functions.

The algorithm to calculate the degree-centrality is discussed in the Section
5.4.1.

5.1. OVERVIEW 37

5.1.2 Betweenness Centrality

The basic idea of the betweenness is if an actor is part of many shortest
paths, then he is capable of controlling the communication among others.
This makes him more powerful.

In the star-network, actor A can block any communication between two
actors. So every other actor is highly dependent on A, making A powerful.

Considering the circle-network, no one has a more advantaged position,
compared to the others, as everyone lies on of the same number of shortest
paths.

Actors in the line-network have more power the closer they are to the
centre, as they control more shortest paths than actors closer to the end of
the line.

Let σst(v) be the number of shortest paths between node s ∈ V and node
t ∈ V that pass node v ∈ V , and let σst be the total number of geodesics
between s and t. Then can we define the value of the betweenness centrality
of a node v as

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
. (5.2)

The algorithm to calculate the betweenness-centrality is discussed in the
Section 5.4.2.

5.1.3 Flow-betweenness Centrality

The betweenness centrality only takes care of the shortest path between two
actors. But if an actor blocks the shortest path between two actors, and
another path exists, it is very likely to happen that an alternative path will
be taken. In general, actors may use all of the pathways connecting them,
rather than just geodesics. The flow approach to centrality expands the
notion of betweenness centrality. It assumes that actors will use all pathways
that connect them (proportionally to the length of the pathways).

If Fst denotes the maximal flow between the node s ∈ V and the node
t ∈ V , then fst(v) is the flow over v ∈ V , in respect of Fst. Then we can
define the flow betweenness of a node v as

CF (v) =
∑

s∈V \{v}

∑
t∈V \{v,s}

fst(v). (5.3)

38 CHAPTER 5. CENTRALITY

In this definition, we do not take care of the length of the pathway. One
method would be dividing CF by the sum of the length of the geodesics
between s, v and v, t divided by the length of the geodesic between s and t:

CF (v) =

∑
s∈V \{v}

∑
t∈V \{v,s} fst(v)

dist(s,v)+dist(v,t)
dist(s,t)

. (5.4)

The algorithm to calculate the flow-betweenness is discussed in the Section
5.4.3.

5.1.4 Closeness Centrality

Actors who are able to reach other actors at shorter path length, or who
are more reachable by other actors at shorter path lengths, have a favoured
position. In the star-network again actor A has the best position, as he is
closest to all other actors. Taking a look at the circle-network, we see that
all the actors have an identical distribution of closeness, as for each actor
the sum of distances to the other actors is identical. Actor D is the most
powerful in the line network, followed by the couple of C,E, then B,F and
finally A,G. Let dist(v, t) be the length of the geodesic between the actors v
and the actor t, then we can define the closeness centrality of a node v as

CC(v) =
1∑

t∈V dist(v, t)
(5.5)

or

CC(v) =
∑
t∈V

dist(v, t). (5.6)

The problem with this centrality is, it does not really handle isolated nodes,
or completely separated sub-graphs. If unreachable nodes have a distance
of infinity, then it is hard to distinguish between nodes that are completely
isolated and nodes that have a few neighbours and some nodes they can
not reach. Assigning the value 0 for unreachable actors would make a dis-
connected group of two actors most powerful, as it would have a closeness
centrality value of 1.

5.2. GROUP CENTRALITY 39

5.1.5 The Bonacich’s power index

Phillip Bonacich completely questions the ideas of centrality as discussed
here. His idea is, that if an actor A is connected to central others, he is
more influential, as he can reach more actors with less expense. But if the
others are themselves well connected, they are not highly dependent on the
actor A. If, on the other hand, the others are not well connected, then they
depend more on the actor A, making him more powerful. Bonacich argued
that being connected to connected others makes an actor central, but not
powerful, but being connected to others that are not well connected makes
an actor powerful. Bonacich proposed that both centrality and power are a
function of the connections of the actors in one’s neighbourhood. The more
connections the actors in the neighbourhood have, the more central an actors
is. The fewer connections the actors in the neighbourhood have, the more
powerful the actor is.

5.2 Group centrality

After we have done the clustering and calculated the centrality value for every
node in its cluster, we are interested in the distribution of power among the
groups. This should be possible using existing individual measures. Everett
and Borgatti introduce a method for calculating group centralities, using
existing measures [EB99].

5.2.1 General Principles

Any group measure is a proper generalisation of the corresponding individual
measure, such as, when applied to a group consisting of a single individual,
the measure yields the same answer as the individual version. An immediate
consequence of this requirement is that group centrality is not measured by
computing centrality on a network of relationships among groups. Instead,
the centrality of a group is computed directly from the network of relation-
ships among individuals. A side benefit of this approach is that there are no
problems working with overlapping groups, where one individual can belong
to many groups.

40 CHAPTER 5. CENTRALITY

A B

C

D

E

F

G

H

Figure 5.2: Group Degree Centrality: Number of non-group nodes that are
connected to group members. Let {A,B} be a cluster, then the group degree
centrality value of the group is 6. Normalised by the number of non-group
nodes, the centrality value is 1.

5.3 Method

We will use the following graph as an example to define group degree central-
ity, and then define the group betweenness centrality.

Degree betweenness centrality

We define the group degree centrality as the number of non-group nodes that
are connected to group members. Multiple ties to the same node are counted
only once. Hence, the centrality of the group consisting of the node A and
B is 6. Group degree centrality can be normalised by dividing the value by
the number of non-group nodes, we then receive 1 as centrality value of the
group {A,B}.

Group betweenness centrality

Let C be a subset of a graph G = (V,E). Let σuv be the number of geodesics
connecting u and v and σuv(C) be the number of geodesics connecting u and
v passing through C. Then the group betweenness centrality of C denoted by
CB(C) is given by

CB(C) =
∑

u<v, u,v 6∈C

σuv(C)

σuv
(5.7)

One way to compute this measure is:

5.4. ALGORITHMS 41

1. count the number of geodesics between every pair of non-group mem-
bers, yielding a node-by-node matrix of counts

2. delete all ties involving group members and redo the calculation, cre-
ating a new node-by-node matrix of counts

3. divide each cell in the new matrix by the corresponding cell in the first
matrix

4. take the sum of all these ratios

5.4 Algorithms

We implemented the basic centrality measures of degree and betweenness cen-
trality, and one alternative to betweenness, the flow betweenness centrality.

5.4.1 Degree centrality

Let G = (V,E) be a graph, and N(v) = {u|u ∈ V, (u, v) ∈ E ∨ (v, u) ∈ E}
be the set of neighbours u ∈ V of v ∈ V . We define the set of edges leaving a
cluster EC = {(u, v)|(u, v) ∈ E, (u ∈ C∧v ∈ V \C)∨(u ∈ V \C∧v ∈ C)} and
the set of neighbours u of v that are in the same cluster NC(v) = C ∩N(v).

