
A brief introduction to practical SAT solving
What can I expect from SAT today?

Daniel Le Berre
Joint work with Anne Parrain, Pascal Rapicault, Olivier Roussel,

Laurent Simon, and others

CRIL-CNRS UMR 8188 - Université d’Artois

SAT Workshop, 24–25 February 2011,Tübingen

1/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Context : SAT receives much attention since a decade
Why are we all here today ?

I Most companies doing software or hardware verification are
now using SAT solvers.

I SAT technology indirectly reaches our everyday life :
I Intel core I7 processor designed with the help of SAT solvers

[Kaivola et al, CAV 2009]
I Windows 7 device drivers verified using SAT related technology

(Z3, SMT solver) [De Moura and Bjorner, IJCAR 2010]
I The Eclipse open platform uses SAT technology for solving

dependencies between components [Le Berre and Rapicault,
IWOCE 2009]

I Many SAT solvers are available from academia or the industry.

I SAT solvers can be used as a black box with a simple
input/ouput language (DIMACS).

I The consequence of a new kind of SAT solver designed in
2001 (Chaff)

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

3/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The SATisfiability problem

Definition
Input : A set of clauses built from a propositional language with n
variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses ?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

4/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The SATisfiability problem

Definition
Input : A set of clauses built from a propositional language with n
variables.
Output : Is there an assignment of the n variables that satisfies all
those clauses ?

Example

C1 = {¬a ∨ b,¬b ∨ c} = (¬a ∨ b) ∧ (¬b ∨ c) = (a′ + b).(b′ + c)

C2 = C1 ∪ {a,¬c} = C1 ∧ a ∧ ¬c

For C1, the answer is yes, for C2 the answer is no

C1 |= ¬(a ∧ ¬c) = ¬a ∨ c

4/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Where are clauses coming from ?
My own background : Automated Reasoning/Artificial Intelligence

Suppose :

a I like beer

b I should visit Germany

c I should drink German beer

Then C1 could represent the beliefs :

I a =⇒ b : If I like beer, then I should visit Germany.

I b =⇒ c : If I visit Germany, then I should drink german beer.

What happens if I like beer and I do not drink german beer
(a ∧ ¬c) ? This is inconsistent with my beliefs.
From C1 I can deduce a =⇒ c : If I like beer, then I should drink
german beer.

5/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Typical application for SAT : reachability analysis

Definition
Given an initial state s0, a state transition relation ST , a goal state
g and a bound k .
Is there a way to reach g from s0 using ST within k steps ?
Is there a succession of states s0, s1, s2, ..., sk = g such that
∀ 0 ≤ i < k (si−1, si) ∈ ST ?

I The problems are generated for increasing k.

I For small k , the problems are usually UNSATISFIABLE

I For larger k , the problems can be either SAT or UNSAT.

I Complete SAT solvers are needed !

6/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

1992 - Planning As Satisfiability
H.A. Kautz and B. Selman, Planning as satisfiability, in proceedings of the 10th European
Conference on Artificial Intelligence (ECAI’92), pp. 359–363, 1992

PAS(S , I ,T ,G , k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

G (si)

where :

S the set of possible states si

I the initial state

T transitions between states

G goal state

k bound

If the formula is satisfiable, then there is a plan of length k .

7/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

1997 - Software Model Analysis
Daniel Jackson. An Intermediate Design Language and its Analysis Proc. ACM SIGOFT
Conf. Foundations of Software Engineering, Orlando, FL, November 1998

SMA(S , op, p) = ∃s, s ′ ∈ S op(s, s ′) ∧ p(s) ∧ ¬p(s ′)

where :

S the set of possible states

op an operation

p an invariant

If the formula is satisfiable, then there is an execution of the
operation that breaks the invariant.

8/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

1999 - Bounded Model Checking
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In proc. of TACAS, LNCS volume 1579, pages 193–207, 1999.

BMC (S , I ,T , p, k) = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

¬p(si)

where :

S the set of possible states si

I the initial state

T transitions between states

p is an invariant property

k a bound

If the formula is satisfiable, then there is a counter-example
reachable in k steps.

