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Arid regions

Arid regions are defined as areas receiving only light and irregular precipitation,
with rates falling below those of evaporation. In contrast, semiarid regions are
those receiving a relatively greater amount of precipitation, which can occur for
several months out of the year and allow soil moisture to reach levels that can
support grass and shrubland (Ezzahar et al., 2007). As described by Pilgrim et al.
(1988), the degree of aridity can be determined by calculating the ratio of mean
annual precipitation to mean annual evaporation. This degree helps define distinct
aridity zones, such as semiarid, arid, and hyperarid. Their means can vary consid-
erably, with semiarid zones presenting a ratio of 0.20—0.50, arid zones a ratio of
0.03—0.20, and hyperarid falling to 0.03 or below. Regions characterized as arid
or semiarid display greater climate instability and variation than hyperarid zones
Depending on the season, they can experience both drought and flooding, which
leads to environmental disasters as well as severe water shortages that heavily
stress local aquifers.

Arid and semiarid regions represent 30% of the world’s terrestrial area
(Dregne et al., 1991). These areas have recently experienced a rapid increase in
population density, with over one billion inhabitants globally (Yin et al., 2013).
This increase has led to higher land cover and usage, pressures that both local
governments and international scientific communities are carefully monitoring.

Challenges of arid regions
Water scarcity

Increased freshwater demand has become a growing problem in arid and semiarid
zones. Population growth in these areas has surpassed that of more humid regions,
despite local water supply being much lower. In fact, the majority of arid and
semiarid areas worldwide rely mainly on groundwater that is primarily recharged
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by rainfall. This recharge, however, is infrequent and unpredictable, with precipi-
tation occurring only once or twice per year. This insufficient recharge in turn
lowers the quality of available groundwater and leads to increased salinization.

Data scarcity

Data availability is a limiting factor when deriving scientific conclusions of studies
on arid and semiarid regions, with insufficient data reducing the quality of results
and leading to misguided decisions and policies. Data influencing these regions
can be divided into two groups, both of which can be difficult to estimate. These
consist of natural and man-made factors. Natural factors are those influencing the
water cycle and directly include precipitation rate, evapotranspiration, runoff, and
infiltration. Indirect factors include temperature, relative humidity, and wind speed
(Sherief, 2008). In contrast, man-made factors can describe, for example, water
consumption rate, population expansion, land cover increase, and intensification of
land use.

Collecting sufficient usable data on the abovementioned factors is critical for
sustainable groundwater management in arid and semiarid zones. However, rain
gauges in most mountainous arid regions are few and sparse, if present at all
(Poméon et al., 2018). Additionally, these existing gauges have a limited capabil-
ity for capturing continuous records (e.g., hourly changes might not be recorded).
Furthermore, the gauges are largely isolated and represent areas of low population
density (Pilgrim et al., 1988), which results in a low frequency of maintenance
and rapid deterioration. Taken together, these factors significantly reduce the effi-
cacy of water management strategies in arid areas, affecting the water table and
general development in the region.