The values for CD(v) and CD(C) may be normalised as suggested here
(see Algorithm 7). One alternative method would be to normalise the values
by the theoretical maximum given by a star-network (see Figure 5.1) of the
same size. Normalising by the theoretical maximums allows to compare the
centrality values of different networks. As we combine the three centrality
measures by a weighted sum, we decided to normalise each value by its
maximum.

5.4.2 Betweenness centrality

A fast algorithm to calculate betweenness centrality was introduced by Ulrik
Brandes. The description in this section follows the publication ”Faster Eval-
uation of Shortest-Path Based Centrality Indices” of Ulrik Brandes. Proofs
are omitted here, as they give no additional information. For any proof or a
more detailed description see [Bra00].

42 CHAPTER 5. CENTRALITY

Algorithm 7: Degree Centrality including Group Degree Centrality

Data: C
Result: ∀Ci ∈ C : CD(Ci), ∀v ∈ Ci : CD(v)

foreach Ci ∈ C do
foreach v ∈ Ci do

EC = ∅;
N(v) = {u|u ∈ V, (u, v) ∈ E ∧ (v, u) ∈ E};
foreach u ∈ N(V) do

if u ∈ Ci then
NC(v) = NC(v) ∪ {u};

else
if (u, v) ∈ E then

EC = EC ∪ {(u, v)};
end
if (v, u) ∈ E then

EC = EC ∪ {(v, u)};
end

end
end

CD(v) =
|NC |
|Ci|

;

end

CD(C) =
|EC |

|V | − |Ci|
;

end

5.4. ALGORITHMS 43

The betweenness centrality is an essential measurement for the analysis of
social networks. The fastest known algorithms require Θ(n3) time and Θ(n2)
space, where n = |V | is the number of vertices. The algorithm introduced
by Ulrik Brandes requires O(n + m) space and runs in O(n(m + n)) or
O(n(m + n log n)) time for unweighted or weighted graphs, where m = |E|
is the number of edges.

To obtain the betweenness centrality index of a vertex v, we simply have
to sum the pair-dependencies of all pairs on that vertex

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(5.8)

where σst is the number of shortest paths between s ∈ V and t ∈ V , and
σst(v) is the number of shortest paths between s and t passing the node
v ∈ V .

Therefor betweenness centrality is traditionally determined in two steps.

1. compute the length and number of shortest paths between all pairs

2. sum all pair-dependencies

Corollary 5.1 Given a source s ∈ V , both the length and number of all
shortest paths to other vertices can be determined in time O(m+n log n) for
weighted, and in time O(m+ n) for unweighted graphs.

The Corollary 5.1 tells us, that the complexity of determining the be-
tweenness centrality is dominated by the second step, the θ(n3) time sum-
mation and θ(n2) storage of pair-dependencies. This situation is remedied
by the algorithm introduced by Ulrik Brandes.

Accumulation of Pair-Dependencies

Let G = (V,E) be a graph, and let σst = σts denote the number of shortest
paths between s ∈ V and t ∈ V , where σss = 1 by convention. Then σst(v)
is the number of shortest paths between s and t that pass the vertex v ∈ V .
The distance between s and t is described by dG(s, t), where dG(s, s) = 0 for
every s ∈ V , and dG(s, t) = dG(t, s) for s, t ∈ V . Given pairwise distances and
shortest paths counts, the pair-dependency δst(v) =

σst(v)

σst
of a pair s, t ∈ V

on an intermediary v ∈ V . The lemma and theorem are taken from [Bra00].

44 CHAPTER 5. CENTRALITY

We define the dependency of a vertex s ∈ V on v ∈ V as

δs• =
∑
t∈V

δst(v), (5.9)

Lemma 5.1 If there is exactly one shortest path from s ∈ V to each t ∈ V ,
the dependency of s on any v ∈ V obeys

δs•(v) =
∑

w:v∈Ps(w)

(1 + δs•(w)) (5.10)

where

Ps(v) = {u ∈ V |(u, v) ∈ E, dG(s, v) = dG(s, u) + ω(u, v)}

is the set of predecessors of a vertex v.

Theorem 5.1 The dependency of s ∈ V on any v ∈ V obeys

δs• =
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δst(w)).

With this theorem, we can determine the betweenness centrality index
by solving the single-source shortest-paths problem for each vertex. At the
end of each iteration, the dependencies of the source on each other vertex
are added to the centrality score of that vertex.

5.4.3 Flow-betweenness centrality

Let G = (V,E) be the graph, where V is the set of vertices v ∈ V and
E is the set of edges. The maxFlow-function was implemented using the
lift-to-front algorithm, see [CLR99] for a description of the algorithm. With
cf we describe the array of values returned by maxFlow, and with cf (v) we
can access the max-flow-value of the node v ∈ V , and CF,Ci(v) is the flow-
betweenness of the node v in the cluster Ci. In this algorithm the length of
the path the node v is part of is not taken into account. A rule to normalise
the value of CF,Ci(v) is not given here, but we normalise any centrality index
by the maximum. The flow index of each group is described by CF (Ci).

To calculate the flow index of a node in a group, the maximum flow within
the cluster is calculated for every combination of s, t ∈ Ci, s 6= t. The flow
values for every node in the cluster are added together, receiving the flow
centrality value.

5.4. ALGORITHMS 45

Algorithm 8: Flow-Betweenness Centrality including Group Flow-
Betweenness Centrality

Data: C
Result: ∀Ci ∈ C : CF (Ci), ∀v ∈ Ci : CF (v)

foreach Ci ∈ C do
foreach s ∈ V \Ci do

foreach s 6= t ∈ V \Ci do
cf = maxFlow(G, s, t);
foreach v ∈ Ci do

CF (CI) = CF (CI) + cf (v);

end
end

end
foreach s ∈ Ci do

foreach s 6= t ∈ Ci do
V ′ = Ci;
E ′ = {(u, v)|u ∈ V ′, v ∈ V ′, (u, v) ∈ E};
G′ = (V ′, E ′);
cf = maxFlow(G′, s, t);
foreach v ∈ C do

CF,Ci(v) = CF,Ci(v) + cf (v);

end
end

end
end

46 CHAPTER 5. CENTRALITY

Chapter 6

Visualisation

After clustering the graph, and determining the distribution of power or
centrality, the extracted information should be visualised.

The visualisation should support the social scientist in two ways. It should
help the scientist with the analysis concerning the social network and also
support the presentation of the results of the analysis, as a good visualisation
can provide additional comprehension aids.