9/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

SAT is important in theory ...

I Canonical NP-Complete problem (Cook, 1971)

I Threshold phenomenon on randomly generated k-SAT
instances (Mitchell,Selman,Levesque, 1992)

source :

http ://www.isi.edu/ szekely/antsebook/ebook/modeling-tools-and-techniques.htm

10/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

... but theory does not always meet practice

I Cannot translate a CNF into 3-CNF and use ratio #clauses
#variables to

know in advance if a SAT instance is difficult to solve or not.

I Adding more variables can speed up solving time (despite
theoretical lower and upper bounds complexity depending on
the number of variables n, e.g. 1.473n).

I Adding more clauses (redondent ones) may also speed up the
solving time.

I Solving real problems with SAT solvers requires specific
expertise.

I How to find out which approaches work well in practice ?

I ... give it a try ! :)

I ... the international SAT competition or SAT Race

11/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

... but theory does not always meet practice

I Cannot translate a CNF into 3-CNF and use ratio #clauses
#variables to

know in advance if a SAT instance is difficult to solve or not.

I Adding more variables can speed up solving time (despite
theoretical lower and upper bounds complexity depending on
the number of variables n, e.g. 1.473n).

I Adding more clauses (redondent ones) may also speed up the
solving time.

I Solving real problems with SAT solvers requires specific
expertise.

I How to find out which approaches work well in practice ?

I ... give it a try ! :)

I ... the international SAT competition or SAT Race

11/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

... but theory does not always meet practice

I Cannot translate a CNF into 3-CNF and use ratio #clauses
#variables to

know in advance if a SAT instance is difficult to solve or not.

I Adding more variables can speed up solving time (despite
theoretical lower and upper bounds complexity depending on
the number of variables n, e.g. 1.473n).

I Adding more clauses (redondent ones) may also speed up the
solving time.

I Solving real problems with SAT solvers requires specific
expertise.

I How to find out which approaches work well in practice ?

I ... give it a try ! :)

I ... the international SAT competition or SAT Race

11/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

12/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

DP 60 and DLL62 : the very first SAT competition !

In the present paper, a uniform proof procedure for
quantification theory is given which is feasible for use
with some rather complicated formulas and which does
not ordinarily lead to exponentiation. The superiority of
the present procedure over those previously available is
indicated in part by the fact that a formula on which
Gilmore’s routine for the IBM 704 causes the machine to
compute for 21 minutes without obtaining a result was
worked successfully by hand computation using the
present method in 30 minutes [Davis and Putnam, 1960].

The well-formed formula (...) which was beyond the
scope of Gilmore’s program was proved in under two
minutes with the present program [Davis et al., 1962]

13/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

A brief history of SAT competitive events
Since the beginning the SAT community has been keen to run competitive events

I 1992 : Paderborn

I 1993 : The second DIMACS challenge [standard input format]
Johnson, D. S., & Trick, M. A. (Eds.). (1996). Cliques, Coloring

and Satisfiability : Second DIMACS Implementation Challenge, Vol.

26 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science. AMS.

I 1996 : Beijing

I 1999 : SATLIB

I 2000 : SAT-Ex

I Since 2002 : yearly competition (or Race)

14/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

DIMACS common input format

p c n f 3 4
−1 2 0
−2 3 0
1 0
−3 0

I Not really fun !
I Designed for SAT solver designers, not end users !

I Need to know in advance the number of variables and clauses
(p cnf line)

I Use only integer to denote variables

SAT technology cannot be used directly by end users (they need a
more user friendly layer/API)

15/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

To keep in mind before looking at the results of a
competition

Results depends on :

I available solvers and benchmarks.

I hardware (amount of RAM, size of L2 cache, etc).

I operating system (linux)

I competition rules (timeout, source code)

I the amount of computing resources available

I ...

We do not claim to have statistically meaningful results !

16/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Impressive results of the SAT 2009 competition

17/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Impressive results of the SAT 2009 competition

17/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Impressive results of the SAT 2009 competition

18/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Impressive results of the SAT 2009 competition

18/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Huge success in the community !