The water cycle in arid regions

Adequate management of water resources has recently become an issue of intense
focus on arid and semiarid regions. The local freshwater supply in these climate
zones is generally highly limited and is mainly derived from groundwater, which
is susceptible to depletion (Sheffield et al., 2018). Consequently, the initial step
toward sustainable groundwater control is an assessment of local water cycle
equilibrium, in combination with identification of groundwater consumption rates.
The results of such studies can be used to inspire rules and regulations for the
maintenance and preservation of groundwater sources in semiarid areas. Potential
regulations could, for example, mandate that withdrawal from aquifers do
not exceed natural recharge rates, which would in turn reduce land use and limit
population growth. The current chapter approaches this issue through a discussion
of the water cycle, water storage, and water consumption patterns in arid and
semiarid regions.
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In general, the hydrological cycle describes the movement of water between
the biosphere, atmosphere, lithosphere, and hydrosphere (Kuchment, 2004;
Pagano & Sorooshian, 2002). Fresh water can accumulate and be stored in vari-
ous natural reservoirs, such as oceans, lakes, rivers, soil, glaciers, groundwater,
and the atmosphere. Water is also able to transfer between reservoirs by precipita-
tion, evaporation, condensation, deposition, runoff, and infiltration (Kuchment,
2004). The reservoirs contributing most to evaporation are the oceans, where
water vapor transfers to the atmosphere in the form of clouds that are then
propelled great distances by wind, before finally condensing and precipitating,
furthering the cycle (Pagano & Sorooshian, 2002). Although wind can promote
the transportation of cloud water, the vast majority (91%) of precipitation occurs
over the oceans themselves. The other 9% of precipitation falls over land masses,
where it then either infiltrates the ground or becomes surface runoff (Kuchment,
2004; Pagano & Sorooshian, 2002). This precipitation can result in three general
outcomes: replenishment of atmospheric water reservoirs via evaporation, rechar-
ging of groundwater, or returning to the ocean (Kuchment, 2004; Pagano &
Sorooshian, 2002). The balance of water entering and exiting a particular environ-
ment can be described as its water cycle equilibrium. Taking into account multi-
ple factors affecting water availability, this can be quantified by the following
formula (Han et al., 2010; Niu et al., 2007; Pitman, 2003):

P=E+R+AS (7.1)

where P represents the rate of precipitation, E is the rate of evapotranspiration, R is
the amount of runoff, and AS is the change in storage capacity of soil moisture. In
recent decades, exploitation of groundwater has intensified as a result of climate
change and global warming. This has led to alterations in local hydrological cycles
that are increasingly destabilizing regional water balances (Shen & Chen, 2010).

Precipitation

Precipitation functions as the primary factor maintaining water cycle equilibrium
[Eq. (2.1)]. Accordingly, it has served as a dominant subject in the majority
of hydrological studies on flash flood risk assessment, groundwater localization,
climate change, and forecasting (Tapiador et al., 2012).

Infiltration

Infiltration describes the first hydrological consequence of precipitation, occurring
when rainfall hits the ground and percolates the soil surface (Beven, 2004;
Thornes, 2009). Several factors controlling rainfall percolation rate and its spatial
variability include soil type, texture, moisture, and hydraulic properties; vegeta-
tion; animal activities; and climate (Beven, 2004; Khan et al., 2014). Infiltration
and runoff in arid and semiarid regions display more complex characteristics
when compared with less dry climates, as several additional factors exist that
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influence the two. For example, they can be affected by the relationship between
bedrock slope, curvature, porosity, permeability, and extent versus the degree of
soil cover (Beven, 2004; Khan et al., 2014). To semiquantify infiltration, interna-
tionally documented models incorporate several of these aforementioned factors
(e.g., bedrock qualities and soil cover) as input parameters (Khan et al., 2014).

Runoff

Runoff is defined as the outflow of precipitated water from landmasses to the
open ocean. As described by Dyck et al. (1980), runoff occurs when the precipita-
tion of a rainfall event is greater than the infiltration capacity of the affected
soil. This can be due to several reasons, such as soil saturation, or the closing
off of openings in the soil. As a hydrological phenomenon, it produces both con-
structive and destructive consequences. Its presence can negatively affect settle-
ments, vegetation cover, road infrastructure, and, in some cases, lead to soil
erosion and devastating landslides. Alternatively, it can also be exploited as a
source of fresh water in arid regions. In fact, it is a recent target of interest for
addressing the increasing demand for potable water and electricity in these areas
(Massoud et al., 2010). To quantify the relationship between rainfall and runoff,
researchers utilize several techniques, among them: simple correlation, area-based
methods, regional regression methods, and Geographic Information System
(GIS)-based models (Abuzied et al., 2016; Bo et al., 2011; Massoud et al., 2010).
These models are based on water cycle equilibrium and incorporate land use,
soil type, terrain slope, soil moisture, and antecedent moisture as primary input
parameters (Horton, 1941).