The information should therefor be clearly visible, without much inter-
pretation or searching needed.

6.1 Data and Properties

Before we discuss the visualisation, we should recapitulate what kind of data
we have, and define the properties of the visualisation.

6.1.1 Data

Let G = (V,E) be a graph representing the social network. We then have
nodes, representing actors, and edges representing the relations between ac-
tors. The relations between actors are directed. Two actors A,B have
a relation, if the corresponding vertices vA, vB ∈ V are incident, that is
(vA, vB) ∈ E or (vB, vA) ∈ E. The nodes are combined in clusters, which
denote separated groups within the graph. A node can be part of more than
one group or cluster. Each node has a centrality value in its cluster. If a node
is part of more than one cluster, it may have a different centrality value in

47

48 CHAPTER 6. VISUALISATION

Uniformity all nodes should be positioned equally spaced
around the centre

Distance the distance of a node must be in direct relation-
ship of the difference of its centrality value and the
value of the centre node(s)

Convexity the nodes should be positioned in such a way,
that the crossings of a node with the edges are min-
imised

Centre the most central node of a group must be seen im-
mediately without any interpretations needed

Table 6.1: Visualisation properties

each cluster. Each cluster has a centrality value representing the centrality
of the group according to the rest of the graph. There is one or more central
actors in each group. A central actors is an actor with the highest centrality
value in its group. The number of central nodes depends on the distribution
of power in the cluster.

6.1.2 Properties

There are two levels of information, which have to be visualised. The lower
level is each group, which nodes must be layouted. The higher level are the
groups, which must be positioned.

To receive a good visualisation of the nodes within a cluster, we define the
following four properties, which must be fulfilled for each group-layout (see
Table 6.1). The uniformity is needed, so that a cluster can be easily distin-
guished from others, as each group is regionally limited by its members, and
no node in a cluster overlaps with any other node in the cluster. We require
the property of distance, as the centrality of a node in each group, should be
seen easily in comparison to other members of the group. The layout should
be convex, so the overlapping of edges through nodes is minimised, as the
edges run mainly within the layout of the group. To see the most central
node(s) at once, only the nodes with the highest centrality value are posi-

6.2. PROBLEMS 49

tioned in the centre of the group. The central nodes are also scaled in size,
so they have a second property that distinguishes them from the non-central
nodes.

We say, a node is positioned nicely, if it fulfils the visualisation properties.
A shared node is positioned nicely, if it fulfils the visualisation properties for
each cluster it is in.

6.2 Problems

We first define a clan and the different types of nodes and clusters, before
discussing the the problems that must be handled if more than one cluster
with overlapping is to be visualised.

Definition 6.1 (clan)
Let G = (V,E) be a graph. Let C = {Ci}i∈I be a valid clustering of G, such
that

⋃
i∈ICi = V but the Ci ∈ C may not be disjunct. A clan is a subset

Φ ∈ C such that the elements Ci ∈ Φ overlap, that is
⋂
Ci∈Φ Ci 6= ∅, and

∀Ci∈CCj 6∈ Φ : Cj ∩
(⋂

Ci∈ΓCi
)

= ∅. The set of clans is denoted by Φ.

6.2.1 Types of Nodes

A cluster Ci ∈ C can be divided into central ZCi and non-central nodes ZCi .
So we can distinguish between four different classes of nodes.

Type A Node v ∈ V is part of only one group:

v ∈ T AA : [∃1Ci ∈ C : v ∈ Ci, v 6∈ Cj∀j 6= i].

Type B Node v ∈ V is part of any number of clans, having a non-central
position in each cluster included in the clan:

v ∈ T AB : [∃Γ ∈ Φ : ∀Ci ∈ Γ : v ∈ Z].

Type C Node v ∈ V is part of any number of clans, having a central
position in each cluster included in the clan:

v ∈ T AC : [∃Γ ∈ Φ : ∀Ci ∈ Γ : v ∈ Zi].

50 CHAPTER 6. VISUALISATION

Type B

Type C

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

! !! !! !! !! !! !! !! !! !

" " "
" " "
" " "
" " "

#
#
#
#

$ $$ $$ $$ $$ $$ $$ $$ $$ $

% %% %% %% %% %% %% %% %

& & & & &
& & & & &
& & & & &
& & & & &

' ' ' ' '
' ' ' ' '
' ' ' ' '
' ' ' ' '

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Type D

Figure 6.1: From left to right we see actor type T AB , T AC and T AD . Shared
nodes are marked by the filled areas.

Type D Node v ∈ V is part of any number of clans, and may or may not
be in a central position:

v ∈ T AD : [∃Γ ∈ Φ : ∀Ci ∈ Γ : v ∈ Ci].

Types B to D are displayed in Figure 6.1.

6.2.2 Types of Clusters

The basic types of clusters directly follow from the definition of the types of
nodes.

Type A Cluster Ci ∈ C is a cluster that only includes type A actors:

Ci ∈ T GA : [∀v ∈ Ci : v ∈ T AA].

Type B Cluster Ci ∈ C is a cluster with type A or type B actors:

Ci ∈ T GB : [∃vi ∈ Ci : vi ∈ T AB ,∀vj 6∈{vi}vj ∈ Ci : vj ∈ T AA].

Type C Cluster Ci ∈ C is a cluster with type A or type C actors:

Ci ∈ T GC : [∃vi ∈ Ci : vi ∈ T AC ,∀vj 6∈{vi}vj ∈ Ci : vj ∈ T AA].

Type D Cluster Ci ∈ C is a cluster with type A or type D actors:

Ci ∈ T GD : [∀v ∈ Ci : v ∈ T AA or v ∈ T AD].

6.2. PROBLEMS 51

A cluster can have any combination of the basic types, so we must take care
of them too.

Type E Cluster Ci ∈ C is a cluster of type B and C¿

Ci ∈ T GE : [∃vi, vj ∈ Ci : vi ∈ T AB , vj ∈ T AC , ∀ vk 6∈{vi}
vk 6∈{vj}

vk ∈ Ci : vk ∈ T AA].

Type F Cluster Ci ∈ C is a cluster of type B and D:

Ci ∈ T GD : [∃vi, vj ∈ Ci : vi ∈ T AB , vj ∈ T AD , ∀ vk 6∈{vi}
vk 6∈{vj}

vk ∈ Ci : vk ∈ T AA].

Type G Cluster Ci ∈ C is a cluster of type C and D:

Ci ∈ T GD : [∃vi, vj ∈ Ci : vi ∈ T AC , vj ∈ T AD , ∀ vk 6∈{vi}
vk 6∈{vj}

vk ∈ Ci : vk ∈ T AA].