2002 2003 2004 2005 2007 2009
0

10

20

30

40

50

60

25
28

55

44 44

50

5

14
18

21 22

31

N
u

m
b

er
of

so
lv

er
s

su
b

m
it

te
d

CDCL
Others

Evolution of SAT competition winners 2002-2010

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n
 s

ec
o
n
d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10

Understanding “Cactus Plots”
Same data, “probabilistic” view

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

22/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Which solver to choose for solving “real” SAT problems

1990s Local Search
Fast boolean enumeration, built-in randomization
Main application : Planning as Satisfiability

2000s Conflict Driven Clause Learning
Fast Conflict Analysis, Cheap clause learning penalty,
adaptive heuristics
Main application : Bounded Model Checking

2010s ? ? ? ? ? ? ?
My guess : moving to optimization problems, not
simply decision problems

23/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The breakthrough : Chaff
Chaff : Engineering an Efficient SAT Solver by M. Moskewicz, C. Madigan, Y.
Zhao, L. Zhang, S. Malik, 39th Design Automation Conference (DAC 2001), Las
Vegas, June 2001.

I 2 order of magnitude speedup on unsat instances compared to
existing approaches on BMC (Velev) benchmarks.

I Immediate speedup for SAT based tools : BlackBox
“Supercharged with Chaff”

I Based on careful analysis of GRASP internals [Marques-Silva
and Sakallah, 1996]

I 3 key features :
I New lazy data structure : Watched literals
I New adaptative heuristic : Variable State Independent

Decaying Sum
I New conflict analysis approach : First UIP

I Taking into account randomization

24/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The Conflict Driven Clause Learning approach
CDCL is not heuristic binary search !

25/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

01

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

011

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

01110

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

011101

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111011

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

01110110

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111011011

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

01110110111

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

01110110111101 conflict

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111011011110

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

011101111011111011111 conflict

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

011101111011111011111

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111011110111111111111111 conflict

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

0111011110111111111111111

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

11011110111011110 conflict

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

... and so on until either...

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

11110111101111101111011 sat

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Another way to represent how it works

Go from 0000000.... to 11111111..... such that

I Proceed from left to right

I Decisions are represented by 0

I Propagations are represented by 1

I When a conflict occurs, backtrack, i.e. go back to a 0 and
change it by a 1

11111111111111111111111 unsat

26/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Chaff : a highly coupled set of features

I Learning does not degrade solver performance thanks to the
watched literals

I The VSIDS heuristics does not need a complete picture of the
reduced formula, i.e. is compatible with the lazy data
structure.

I VSIDS take advantage of the conflict analysis to spot
important literals.

I VSIDS provides different orders of literals at each restart

I VSIDS adapt itself to the instance !

27/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Since then ...

I Minisat simplified architecture, heuristic scheme, preprocessor
and conflict minimization strategy.

I Specific data structures for binary and ternary clauses
(Siege ?)

I Phase caching (RSAT) and Rapid restarts (many authors and
solvers)

I Aggressive learned clauses deletion strategy ? (Glucose)

I Dynamic restarts (many authors)

I ...

28/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The reason of the success ?

I Better engineering (level 2 cache awareness) ?

I Better tradeoff between speed and intelligence ?

I Instance-based auto adaptation ?

I ...

29/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The reason of the success ?

I Better engineering (level 2 cache awareness) ?

I Better tradeoff between speed and intelligence ?

I Instance-based auto adaptation ?

I ...

29/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The reason of the success ?

I Better engineering (level 2 cache awareness) ?

I Better tradeoff between speed and intelligence ?

I Instance-based auto adaptation ?

I ...

29/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The reason of the success ?

I Better engineering (level 2 cache awareness) ?

I Better tradeoff between speed and intelligence ?

I Instance-based auto adaptation ?

I ...

29/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The reason of the success ?

I Better engineering (level 2 cache awareness) ?

I Better tradeoff between speed and intelligence ?

I Instance-based auto adaptation ?

I ...

All those reasons are correct.
But there is a more fundamental reason too ...

29/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

CDCL has a better proof system than DPLL !
Proof theory strikes back !