Evapotranspiration

Evapotranspiration concerns the movement of water and energy from the litho-
sphere and hydrosphere to the atmosphere (Li et al., 2014). Evapotranspiration
consists of two processes: the evaporation of liquid water from landmasses and
large water bodies and the transpiration of water from plant leaves (Vinukollu
et al., 2011). Evapotranspiration strongly influences water cycle equilibrium,
especially in arid and semiarid regions, where the evaporation rate can regularly
exceed the precipitation rate. Consequently, estimation and semiquantification
of evapotranspiration is another target of focus when determining strategies for
efficient water resource management in arid areas (Shen & Chen, 2010).
Unfortunately, data on evapotranspiration cannot be retrieved directly by remote
sensing products (Kalma et al., 2008). It can, however, be estimated by its
dependence on various factors, namely local temperature, relative humidity, wind
speed, vegetation characteristics, and plant phenology (Kalma et al., 2008). As a
result, the estimation of evapotranspiration requires input from a variety of sen-
sors, ground observations, and models (Kalma et al., 2008; Kustas & Norman,
1996).
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Storage

The global availability of stored water can be separated into distinct reservoirs,
including both on- and in-land freshwater resources. Among the on-land sources
are glaciers, snow, lakes, marshes, and rivers. In-land freshwater resources, on the
other hand, exist as soil moisture and groundwater (Hartmann et al., 2002). The
amount of global water supply that is stored on- and in-land is relatively small,
though the water flux through these systems is relatively great (Hartmann et al.,
2002; Pagano & Sorooshian, 2002). In the majority of arid regions, aquifers repre-
sent the predominant source of stored fresh water, and storage rate depends
mainly on aquifer type, water table level, and degree of water flux (Hartmann
et al., 2002; Pagano & Sorooshian, 2002).

Aquifers

Aquifers serve as the primary in-land reservoirs of stored fresh water in arid and
semiarid regions. They can be categorized into three distinct types: confined,
unconfined, and leaky aquifers (with the type depending mainly on the local
lithology). Confined aquifers are both over- and underlaid by a confining bed and
yield usable quantities of fresh water to wells or springs (Heath, 1983).
Unconfined aquifers, in contrast, are overlaid by permeable beds and underlaid by
confining beds with very low hydraulic conductivity (Heath, 1983; Prasad, 2002).
Leaky aquifers are overlaid or underlaid by a semipermeable layer through which
vertical leakage can take place (Prasad, 2002).

Water stored by aquifers in arid areas can originate as either “modern” or
“fossil” groundwater (Sultan et al., 2011), two types distinguishable by distinct
isotopic signatures. Modern water describes water that recharges aquifers during
current and ongoing precipitation events. Fossil groundwater, however, is that
which formerly recharged the aquifer during previous decades under different cli-
matic conditions (Sultan et al., 2011). Naturally, the majority of recent precipita-
tion in currently arid regions tends to limited and low in intensity. It insufficiently
recharges local aquifers and cannot provide for the increasing water demands of
growing populations, shifting reliance toward fossil groundwater.

Soil moisture

The secondary reservoir for in-land water storage derives from soil moisture,
which is responsible for the interaction between the lithosphere and atmosphere.
It is considered to be one of the most critical variables for determining climate
(Parinussa et al., 2017). This variable is often used to highlight the differences
between drought and flood seasons (Cao et al., 2019) and is required for the
modeling of important hydrological factors, such as infiltration and runoff
(Parinussa et al., 2017). Soil moisture displays high temporal variation, as well



7.5 Water consumption

variation between topographies, soil properties, vegetation, and climate (Crow
et al., 2012). To obtain continuous data on soil moisture, scientists use in situ
measurements along with microwave sensors to produce datasets with consider-
able accuracy and spatial resolution, as well as a high capture frequency (Liu
et al., 2012).