Type H Cluster Ci ∈ C is a cluster of type B, C and D:

Ci ∈ T GD : ∃vi, vj, vk ∈ Ci : vi ∈ T AB , vj ∈ T AC , vk ∈ T AD ,
∀ vr 6∈{vi}
vr 6∈{vj}
vr 6∈{vk}

vr ∈ Ci : vr ∈ T AA .

Figure 6.2 gives an overview over the non-basic types of clusters.

6.2.3 Type B Analysis

In this section we discuss how nodes of type B v ∈ T AB are to be placed
within two or three clusters Ci, Cj, Ck ∈ T CB of type B. The visualisation of
overlapping clusters must still obey the visualisation properties, in particular
the property of distance (see Table 6.1), so we must place the shared nodes
accordingly.

Overlapping within 2 clusters

Let Φ = {C0, C1} be a clan of two clusters. And further, let O = {v ∈ V |v ∈
C0, v ∈ C1} be the set of shared actors. We can then define the set of the most
central common actors V = {v ∈ O|d0(v) + d1(v) = minu∈O(d0(u) + d1(u))},

52 CHAPTER 6. VISUALISATION

Type E
Type F

Type G

Type H

Figure 6.2: From upper left to lower right we see the non-basic cluster types
E,F,G and H. The highlighted actors belong to the cluster we assigned the
type to.

6.2. PROBLEMS 53

where di(v) is the distance-value of the actor v in the cluster Ci, as defined
in the Algorithm 9.

The distance between the centre of the groups is then defined by

D = dist(C0, C1) = d0(v) + d1(v), v ∈ V .

The following constraint must be valid for all nodes v ∈ V if we want the
distance of v to have the same proposition as all the other nodes, that are
part of the group.

∀v ∈ O : |d0(v)− d1(v)| ≤ D

If this constraint is valid for every v ∈ O, we can place them well according to
their distance-values, but we can not guarantee a nice placement, as Figure
6.3 demonstrates.

The following problems can occur

1. |V| > 1
If there is more than one actor with the smallest sum of distance-values,
we will have a problem in placing the second one, as it would need the
same position.

2. ∃v ∈ O : |d0(v)− d1(v)| > D
If there is an actor, who has distance-values that have a bigger difference
than D, it can not be placed correctly, because we cannot keep the
distances to both clusters exact.

3. ∃v ∈ O : d0(v) > D ∨ d1(v) > D
If there is an actor, who has one distance-value bigger thanD, it can not
be placed nicely anymore, that means it will not be be clearly separated
from the actors, that do not belong to both groups (see Figure 6.3).
If both distance-values are bigger than D it will be placed somewhere,
but not close to the other actors or their centre.

For all the other shared nodes, we need a super-edge. The super-edge overlays
the original edge, with a length that indicates, where the node should be
placed, if it was possible to position the node correctly (see Figure 6.1). We
could solve the problems discussed above by scaling D, but that would make
the distances between the centres larger, so a lot more space would be needed.
This does not increase the readability of the resulting visualisation.

54 CHAPTER 6. VISUALISATION

C1
C0

c (v)1c (v)0

c (v) > D1

D

v
C1

C0

c (v)1c (v)0

c (v) > D1

D

v

Figure 6.3: Possible overlap between 2 groups. Here we see an actor, which
fulfils the constraint, but overlapping and non-overlapping actors are not
separated clearly anymore

Overlapping in 3 groups

Let Γ = {C0, C1, C2} be a clan of three cluster, and O = {v|∀C ∈ Φ : v ∈ C}
be the set of shared actors. The set of actors with the smallest sum of
distances is described by

V = {v ∈ O|
|C|−1∑
i=0

di(v) = min
u∈O

(

|C|−1∑
i=0

di(u))}.

We also need the sets V and O restricted to only two clusters,

Oij = {v ∈ V |v ∈ Ci ∨ v ∈ Cj, }

Vij = {v ∈ Oij|di(v) + dj(v) = min
u∈Oij

(di(u) + dj(u))}.

We define
Dij = dist(Ci, Cj) = di(v) + dj(v), v ∈ Vij

and as before we need

∀v ∈ Oij : |di(v)− dj(v)| ≤ Dij.

The centres of the clusters limit the area in which the shared nodes of the
clusters have to be placed. In the centre of this area we would like to see the
nodes of the set of the most central shared nodes v ∈ V . All the other shared
nodes have to be placed around them, not leaving the area defined by the
centre of the groups. Nodes that are shared by only two clusters have to be
placed as discussed before. If we layout three clusters, we still have to solve

6.2. PROBLEMS 55

C0

1C

C2

dv

dv

dv

C0

1C

C2

v02

v12

v012

v01

Figure 6.4: The centre of a cluster is denoted by Ci, and the distance value
of a node vij ∈ Vij or vijk ∈ V is described by dij or dijk. On the left we see,
that for a given node v ∈ O\V there must not always be a clearly defined
position within the area limited by the centre of the groups. The right figure
shows, that the pairwise overlapping can move the centres together, so that
no node can be placed nicely anymore. If all nodes are to be placed according
to their centrality values, then C1 and C2, must move towards C0.

the problems with the overlapping of two cluster, as the three clusters can
pairwise share nodes. Additionally we have to solve the problems of three
overlapping clusters, described in the following.

First of all, it is not guaranteed that the the shared node v ∈ O can be
placed in the area limited by the centres of the three clusters, as their position
is also determined by the pairwise overlapping (see Figure 6.4, right side).
It can happen that the pairwise overlapping restricts the possible distance
between the centres of the clusters, in such a way, that they have to move
together too much. The central nodes v ∈ V are then not placeable within
the area limited by the three centres. And even if this does not occur, the
distance values for a node v ∈ O, d0(v), d1(v), d2(v) can be too large, so that
a position within the area, limited by the group-centres can not be found
without violating the property of distance. (see Figure 6.4, left side).

Even if we have only 2 clusters, and one of the shared nodes is a node of
type D, we will have a problem in placing the other nodes, without loosening
the visualisation properties. But if we loosen the visualisation constraints in
some cases, the resulting picture will show misleading information. It therefor
seems reasonable to look for another solution.