I ... thanks to many others before ...
I Bonet, M. L., & Galesi, N. (2001). Optimality of size-width

tradeoffs for resolution. Computational Complexity, 10(4),
261-276.

I Beame, P., Kautz, H., and Sabharwal, A. Towards understanding
and harnessing the potential of clause learning. JAIR 22 (2004),
319-351.

I Van Gelder, A. Pool resolution and its relation to regular
resolution and dpll with clause learning. In LPAR’05 (2005), pp.
580-594.

I Hertel, P., Bacchus, F., Pitassi, T., and Van Gelder, A. Clause
learning can effectively p-simulate general propositional
resolution. In Proc. of AAAI-08 (2008), pp. 283-290.

I Knot Pipatsrisawat, Adnan Darwiche : On the Power of
Clause-Learning SAT Solvers with Restarts. CP 2009 : 654-668

30/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

CDCL has a better proof system than DPLL !
Proof theory strikes back !

Definition
p-simulation Proof system S p-simulates proof system T , if, for
every unsatisfiable formula ϕ, the shortest refutation proof of ϕ in
S is at most polynomially longer than the shortest refutation proof
of ϕ in T.

Theorem 1 [Pipatsrisawat, Darwiche 09]. CLR with any asserting
learning scheme p-simulates general resolution.

31/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS
MaxSat
Pseudo-Boolean Optimization
MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j
32/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Extending SAT 1 : MaxSat MinUnsat

I Associate to each constraint (clause) a weight (penalty) wi

taken into account if the constraint is violated : Soft
constraints φ.

I Special weight (∞) for constraints that cannot be violated :
hard constraints α

I Find a model I of α that minimizes weight(I , φ) such that :
I weight(I , (ci ,wi)) = 0 if I satisfies ci , else wi .
I weight(I , φ) =

∑
wc∈φ weight(I ,wc)

Weight ∞ denomination

∞ yes Sat
k no MaxSat
k yes Partial MaxSat
N no Weighted MaxSat
N yes Weighted Partial MaxSat

Extending SAT 2 : Pseudo-Boolean problems

Linear Pseudo-Boolean constraint

−3x1 + 4x2 − 7x3 + x4 ≤ −5

I variables xi take their value in {0, 1}
I x1 = 1− x1

I coefficients and degree are integral constants

Pseudo-Boolean decision problem : NP-complete
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2
(c) x1 + x2 + x5 ≥ 1

Plus an objective function : Optimization problem, NP-hard

min : 4x2 + 2x3 + x5

34/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Solving Pseudo Boolean Optimization problems with a
SAT solver

I Pseudo-Boolean constraints express a boolean formula → that
formula can be expressed by a CNF

I One of the best Pseudo-Boolean solver in 2005 was Minisat+,
based on that idea : Niklas Eén, Niklas Sörensson :
Translating Pseudo-Boolean Constraints into SAT. JSAT
2(1-4) : 1-26 (2006)

I Handling those constraints natively in a CDCL solver isn’t hard
either (Satire, Satzoo, Minisat, ...) : simplifies the mapping
from domain constraints and model constraints, explanations.

I One can easily use a SAT solver to solve an optimization
problem using either linear or binary search on the objective
function.

35/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization using strengthening (linear search)

input : A set of clauses, cardinalities and pseudo-boolean
constraints setOfConstraints and an objective function
objFct to minimize

output: a model of setOfConstraints, or unsat if the problem is
unsatisfiable.

answer ← isSatisfiable (setOfConstraints);
if answer is Unsat then

return Unsat
end
repeat

model ← answer ;
answer ← isSatisfiable (setOfConstraints ∪

{objFct < objFct (model)});

until (answer is Unsat);
return model ;

36/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5 <

Objective function value

5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5 < 5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5 < 5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5 <

Objective function value

3 < 5

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5 < 3

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5 < 3

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Model

x1, x2, x3, x4, x5

Objective function

min : 4x2 + 2x3 + x5 <

Objective function value

1 < 3

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5 < 1

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5 < 1

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Optimization algorithm

Formula :
(a1) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 8
(a2) 5x1 + 3x2 + 2x3 + 2x4 + x5 ≥ 5
(b) x1 + x3 + x4 ≥ 2

Objective function

min : 4x2 + 2x3 + x5

The objective function value 1 is optimal for the formula.
x1, x2, x3, x4, x5 is an optimal solution.