Rivers and lakes

On-land reservoirs of stored water consist of rivers and lakes. Furthermore, there
exists a hydraulic interaction between surface and groundwater in many water-
sheds, with streams, rivers, and lakes both feeding and withdrawing from the local
groundwater aquifer (Kuchment, 2004; Pagano & Sorooshian, 2002). The entire
process depends on the aquifer groundwater level that itself is reliant on both pre-
cipitation and irrigation rate (Massoud et al., 2010). However, if water inflow and
outflow are under equilibrium, the absolute change in water storage will be zero.
While rivers and lakes are uncommon in arid regions, aquifers can occasionally
lie adjacent to seaside coastlines. Hydraulic connection between the two can lead
to issues with water contamination and saltwater intrusion, especially when
groundwater levels drop below those of the sea surface (Eissa et al., 2016). In
such situations, limits on water withdrawal should be implemented to avoid these
consequences, taking precipitation and water recharge rates into consideration.

Water consumption

Water consumption is the driving force unbalancing the water budget in arid
regions. Consumption rates gradually but directly increase with population mass
and subsequent land cover and land development (Scanlon et al., 2006). As a
result, it is critical for the continuity of arid communities that population (and
consequently water withdrawal) are limited.

Precisely 6% of the world’s forests are located in arid zones (Malagnoux,
2007) and, despite natural climate constraints, are increasingly being used for
agriculture. In fact, 85% of available water in these regions is diverted for crop
irrigation (Ezzahar et al., 2007). To combat this, several projects have been estab-
lished for the promotion of sustainable management of irrigation water in arid cli-
mates (Malagnoux, 2007).

One billion people reside in arid regions worldwide and as a group represent
the world’s poorest (Malagnoux, 2007). As this population grows and water needs
increase, the overexploitation of trees and forests required to sustain the popula-
tion will lead to further desertification. Additionally, reduced rainfall due to cli-
mate change and global warming will fail to adequately recharge aquifers, also
leading to the insufficient natural irrigation of the abovementioned forests
(Malagnoux, 2007).
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Precipitation serves as the key parameter of water cycle equilibrium in arid
regions, primarily due to its role in recharging ground aquifers and compensating
for human consumption. Rain gauges are the most accurate tools for measuring
both precipitation rate at a physical point scale and rainfall depth as it accumulates
overtime (Sun et al., 2018; Tapiador et al., 2012). Several types of rain gauges
exist, including accumulation gauges, tipping bucket gauges, weighing gauges, and
optical gauges, each with their own strengths and weaknesses (Sun et al., 2018;
Tapiador et al., 2012). The most commonly used type is the tipping bucket gauge
that is used to estimate rainfall rate and volume. It has the capability to measure
trace amounts of rain, as little as 0.2, 0.5, or 1 mm (Das & Prakash, 2011). The
instrument consists of a funnel that receives the rain and sections it into smaller
containers. These containers then dump the rainwater collecting a certain quantity.
The dumping procedure is accompanied by an electrical signal that is recorded. In
older versions, this signal would be recorded by a pen mounted on an arm attached
to a geared wheel (Das & Prakash, 2011). However, tipping bucket gauges do con-
tribute a source of error when measuring heavy rainfall, as the water can accumu-
late in the containers faster than the dumping process can take place, leading to an
underestimation of the heavy rainfall rate. This can occur when the precipitation
rate is higher than 300 mm h™". This type of gauge can also underestimate a light
rainfall rate when water evaporates out of the containers prior to the dumping step
(Das & Prakash, 2011). A less commonly used type of rain gauge depends on the
weighing of the rainfall accumulated at different sampling rates. The saturation
effect is therefore not relevant (Tapiador et al., 2012). One of the challenges faced
when attempting the accurate estimation of rainfall rate by rain gauges in arid
regions is the wind effect, especially during light rainfall. Wind can transfer these
sparse raindrops between locations, disturbing the point scale measuring function of
the rain gauges. This can lead to two gauges in close proximity recording different
quantities of rainfall (Tapiador et al., 2012).

Satellite-based precipitation data sources

Ground-based rain gauges are traditionally used to measure precipitation by mea-
suring an incremental mass of accumulated rainfall as a function of time.
However, the existing network of rain gauges is far from satisfactory in resolving
the spatiotemporal characteristics of precipitation. Although this knowledge gap
is partly bridged via the use of other ground-based instruments (e.g., disdrometers,
ground-based radars), sensors onboard satellites are currently the only instruments
that can provide global and homogeneous precipitation measurements.
Michaelides et al. (2009) provide a comprehensive discussion of ground- and
space-based precipitation measurement instruments.