56 CHAPTER 6. VISUALISATION

6.3 Conclusion

We have discussed the problems that occur, when having to layout a type B
group, overlapping with one or two other type B groups that have no further
overlapping. The complexity of visualising overlapping clusters arise from
the range of possible combinations of clusters, that yield from the following
properties:

1. a node can be part of any number of clusters

2. in each cluster a node can be central or non-central

3. a cluster can overlap with any number of other clusters

4. an overlapping cluster can overlap with any type of a cluster

It is therefor non-trivial to find a set of rules, that can handle all possible cases
of overlapping groups. We tried to create a graph for each clan, representing
the groups and their overlapping. Groups were represented by nodes, and
the weighted edges between nodes represented different overlapping types.
This graph was then layouted by a spring embedder. After that, the shared
nodes were placed between the involved clusters, and the unshared nodes
were placed, so that they did not intersect with the area of the shared nodes.
The result was very un-pleasing, and it was very difficult to read the desired
information from the resulting picture, as central nodes were moved away too
far from the centre of their groups, and overlapping of three groups could
not be handled. We therefor had to develop an alternative layout, which is
introduced in the next section.

6.4 Single Cluster Layout

The algorithm to visualise a social network is first explained using a graph
containing only one cluster. The data for the analysis is the Knoke informa-
tion exchange data, taken from [Han98]. Figure 6.5 shows the graph before
any analysis or visualisation is performed. We first have to define, what a
layout in this context is.

Definition 6.2 (Layout)
Let G = (V,E) be a graph, and let G′ ⊆ G be a subset of G such that
G′ = (V ′ ⊆ V,E ′ ⊆ E) with V ′ 6= ∅. A layout of G′ is defined by L(G′) =

6.4. SINGLE CLUSTER LAYOUT 57

Figure 6.5: Knoke information exchange data

{C,Z,Z, c(v), p, ω,∆min,∆max} where C = {(xv, yv) ∈ R2|v ∈ V ′} is the set
of coordinates for every node v ∈ V ′, Z = {v ∈ G′|c(v) = maxu∈G′(c(u))} is
the list of the central nodes with c(v) ∈ R as a valid centrality measure, and
Z = G′\Z is the list of non-central nodes. The elements in the list u ∈ Z are
put in descending order in respect to their centrality value c(u). The centre
and the orientation of the layout are given by p = (xl, yl) ∈ R2 and ω ∈ R,
while the distance parameters ∆min,∆max ∈ R determine the dimension of
the layout, in respect of the centre nodes.

The values ∆min,∆,max limit the distance of a non-central node from a
central node. In some cases, if for example the cluster has a large number
of members, the nodes must be placed further away from the centre, as
∆min,∆max would indicate. In this case the distance parameters must be
adopted.

The sets of central and non-central nodes Z,Z can be received using the
centrality function c(v) ∈ R. To layout a cluster, we therefor must determine
the set of coordinates C, in respect of the layout parameters Z,Z, c(v), p, ω.

58 CHAPTER 6. VISUALISATION

Algorithm

The first step in the algorithm for the layout of a group (see Algorithm 9) is
to position the central nodes v ∈ Z in a circular layout. This is not discussed
here, as it would not provide any additional information. A circular layout
algorithm is discussed in [dBETT99]. The radius of the resulting circle of
central nodes is denoted by rc ∈ R. After that, the radius for the non-
central nodes is calculated, respecting the radius of the inner circle rc and
the number of vertices in the set of non-central nodes Z. The resulting value
is denoted by rc ∈ R, and is the minimum distance for each non-central node
from the centre of the layout p ∈ R2. The first non-central node is placed
in the direction given by the orientation of the layout ω ∈ R. The next two
nodes are placed in the same angle from the orientation, but on different
sides. This is done for every following node, so that the cluster forms a
kind of oval or heart (see Figure 6.6). The distance of the non-central node
vZ ∈ Z from the nearest central node vZ ∈ Z is determined by the difference
of the centrality values c(cZ)−c(vZ) mapped to the difference of the distance
values ∆max−∆min. The result of the visualisation of the Knoke information
exchange data is shown in Figure 6.7. One can see, that if the orientation is 0,
thus the first node is exactly above the centre, then there is an ordering from
top to bottom, in which the node is placed further down, as its centrality
value decreases. In the following we will assume that the orientation ω is 0
for every layout.

Running time

The visualisation of the non-central nodes of one cluster in done in O(n)
time (see Algorithm 9).

6.5 Multi cluster visualisation

The visualisation of more then just one cluster does differ only in two aspects.
We have to take care of the shared actors, and each group must be positioned
according to its group centrality value.

6.5. MULTI CLUSTER VISUALISATION 59

Algorithm 9: Layout

Data: Ci ∈ C
Result: C
s = maxv∈Z(size(v));
dmin = s · (1 + ε) + rc;
δα = 2Π

|Z| ;

C = ∅;
if |Z| < 2 then

rc = dmin;

else
rc = dmin

2∗sin(γ

2·|Z)
;

end
if rc > ∆min then

∆max = ∆max + ∆min − rc;
∆min = rc;

end
foreach v ∈ Z do

α = ω + (−1)iZ(v) · iZ(v) · δα;
d = MIN + c(v) · (∆max −∆min) + rc;
xv = sin(d);
yv = cos(d);
C = C ∪ {(xv, yv)};

end

60 CHAPTER 6. VISUALISATION

1.
2. 3.

4. .5

1.2. 3.

4. .5

α

α

Figure 6.6: Placement order of the nodes in a group. The central node(s) are
placed first. The most central non-central node is placed exactly above the
central nodes. Following non-central nodes are placed alternatively left and
right in equal angles, ordered from top to bottom. Higher central non-central
nodes are placed on the top, lower central non-central nodes are placed below.

Figure 6.7: Knoke Information Data using Degree- & Betweenness- and Flow-
betweenness-centrality.

6.6. CONCLUSION 61

6.5.1 Shared actors

A desired layout would position the shared actors only once in the complete
graph, so that the position of the node indicates to what groups the node
belongs and how central the node is in each group it belongs to. This kind
of visualisation is non-trivial and the problems were discussed in the Section
6.2. In this section we discuss a simpler form of a visualisation for several
overlapping clusters. Each cluster will be visualised with all members. This
means, that a shared node will be drawn more then once. It must be visi-
ble, without much interpretation needed, to which groups the shared actor
belongs. This can be done using the colour of every cluster the node is part
of. Every cluster will have a unique colour, in detail, every node of a cluster
shares the same colour. An actor, who is part of more than one cluster will
have every colour of every cluster it belongs to, drawn in equally spaced arcs.
An example is shown in the Figure 6.8, showing the relations between differ-
ent parties in the city of Tübingen. Actor 8 functions as bridge between the
small groups, and was able to unite the small groups in a voting against the
large party.

6.5.2 Group layout

For the positioning of each cluster, we create a graph of clusters, in which
every group is represented by a node, which we will call a group-node here.
Every group-node will have a node centrality assigned, taken from the group
centrality value. The graph of clusters is then treated like a single cluster,
layouted by the same algorithm (see above). The centre of each cluster p ∈ R2

is then adopted to the position of the corresponding group-node.