37/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Extending SAT 3 : Minimally Unsatisfiable Subformula

I Let C be an inconsistent set of clauses.

I C ′ ⊆ C is an unsat core of C iff C ′ is inconsistent.

I C ′ ⊆ C is a MUS of C iff C ′ is an unsat core of C and no
subset of C ′ is an unsat core of C .

I Computing a MUS (set of clauses) is equivalent to computing
the set of literals L such that :

1. L satisfies {ki ∨ Ci |Ci ∈ C}
2. L ∩ K is subset minimal

38/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Extending SAT 3 : Minimally Unsatisfiable Subformula

I Let C be an inconsistent set of clauses.

I C ′ ⊆ C is an unsat core of C iff C ′ is inconsistent.

I C ′ ⊆ C is a MUS of C iff C ′ is an unsat core of C and no
subset of C ′ is an unsat core of C .

I Computing a MUS (set of clauses) is equivalent to computing
the set of literals L such that :

1. L satisfies {ki ∨ Ci |Ci ∈ C}
2. L ∩ K is subset minimal

38/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Solvers are available for those problems

Some competitive events are organized for those problems :

I Pseudo Boolean since 2005

I MAX-SAT since 2006

I MUS this year

As such, a common input format exists, together with a bunch of
solvers.

39/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Generalized use of selector variables
The minisat+ syndrom : is a SAT solver sufficient for all our needs ?

Selector variable principle : satisfying the selector variable should
satisfy the selected constraint.

clause simply add a new variable∨
li ⇒ s ∨

∨
li

cardinality add a new weighted variable∑
li ≥ d ⇒ d × s +

∑
li ≥ d

The new constraints is PB, no longer a cardinality !

pseudo add a new weighted variable∑
wi × li ≥ d ⇒ d × s +

∑
wi × li ≥ d

if the weights are positive, else use

(d +
∑

wi<0 |wi |)× s +
∑

wi × li ≥ d

40/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

From Weighted Partial Max SAT to PBO

Once cardinality constraints, pseudo boolean constraints and
objective functions are managed in a solver, one can easily build a
weighted partial Max SAT solver

I Add a selector variable si per soft clause Ci : si ∨ Ci

I Objective function : minimize
∑

si

I Partial MAX SAT : no selector variables for hard clauses

I Weighted MAXSAT : use a weighted sum instead of a sum.
Special case : do not add new variables for unit weighted
clauses wk lk
Ignore the constraint and add simply wk × lk to the objective
function.

41/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

From Unsat Core computation to MaxSat

Recent advances in practical Max Sat solving rely on unsat core
computation [Fu and Malik 2006] :

I Compute one unsat core C ′ of the formula C

I Relax it by replacing C ′ by { ri ∨ Ci |Ci ∈ C ′}
I Add the constraint

∑
ri ≤ 1 to C

I Repeat until the formula is satisfiable

I If MinUnsat(C) = k , requires k loops.

Many improvement since then (PM1, PM2, MsUncore, etc) :
works for Weighted Max Sat, reduction of the number of
relaxation variables, etc.

42/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Selector variables + assumptions = explanation (MUS)

I Assumptions available from the beginning in Minisat 1.12
(incremental SAT)

I Add a new selector variable per constraint
I Check for satisfiability assuming that the selector variables are

falsified
I if UNSAT, analyze the final root conflict to keep only selector

variables involved in the inconsistency
I Apply a minimization algorithm afterward to compute a

minimal explanation
I Advantages :

I no changes needed in the SAT solver internals
I works for any kind of constraints !

I See in action during the MUS track of the SAT 2011
competition !

43/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

44/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Current softwares are composite !