The precipitation sensors onboard of Earth-orbiting satellites are broadly clas-
sified into three categories: (1) visible and infrared (IR) sensors on geostationary
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orbit (GEO) and low Earth orbit (LEO) satellites, (2) passive microwave (PMW)
sensors on LEO satellites, and (3) active microwave (AMW) sensors on LEO
satellites (see Prigent, 2010). Retrieval methods used to quantitatively estimate
precipitation from satellite-based sources have been developed. Kidd and
Levizzani (2011) provide a review of quantitative precipitation estimation, cover-
ing the basics of the satellite systems used in the observation of precipitation, the
dissemination and processing of this data, and the generation, availability, and
validation of the precipitation estimates.

Different sources of satellite-related precipitation data with varying spatial res-
olution and capturing frequency have been used to determine the spatiotemporal
characteristics of precipitation in numerous applications. Sun et al. (2018) present
a comprehensive review of data sources and estimation methods of several cur-
rently available global precipitation datasets, including gauge-based, satellite-
related, and reanalysis datasets; Table 7.1, which is based on their work, sum-
marizes the major satellite-related precipitation data sources (Adler et al., 2003,
2018; Ashouri et al., 2015; Beck et al., 2017; Hou et al., 2008, 2014; Huffman
et al., 2007, 2020; Joyce et al., 2004, 2010; Maidment et al., 2014, 2017,
Sorooshian et al., 2000; Ushio et al., 2009; Xie et al., 2003, 2010).

In this section the two satellite-related data sources that are used in the follow-
ing statistical analysis of their potential application over an arid region are outlined.
The first of these two datasets is the TMPA [Tropical Rainfall Measuring Mission
(TRMM) Multisatellite Precipitation Analysis] and the second is the IMERG
(Integrated Multi-Satellite Retrievals for Global Precipitation Measurement, GPM).

Huffman et al. (2007, 2010) describe the two major sources of data input to
TMPA. The first source of input data for the TMPA consists of precipitation-
related PMW data that are collected by a variety of LEO satellites. The TRMM
provided data for the estimation of rainfall in tropical and subtropical areas (Chen
et al, 2018; Kim et al., 2017). It was a joint space mission between the US
National Aeronautics and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) (Fensterseifer et al., 2016; Kummerow et al., 1998).
The TRMM carried onboard five instruments: a Precipitation Radar (PR, operat-
ing at 13.8 GHz), a TRMM Microwave Imager (TMI, a nine-channel PMW radi-
ometer), a visible IR scanner (VIRS, a five-channel visible/IR radiometer), a
Clouds and Earth’s Radiant Energy System (CERES), and a lightning imaging
sensor. PR operated as one transmitting/receiving frequency and one polarization,
providing information about rain type, strength, and distribution (Kummerow
et al., 1998). The TMI provided quantitative information about rainfall, water
vapor, cloud water content, and sea surface temperature (Immerzeel et al., 2009;
Kummerow et al., 1998). The PR complemented the results of the TMI and PMW
sensors to provide measurements of radiance through precipitating clouds along
the sensor view path. Radiance frequency reflects the properties of clouds and
precipitation particles (Guo et al., 2017). The AMW sensors provided information
about cloud height by measuring the backscatter delay (Guo et al., 2017). The
VIRS provided indirect measurements of rainfall intensity, distribution, and type
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Table 7.1 Major satellite-related precipitation data sources (based on Sun et al., 2017).