6.6 Conclusion

The objective of the visualisation of a social network was to present a picture
of the social network, that enables the viewer to easily read the extracted
information. That is, the membership of each actor to each group, the power
of each actor in each group, and the power of each group in the social network.

The membership of an actor to a group is shown by the zoned area each
group uses. The members of each group share one colour, only the shared
actors have the colour of each group they belong to.

62 CHAPTER 6. VISUALISATION

Figure 6.8: Visualisation of several clusters, with overlapping

6.6. CONCLUSION 63

The centrality of each actor is displayed by the distance of an actor
to the centre of its group. A node is closer to the centre of its group, the
higher its centrality value is. The centre of its group only includes the central
node, that is, the nodes with the highest centrality value. If we have more
than one central node, the central nodes form a circle around the centre.
Central nodes are also scaled in size. All non-central nodes are placed in
equidistant angles around the centre. The most central non-central node is
placed exactly above the centre, then, in decreasing order of their centrality,
the nodes are placed on the left and right side of the centre. The group forms
a kind of oval or heart, depending on the distribution of the power within the
group. Therefor we also have an ordering of the non-central actors, where
actors with a higher centrality value are placed above actors with a lower
centrality value.

The centrality of each group is visualised, using the same algorithm
that is used to position the actors within a cluster. Central groups are placed
central, and the ordering of the other groups is equivalent to the non-central
nodes in a cluster.

We can therefor say, that the algorithm introduced here provides the viewer
with easy to read information about the analysed social network.

64 CHAPTER 6. VISUALISATION

Chapter 7

Conclusions & Future Work

The analysis of social networks was divided into two separated sections, the
clustering and the calculation of centrality.

The first step is the clustering of the actors in the social networks, since
clustering is a good method to analyse the structure of a social network. The
clustering must correspond to the social-scientific understanding of groups.
We did introduce several clustering algorithms, that were developed under
this premise. The k-plex algorithm was chosen in consultation with the Eth-
nological Institute of Tübingen, as it correlates most with our understanding
of a group. The results are very pleasing, as the k-plex algorithm described
here is capable of clustering the graph according to the requirements of the
social scientist, including the correct analysis of bridges.

The calculation of power or centrality is the second step of the social net-
work analysis. We introduced several basic concepts of centrality, finally dis-
cussing three (degree-, betweenness-, flow-betweenness centrality) in detail.
Ulirk Brandes introduced a method that is able to calculate the betweenness
in a minimum of time and space [Bra00]. The flow-betweenness central-
ity measure was implemented using the lift-to-front algorithm discussed in
[CLR99]. No optimisation was found yet, as the max-flow calculation for
every combination of sources s ∈ Ci and sinks t ∈ Ci in a cluster Ci needed
did not seem to be replaceable. Future work could find new algorithms for
the calculation of flow-betweenness, reducing the high cost.

The visualisation of the social network analysis must be able to present
the extracted information without much interpretation needed. The infor-
mation, that is to be presented are the clusters, the centrality for each node
and cluster, and the overlapping of clusters. We discussed the problems,

65

66 CHAPTER 7. CONCLUSIONS & FUTURE WORK

that occur in the visualisation of overlapping cluster, finally introducing an
algorithm capable of visualising the clusters and the centrality of each node
in a cluster well. The algorithm can also be used to visualise the central-
ity of each group in the cluster. Shared nodes are placed more then once.
The region of each node is divided into equally spaced arcs, each sharing
the colour of a group the node belongs to. This method is good as long as
a node is not part of too many clusters, as the arcs might get too small to
identify the colours. Practically this did not happen. Future work could
include the visualisation of overlapping clusters, placing shared nodes only
once. We have briefly discussed a method here, using a graph to represent
overlapping clusters. Each cluster was assigned a node in the graph. Each
edge between two nodes represented one of four possible overlaps, that is, the
node is central — centre, non-central — central, non-central — non-central
and no overlap (indicated by an edge with weight 0). The graph was layouted
using a spring embedder. Early results seemed promising, but the limited
time did not allow any detailed evaluation of the problems that occurred.
Future work could achieve good results in the visualisation of overlapping
clusters.

Appendix A

YSocNet

The two standard software packages, UCINET as the analysis software, and
KrackPlot (see Appendix B) mainly to visualise, are very good considering
the results, but they are not easy to handle. The analysis is not interactive
and the usage is not very intuitive. YSocNet was created trying to compen-
sate that.

A.1 Requirements

Talking to social scientist, we extracted some requirements for a social net-
work analysis program:

Ethnological Methods: The methods used in the program should corre-
spond to social scientific understanding of groups and power.

Good Visualisation: The visualisation should support the analysis as well
as the presentation of results.

Handling: The handling of the software should be intuitive and easy.

Interactive: A social scientist should be able to ”play” with the data, that
is, to easily be able to select what data to include/exclude from the
analysis.

In the next section we will discuss, what we mean by handling and interac-
tivity.

67

68 APPENDIX A. YSOCNET

A.2 Application Properties

The goal is to develop a social network analysis tool, that allows a social
network scientist to interactively analyse the data. A researcher should be
able to load all the data into the analysis software, and then be able to
decide what data should be included in the analysis, and to choose any
combination of centrality functions wanted. That is what we understand
under the term interactive analysis. Future work could include different
clustering algorithms and other centrality functions to choose from.

Visualisation of overlapping clusters was not found in the standard soft-
ware packages. The following list summarises the desired properties:

1. easy graphical input of social network data

2. input of independent relations-matrices

3. input of independent actor attributes

4. possibility to choose actors by attribute for the analysis

5. possibility to choose relations for the analysis

6. possibility to choose any combination of centrality functions for the
analysis

7. possibility to visualise overlapping groups of actors

In the following we describe the architecture of the YSocNet application,
explaining how the application properties were realised.

A.3 Architecture

There are three main parts in the architecture of YSocNet, the input, the
analysis, and the analysis interface (see Figure A.1).

A.3.1 Data Input

There are three possible ways to input data: input file, input dialog, and
graphical interface.

A.3. ARCHITECTURE 69

Input File

Let n = |V | the number of actors in the social network. The input file
can be best described by the following grammar G = {T,N, S}, where T =
{Z,L,′, ,′ ,′ .′,′ ′}, and N = {WORD,NUMBER,
ATTRIBUTENAMES,ACTOR,ACTORLIST,REALATION,
MATRIX}.

L = {a, b, c, . . . , z, A,B,C, . . . , Z}
Z = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

WORD = L+(L|)

NUMBER = (−)?Z+ (.Z+)?

MATRIX = NUMBER{n
2}

ATTRIBUTENAMES = WORD (,WORD)∗

ACTOR = WORD (,WORD)∗

(NUMBER, NUMBER)?