I Linux distributions : made of packages

I Eclipse application : made of plugins

I Any complex software : made of libraries

I There are requirements between the diverse components

45/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Dependency Management Problem

P a set of packages

depends requirement constraints

depends : P → 22P

conflicts impossible configurations

conflicts : P → 2P

Definition (consistency of a set of packages)

Q ⊆ P is consistent with (P, depends, conflicts) iff
∀q ∈ Q, (∀dep ∈ depends(q), dep∩Q 6= ∅)∧(conflicts(q)∩Q = ∅).

46/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Dependency Management Problem

P a set of packages

depends requirement constraints

depends : P → 22P

conflicts impossible configurations

conflicts : P → 2P

Definition (consistency of a set of packages)

Q ⊆ P is consistent with (P, depends, conflicts) iff
∀q ∈ Q, (∀dep ∈ depends(q), dep∩Q 6= ∅)∧(conflicts(q)∩Q = ∅).

What is the complexity of finding if a Q containing a specific
package exists ?

46/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Just as hard as SAT : NP-complete !
See how to decide satisfiability of (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ a ∧ ¬c

package : a
v e r s i o n : 1
c o n f l i c t s : a = 2

package : a
v e r s i o n : 2
c o n f l i c t s : a = 1

package : b
v e r s i o n : 1
c o n f l i c t s : b = 2

package : b
v e r s i o n : 2
c o n f l i c t s : b = 1

package : c
v e r s i o n : 1
c o n f l i c t s : c = 2

package : c
v e r s i o n : 2
c o n f l i c t s : c = 1

package : c l a u s e
v e r s i o n : 1
depends : a = 2 | b = 1 | c = 1

package : c l a u s e
v e r s i o n : 2
depends : a = 2 | b = 2 | c = 1

package : c l a u s e
v e r s i o n : 3
depends : a = 1

package : c l a u s e
v e r s i o n : 4
depends : c = 2

package : f o r m u l a
v e r s i o n : 1
depends : c l a u s e = 1 , c l a u s e = 2 ,

c l a u s e = 3 , c l a u s e = 4

r e q u e s t : s a t i s f i a b i l i t y
i n s t a l l : f o r m u l a

Dependencies expressed by clauses

I Dependencies can easily be translated into clauses :

package : a
v e r s i o n : 1
depends : b = 2 | b = 1 , c = 1

a1 → (b2 ∨ b1) ∧ c1

¬a1 ∨ b2 ∨ b1,¬a1 ∨ c1

I Conflict can easily be translated into binary clauses :

package : a
v e r s i o n : 1
c o n f l i c t s : b = 2 , d = 1

¬a1 ∨ ¬b2,¬a1 ∨ ¬d1

48/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

From decision to optimization

I NP-complete, so we can use a SAT solver to solve it
I Finding a solution is usually not sufficient !

I Minimizing the number of installed packages
I Minimizing the size of installed packages
I Keeping up to date versions of packages
I Preferring most recent packages to older ones
I ...

I In practice an aggregation of various criteria

I Need a more expressive representation language than plain
CNF !

49/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Representing optimization criteria with MaxSat ?

α ≡
∧

pv∈P(pv → (
∧

dep∈depends(pv) dep),∞)∧∧
conf ∈conflicts(pv)(pv → ¬conf ,∞,) ∧ (q,∞)

denote the formula to satisfy for installing q.

Minimizing the number of installed packages (Partial MaxSat) :

φ ≡ (
∧

pv∈P,pv 6=q

(¬pv , k)) (1)

Minimizing the size of installed packages (Weighted Partial
MaxSat) :

φ ≡ (
∧

pv∈P,pv 6=q

(¬pv , size(pv))) (2)

Those problems are really Binate Covering Problems (CNF +
objective function).

50/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Representing optimization criteria using pseudo-boolean
optimization

I We can now rewrite the previous optimization criteria in a
simpler manner :

I Minimizing the number of installed packages :

min :
∑

pv∈P,pv 6=q

pv

I Minimizing the size of installed packages :

min :
∑

pv∈P,pv 6=q

size(pv)× pv

I We can express easily that only one version of package libnss
can be installed :
libnss1 + libnss2 + libnss3 + libnss4 + libnss5 ≤ 1

51/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

The full encoding

I Contains Eclipse specific features (patches, root packages,
etc).