Satellite-based source

GPCP

GPCP1dd
GPCP_PEN_v2.2
CMAP
CPC-Global
TRMM3B43
TRMM3B42
GSMaP
PERSIANN-CCS
PERSIANN-CDR
CMORPH

GPM

MSWEP & CHIRPS
TAMSAT

Resolution

2.5°

1.5°

2.5°

2.5°

0.5°
0.25°
0.25°
0.1°
0.04°
0.25°
0.25°/8 km
0.1°
0.1°/0.5°
0.04°

Frequency

Monthly
Daily

5-daily
Monthly
Daily
Monthly

3 h/daily

1 h/daily
30min/3, 6 h
3, 6 h/daily

30 min/3 h/Daily

30 min/3 h/daily
3 h/daily
Daily

Coverage

Global
Global
Global
Global
Global land
50°S—50°N
50°S—50°N
60°S—60°N
60°S—60°N
60°S—60°N
60°S—60°N
60°S—60°N
Global
Africa

Period

1979—present
1979—present
1979-2014
1979—present
2006—present
1998—present
1998—present
2002—-12
2003—present
1983 —present
2002 —present
2015—present
1979—present
1983—present

References

Adler et al. (2003)

Adler et al. (2018)

Xie et al. (2003)

Xie et al. (2003)

Xie et al. (2010)

Huffman et al. (2007)
Huffman et al. (2007)

Ushio et al. (2009)
Sorooshian et al. (2000)
Ashouri et al. (2015)

Joyce et al. (2004, 2010)
Hou et al. (2008, 2014), Huffman et al. (2020)
Beck et al. (2017)

Maidment et al. (2014, 2017)

Source: From Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation,
and intercomparisons. Reviews of Geophysics, 56(7), 79—107. https.//doi.org/10.1002/2017RG000574.
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(Fensterseifer et al., 2016; Kummerow et al., 1998). The VIRS provided less reli-
able data on its own (Guo et al., 2017); however, it provided more frequent data
when compared to the infrequent data captured by the TMI and PR. The lightning
sensor played an important role in connecting lightning occurrence to precipita-
tion events, while CERES allowed for the determination of the total radiant
energy balance. Analyzed together with the latent heating derived from precipita-
tion, it was then possible to construct a significantly improved picture of our
atmospheric energy system (Kummerow et al., 1998). A special sensor micro-
wave/imager (SSM/I) onboard the Defense Meteorological Satellite Program col-
lects data regarding the Earth’s atmosphere through its microwave instrument
(Alemohammad et al., 2014). The microwave radiometer is passive and has the
capability of measuring radiation emitted at four frequencies, in both ascending
and descending overpasses. SSM/I provides valuable information on precipitation
rate, water vapor, cloud liquid water, wind speed, and soil moisture (Berg et al.,
2012). Additional sources of microwave data are the Advanced Microwave
Scanning Radiometer-Earth Observing System onboard Aqua, and the Advanced
Microwave Sounding Unit-B onboard the National Oceanic and Atmospheric
Administration satellite series. The second major source for the TMPA consists of
data from the international constellation of GEO satellites and, in particular, in
the IR channel (~10.7 pm).

TMPA provided some of the most recommended and used satellite-related
data sources (Abera et al., 2016; Retalis et al., 2018). It allowed for high spatio-
temporal coverage, despite some uncertainties due to cloud effects as well as lim-
itations in remote sensor performance and retrieval algorithms (Long et al., 2016).
The data are available from 50°S to 50°N with a relative bias of 2.37%
(Fensterseifer et al., 2016).