ACTORLIST = ACTOR{n}

RELATION = (WORD)?MATRIX

S = ((ATTRIBUTENAMES)?

(ACTORLIST)?)RELATION+

An input file must include at least a definition of a relation, where a relation
is either just the matrix M ∈ Mn×n(R), or a relation-name followed by
a relation matrix. If no attribute-names or actors are defined, then default
actors and one default attribute-name will be created. The default attribute-
name is the name of the actor, and each actor will have a name assigned;
{”actor 1”,. . . ,”actor n”}. An actor is a list of attributes which can end with
the coordinates of the actor an the screen. If actors are given, the number of
actors must obey n = |V |. The number of attributes must be the same for
each actor. If there are attribute-names defined, the number of attributes
for each actor must obey the number of attributes-names (not including the
coordinates). If no attribute-names are defined, default attribute-names will
be created; {”attribute 0”,. . . ,”attribute 1”}.

70 APPENDIX A. YSOCNET

Input Dialog

The input dialogs are an alternative way to input data. There are two dialogs,
the attribute-dialog and the relations-dialog.

The attribute-dialog provides an interface, that allows to add and delete
actors, to add and delete attributes, and to set the value of each attribute
for each actor.

The relations-dialog provides an interface, that allows to add and delete
relations (relation name and relation matrix) and to set or delete relations
between actors.

The data is then stored in the SocNetData-Module.

A.4 Modules

A.4.1 SocNetData

The module SocNetData holds all the input data. It provides the graph of
the social network with all desired information. The information wanted can
be controlled by the elements of the Data controlling, which allow to select
which attribute, and which relations are to be displayed and included in the
analysis.

A.4.2 SocNet-Interface

The SocNet-Interface provides an user interface, that enables the user, to
control the analysis. That is, the user can select, what relations are to be
included in the analysis, what centrality functions are to be combined, and
set some parameters for the clustering, including the initial value for k for
the k-plex algorithm, and the desired merge percentage.

A.4.3 Clustering

The Clustering-module receives the current graph of the social network, as
well as the user defined or default parameters for the clustering. It then
clusters the graph, returning a list of clusters to the SocNetAnalysis-module.

A.4. MODULES 71

A.4.4 Centrality

The Centrality-module receives the list of clusters from the SocNetAnalysis-
module, the graph of the social network, and the list of centrality functions
to use. It then calculates the centrality value for each node in each cluster,
and the centrality of each group in the graph of the social network. A list
with the centrality values is then returned.

A.4.5 Visualisation

The input to the Visualisation-module is the graph G = (V,E) of the social
network, one cluster and the centrality values for each node in the cluster.
It then calculates the positions and size for each node, as central nodes
are scaled in size. The layout structure (positions and sizes) is returned to
the SocNetAnalysis-Module. For each cluster, the relation to the strongest
neighbour of an actors is highlighted, so that more important relations are
easily distinguishable from relations, that might not be as advantageous.

A.4.6 SocNetAnalysis

The analysis of the social network data is handled in the module SocNet-
Analysis. At the beginning of each analysis, the data is taken from the
module SocNetData, as the interaction can change the data after each anal-
ysis. The data is passed on to the clustering, which then returns the clus-
tered graph. The list of clusters is passed on to the Centrality-module. The
SocNetAnalysis-module receives the centrality values for each node in each
group, as well as for each group in the graph. For each group, a layout is
calculated, using the visualisation-module. After that a graph of groups is
created. Each group will have one node in the graph of groups assigned. Each
group-node will have a size equivalent to the size of the layout of its group.
The centrality value of each group-node is equivalent to the centrality value
of the corresponding group. The graph of groups is treated as one cluster,
and the positions of each group-node is determined by the Visualisation-
module. The centre of each group-layout is then moved to the coordinates
of the assigned group-node. The sizes of the group-nodes are ignored.

72 APPENDIX A. YSOCNET

A.5 Framework

YSocNet uses the Y-framework, called yFiles. The yFiles is a collection of
libraries written in Java and will run on every computer with a Java2 VM
properly installed. The libraries provide powerful tools for viewing, editing,
layouting and animating graph-like structures. The layouting-tools of yFiles
are included in YSocNet, and can be used to layout the graph of the social
network.

A.5. FRAMEWORK 73

Input

Analysis Analysis Interface

SocNetAnalysis

Social Network Data

Data Control

Clustering

Layout Module

SocNet Interface

SocNetData

Relation

Attribute

Input Dialog

Centrality

Flow−Betweenness

Betweenness

Degree

Relations

Attributes

Graphical Inteface

Figure A.1: Architecture of YSocNet . There are three possibilities to input
data: file input, dialog input, and graphical interface input. The analysis
is controlled by the SocNetAnalysis-Module. The SocNet-Interface allows to
control the analysis by setting parameters for the clustering and the central-
ity functions. The Data Control-Module allows the selection of the desired
relations and to select/deselect nodes depending on their attributes.

74 APPENDIX A. YSOCNET

Appendix B

Related Work

B.1 Social Network Analysis Programs

B.1.1 UCINET

The first version of the program UCINET was developed in 1986 under the
administration of Linton C. Freeman [BEF92],[Frea].

UCINET is a DOS program and the input is an ASCII-file. The input
file contains matrices, that can be unlabelled or labelled. Concerning the
analysis of social networks, it offers the following centrality measures

• Degree

• Betweenness

• Flow betweenness

• Information centrality

• Eigenvector centrality

• Bonacich’s power index

and the following clustering algorithms

• Cliques

• N -cliques

75

76 APPENDIX B. RELATED WORK

• N -clans

• k-plexes

• k-cores

• Lambda sets

• Fractions

• f -groups

of which a few where described here. It can also group actors by structural
similarity[Han98], such as

• Structural equivalence

• Automorphic equivalence

• Regular equivalence

The output can be visualised by KrackPlot.

B.1.2 KrackPlot

The visualisation program KrackPlot was originally designed by David Krack-
hardt. Jim Blythe and Cathleen McGrath are involved in the version 3 of the
program. The program does not support network analysis, but has several
layout-functions included [Hom]:

User: the user can specify the coordinates

Circle: the nodes are positioned in a circle, so that every edge is within the
circle

Multidimensional Scaling: The main applications of factor analytic tech-
niques are

1. to reduce the number of variables and

2. to detect structures in the relationships between variables, that is
to classify variables

B.1. SOCIAL NETWORK ANALYSIS PROGRAMS 77

Figure B.1: A graph layouted by KrackPlot using simulated annealing

KrackPlot uses the geodesic distance between nodes for the factor anal-
ysis.