I Has a specific optimization function tailored for two years
thanks to user feedback.

I Up and running since Eclipse 3.4 (June 2008).
I For both :

I Building Eclipse-based products
I Updating and Eclipse installation

52/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

53/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Conclusion

I Many efficient SAT solvers available

I Can be used to solve either decision or optimization problems

I Success stories for decision problems (Intel Core i7, Windows
7)

I Optimization problems receiving more and more attention
(MaxSat, PBO, WBO, SMT OPT, etc)

I Efficient optimization on “real” test cases often rely on raw
SAT solvers (encoding Minisat+, unsat core for MaxSat)

I Reusing SAT engines is key for solving efficiently those
problems

I because SAT engines are still more and more efficient

I Not many SAT library fully featured to offer to the end user
state-of-the-art boolean constraints solver and optimizer.

54/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Outline

SAT in theory

SAT in practice : the international SAT competition

SAT solvers for solving “real” problems : the CDCL architecture

Nearby SAT : PBO, MaxSAT, MUS

Using boolean constraints to solve Software Dependency problems

Conclusion

Depending on time : a quick overview of Sat4j

55/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J

I Birth of SAT4J, Java implementation of Minisat.

I Open Source (licensed under GNU LGPL).

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J PB

I Joint project with INESC → PB evaluation + Sat4j PB

I First CSP competition → release of Sat4j CSP

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J PB MAXSAT

I First MaxSAT evaluation

I Birth of Sat4j MaxSAT

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J PB MAXSAT Eclipse

I Integration within Eclipse [IWOCE09]

I Sat4j relicensed under both EPL and GNU LGPL

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J PB MAXSAT Eclipse p2cudf

I Application to Linux dependencies : p2cudf [LoCoCo 2010]

I Licensed under EPL

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Sat4j, from ADS to p2cudf

1998 2000 2002 2004 2006 2008 2010

DPLL ERA CDCL ERA

ADS JSAT

Chaff

OpenSAT

Minisat

SAT4J PB MAXSAT Eclipse p2cudf

MUS

56/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Initial aim of the project

I Providing 100% Java SAT technology

I With an Open Source software

I Flexible enough to experiment our ideas

I Efficient enough to solve real problems

I Designed to be used in academia or production software

57/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

A flexible framework for solving propositional problems

generic CDCL

constraints clauses

cardinalities

PB
constraints

inference

resolution

cutting
planes

optimization

explanation

SAT4J today

I SAT4J MAXSAT considered state-of-the-art on Partial
[Weighted] MaxSAT application benchmarks (2009).

I SAT4J PB (Res, CP) are not very efficient, but correct
(arbitrary precision arithmetic).

I SAT4J SAT solvers can be found in various software from
academia (Alloy 4, Forge,) to commercial applications
(GNA.sim).

I SAT4J PB Res solves Eclipse plugin dependencies since June
2008 (Eclipse 3.4, Ganymede)

I SAT4J ships with every product based on the Eclipse platform
(more than 13 millions downloads per year from Eclipse.org
since June 2008)

I SAT4J helps to build Eclipse products daily (e.g. nightly builds
on Eclipse.org, IBM, SAP, etc)

I SAT4J helps to update Eclipse products worldwide daily

59/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

Summary of SAT4J functionalities

Optimization problems

Partial Weighted MaxSat PB Optimization/WBO

Sat4j-Core Sat4j-PB-Res Sat4j-PB-CP

Resolution Cutting Planes

Clauses/Cardinalities Clauses/Cardinalities/PB Contraints

Decision Problems

Sat Pseudo-boolean Problems

60/60)

http://www.cnrs.fr/
http://www.cril.fr/
http://creativecommons.org/about/licenses/
http://www.univ-artois.fr/

	SAT in theory
	SAT in practice: the international SAT competition
	SAT solvers for solving ``real'' problems: the CDCL architecture
	Nearby SAT: PBO, MaxSAT, MUS
	MaxSat
	Pseudo-Boolean Optimization
	MUS

	Using boolean constraints to solve Software Dependency problems
	Conclusion
	Depending on time: a quick overview of Sat4j