The GPM mission is an international network of satellites that provide the
next-generation global observations of rain and snow. The foundation of the GPM
mission is the Core Observatory (CO). Data collected from the CO satellite serve
as a reference standard, unifying precipitation measurement from research and
operational satellites launched by a consortium of GPM partners in the United
States, Japan, France, India, and Europe. The CO satellite is the outcome of the
recent precipitation-related collaboration between NASA and JAXA and is
focused on the observation of global precipitation. The CO satellite is equipped
with two sensors: the GPM Microwave Imager (GMI), which measures the inten-
sity, type, and size of the precipitation, and the Dual-frequency Precipitation
Radar (DPR), which observes the structure of storms within and under clouds
(Kim et al., 2017; Libertino et al., 2016). GMI uses 13 different microwave chan-
nels ranging in frequency from 10 to 183 GHz and with resolutions ranging from
11.2 X 18.3 km to 4.4 X 7.3 km observes energy from the different types of pre-
cipitation through clouds for estimating everything from heavy to light rain and
for detecting falling snow. In addition, the GMI carries four high-frequency,
millimeter-wave, channels near 166 and 183 GHz. The DPR consists of a Ku-
band precipitation radar and a Ka-band precipitation radar, measuring in
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frequencies of 13.6 and 35.55 GHz, respectively, and with a spatial resolution
equal to 5 X 5 km, and with swath area ranging from 245 to 120 km. The IMERG
algorithm (see Huffman et al. (2020)) is the Level 3 multisatellite precipitation
algorithm of the GPM, which combines intermittent precipitation estimates from
all constellation microwave sensors, IR-based observations from GEO satellites,
and monthly rain-gauge precipitation data (Ghodeif & Gorski, 2001). Three dif-
ferent daily IMERG products are offered: IMERG Day 1 Early Run (near real
time, with a latency of 6 h), IMERG Day 1 Late Run (reprocessed near real time
with a latency of 18 h), and IMERG Day 1 Final Run (gauged-adjusted with a
latency of 4 months) (Guo et al., 2016). The IMERG Final Run product provides
more accurate precipitation information than the near-real-time products across
GPCC-gauged regions (Ghodeif & Gorski, 2001).

The IMERG dataset now includes TRMM-era data, extending back to June
2000, rendering this dataset a valuable tool in many hydrological applications.
Research in the application of the IMERG database in several sectors that require
rainfall records will certainly continue in the years to come and this study is a
contribution toward better assessing this valuable data source.

Performance of satellite-related precipitation
estimations in an arid region

The El-Qaa Plain in the Sinai Peninsula was selected as a test site. This region
was chosen for its standing as one of the most promising areas in the Sinai
Peninsula for further development and in particular tourism. These prospects have
already led to a gradual increase in the number of inhabitants and expansion of
land exploitation. As a result, local water consumption is gradually increasing in
an area where the main source of groundwater is the regional quaternary aquifer
(El-Fakharany, 2016; El-Refai, 1992). This aquifer extends from Wadi Feiran to
the head of Ras-Mohamed and is mainly recharged by rainfall (Wahid et al.,
2016). The rainfall events in this area were previously classified by Sherief
(2008) on the basis of the intensity of rainfall. In this respect, three classes of
rainfall events were recognized: light, moderate, and heavy events, with intensi-
ties ranging from 0.1 to 1 mm, from 1 to 10 mm, and >10 mm, respectively. The
annual frequency of each event class was 61% for light events, 34% for moderate
events, and 5% for heavy events. Overall, the area receives nearly 77 mm of the
annual precipitation through light rain events, 43 mm through moderate ones, and
6 mm from heavy events.

The groundwater localization in the area under study has been investigated by
several authors (Ahmed et al., 2014; El-Fakharany, 2016; Rashed et al., 2007,
Sauck et al., 2005; Sayed et al., 2004). Nevertheless, the local precipitation rate
and spatiotemporal distribution of rainfall have been insufficiently investigated
due to the limited number of rain gauges in the region.



7.7 Performance of satellite-related precipitation

As explained next, the existing coarse rain-gauge network over this area is not
sufficient to shed light on the spatiotemporal distribution of precipitation. The
case study presented here attempts to fill the knowledge gap through the exploita-
tion of rainfall estimates from satellite missions that are capable of providing data
on spatiotemporal distributions of rainfall. To demonstrate that satellite-derived
data can meet this need, two sets of satellite-related rainfall data are tested and
compared. The first dataset refers to the most commonly used dataset related to
the TRMM; this dataset is the Multi-satellite Precipitation Analysis, Version 7
(3B42V7), hereafter denoted as TMPA (Huffman et al., 2007, 2010; Lonfat,
2004; Marchok et al., 2007; Tuleya et al., 2007); the second dataset refers to the
more recent satellite rainfall measuring effort, the Global Precipitation Mission
[GPM (Hou et al., 2014)], namely, the Integrated Multi-satellitE Retrievals for
GPM, hereafter denoted as IMERG (Huffman et al., 2020).