Random: random placement of the nodes

Anneal: is also known as spring embedder [Bra99], organic layouter or force
directed layout layout (see Figure B.1).

Jiggle: is the same as anneal, but the diameter of the area that the node
will move is smaller. It allows optimising the graph, after it has been
layouted with annealing.

78 APPENDIX B. RELATED WORK

List of Algorithms

1 clustering . 26
2 G1: undirected . 27
3 G2: directed, then undirected 27
4 G3: directed, reset k, then undirected 28
5 calculate residual graph . 29
6 Merging clusters . 31
7 Degree Centrality . 40
8 Flow-Betweenness Centrality 43
9 Layout . 57

79

80 LIST OF ALGORITHMS

List of Figures

4.1 k-plex . 22
4.2 Clustering with and without merging 30

5.1 Star-, Circle-, and Line-network 34
5.2 Group Degree Centrality . 38

6.1 Types of Actor . 48
6.2 Non-basic types of cluster . 50
6.3 Overlap between 2 groups . 52
6.4 Possible error in overlap display 53
6.5 Knoke information exchange data 55
6.6 Placement order of actors in a group 58
6.7 Knoke Information Data Result 58
6.8 Visualisation of several clusters, with overlapping 60

A.1 Architecture of YSocNet . 67

B.1 A graph layouted by KrackPlot using simulated annealing . . . 73

81

82 LIST OF FIGURES

Bibliography

[BEF92] S.P. Borgatti, M.G. Everett, and L.C. Freeman. UCINET IV.
Analytic Technologies, 1992.

[BKW99a] Ulrik Brandes, Patrick Kenis, and Dorothea Wagner. Central-
ity in Policy Network Drawings. Proc. 7th Intl. Symp. Graph
Drawing (GD’99) LNCS 1731, pages 250–258, 1999.

[BKW99b] Ulrik Brandes, Patrick Kenis, and Dorothea Wagner. Explo-
rations into the Visualization of Policy Networks. Journal of
Theoretical Politics, 1(11):75–106, 1999.

[BLW96] Giuseppe Di Battista, Giuseppe Liotta, and Sue H. Whitesides.
The Strength of Weak Proximity. Technical report, Universitá
Degli Studi di Roma Tre, Dipartimento die Discipline Scientifice,
1996.

[BM99] S.P. Borgatti and M.G.Everett. Models of Core/Periphery Struc-
tures. Unpublished manuscript submitted to Social Networks,
1999.

[BMZ99] Vladimir Batagelj, Andrej Mrvar, and Matjaž Zaveršnik. Parti-
tioning Approah to Visualization of Large Graphs. Graph Draw-
ing, pages 90–97, 1999.

[Bor] Stephen P. Borgatti. A SOCNET Discussion on the Origions of
the Term Social Capital. CONNECTIONS, 21(2):–46.

[Bra99] Ulrik Brandes. Layout of Graph Visualizations. Ph.D. Thesis.
http://www.ub.uni-konstanz.de/kops/volltexte/1999/255, June
1999.

83

84 BIBLIOGRAPHY

[Bra00] Ulrik Brandes. Faster Evaluation of Shortest-Path Based Cen-
trality Indices. Konstanzer Schriften in Mathematik und Infor-
matik 120, May 2000.

[BW00] Ulrik Brandes and Dorothea Wagner. Contextual Visualization
of Actor Status in Social Networks. In Data Visualization 2000,
pages 13–22. 2nd Eurographics/IEEE TVCG Symp. Visualiza-
tion (VisSym’00), Springer, 2000.

[CLR99] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to algorithms. MIT Press, 22th edition, 1999.

[dBETT99] Giuseppe di Batitista, Peter Eades, Roberto Tamassia, and Ioan-
ning G. Tollis. Graph Drawing. Prentice-Hall, Inc., 1999.

[DFK+] P. Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and
V. Vinay. Clustering in large graphs and matrices.

[EB] Martin G. Everett and Stephen P. Borgatti. Peripheries of Co-
hesive Subsets.

[EB99] M.G. Everett and S.P. Borgatti. The Centrality of Groups and
Classes. Joural of Mathematical Sociology, 23(3):181–201, 1999.

[ESB99] Jubin Edachery, Arunabha Sen, and Fran J. Brandenburg.
Graph Clustering Using Distance-k Cliques. Graph Drawing,
pages 98–106, 1999.

[Frea] Linton C. Freeman. UCINET - Network Analysis Software -
Webpage. http://eclectic.ss.uci.edu/˜lin/ucinet.html.

[Freb] Linton C. Freeman. Visualizing Social Networks. Journal of
Social Structure.

[Fre97] Linton C. Freeman. Uncovering Organizational Hierachies.
Computational & Mathematical Organization Theorie, 1(3):5–
18, 1997.

[FWK98] Linton C. Freeman, Cynthia M. Webster, and Deirdre M. Kirke.
Exploring social structure using dynamic three-dimensional
color images. Social Network, 20:109–118, 1998.

BIBLIOGRAPHY 85

[GWW] Yoram Gdalyahu, Daphna Weinshall, and Michael Werman.
Stochastic Clustering and its Application to Image Segmenta-
tion.

[Han98] Robert A. Hanneman. Introduction to Social Network Methods.
http://wizard.ucr.edu/˜rhannema/networks/text/textindex.html,
1998.

[Har69] Frank Harary. Graph Theorie. Addison-Wesley, 1969.

[Hom] KrackPlot Homepage. http://www.heinz.cmu.edu/˜krack/.

[Jan99] Dorothea Jansen. Einführung in die Netzwerkanalyse. leske +
budrich, 1999.

[JB] Robert O. Johnson and John Boyd. e-centrality.
http://eclectic.ss.uci.edu/ rjohns/ecent.htm.

[Lea] Sonia Leach. Singular Value Decomposition – A Primer.

[MBK] Cathleen McGrath, Jim Blythe, and David Krackhardt. Seeing
Groups in Graph Layouts.

[MC] Peter R. Monge and Noshir S. Contractor. Emergence of Com-
munication Networks. A chapter prepared for Publication in
Jablin, F.M., & Putnam, L.L. (Eds.) Handbook of Organiza-
tional Communications (2nd Ed.). Thousand Oaks, CA. Sage.
1999.

[Sch] Robby Schönfeld. k-layer Straightline Crossing Minimization by
Speeding upn Shifting.

[Sch89] Thomas Schweizer. Netzwerkanalyse. Dietrich Reimer Verlag,
1989.

[ST] Janed M. Six and Ioannis G. Tollis. Improved Graph Drawing
Via Clustering.

[Ved98] Balázs Vedres. Locked in Centrality. Sunbelt XVIII and 5th
European International Conference on Social Networks, 1998.