The comparative performance of the TMPA and IMERG products has been
investigated in different parts of the world (Chen et al., 2018; Fang et al., 2019;
Wang et al., 2019; Wu et al., 2019). It should be noted that the availability of the
GPM-related dataset started after the launch and operational functioning of the
CO in 2015; therefore studies that make use of IMERG products have only been
published recently. Manz et al. (2017) compared IMERG and TMPA in the tropi-
cal Andes, whereas Tan and Duan (2017) assessed their performance over
Singapore. Xu et al. (2017) compared the two datasets against rain-gauge records
in the Tibetan Plateau. Another study by Zhang et al. (2018) was carried out over
the same area. A similar study was carried out by Anjum et al. (2018) over the
mountainous region in Pakistan. In their study, Tan and Santo (2018) used the
two datasets over Malaysia. The performance of the satellite-related analyses was
also tested over the mountainous region of Northwest China (Anjum et al., 2019).
Palomino-Angel et al. (2019) compared reference and satellite-related mean daily
precipitations over Northwestern South America. Zhang et al. (2019) assessed the
two datasets over a humid basin in China. More recently, Retalis et al. (2020)
tested the two datasets against a dense network of rain gauges over the island of
Cyprus. From the previous outline of the existing literature of comparative assess-
ments of TMPA and IMERG, it can be seen that investigators have been focusing
mainly on areas where rainfall is not scarce and with a sufficient network for
ground measurements in place.

It is challenging to investigate the performance of satellite-related precipitation
datasets in an arid environment with the employment of a rather inadequate rain-
gauge network where rainfall estimations are highly desirable. Bearing the above
in mind, the case study presented in the following constitutes an example of an
application of how space-based estimations of precipitation can be assessed in an
arid environment. The abovementioned two satellite-related precipitation fields
(namely, TMPA and IMERG) are statistically compared against ground measure-
ments of precipitation over an arid area covered with a coarse rain-gauge net-
work. In this respect the potential of using satellite-related precipitation data is
discussed, in an effort to investigate whether these sources of precipitation data

213



214 CHAPTER 7 Satellite-elated precipitation data sources

can improve the insufficient spatiotemporal precipitation distributions based on
ground-based data in arid regions. To this end the study focuses on the Sinai
Peninsula of Egypt (see Morsy et al., 2021).

The study site

The Sinai Peninsula is considered one of the most unique regions in Egypt and is
known as a prime sightseeing destination, partly due to its location between the
Mediterranean and Red Seas. It also contains vast natural wealth in the form of
gemstones, gold, coal, and other resources. Like the majority of Egypt, it is classi-
fied as arid and semiarid and relies on groundwater as its source of fresh water.
The eastern side of the Gulf of Suez is one of the most promising locations for
future urban expansion and might in the future be able to house a considerable
portion of the growing population, in addition to tourist accommodation. In fact,
it currently is already demonstrating a gradual increase in the number of resi-
dences, along with the associated land exploitation. In terms of land geology, this
eastern region features variable geological settings, with lithological units even
appearing in fascinating outcrops. Moreover, aspect, slope, and elevation vary
greatly, which in turn directly affect precipitation rates, evaporation, infiltration,
and runoff. Additionally, the entire area of study relies primarily on a single aqui-
fer. The eastern side of the Gulf of Suez is nearly 350-km long and 80-km wide
(McClay et al., 1998). Regional formations complete the stratigraphy from
Precambrian to Quaternary periods (McClay et al., 1998). It is located between
latitudes 29°54'N and 27°42'N and longitudes 32°42" and 34°06'E. In terms of
urban areas the region is populated by Sharm El-Sheikh at its southern vertex,
Ras Sudr and Abu Rudeis in the north, and the cities of El-Tor and Saint
Catherine in the center. Middle and southern vertex of this region comprises the
El-Qaa Plain, located between latitudes 28°30" and 28°40'N and longitudes 33°17’
and 33°37'E (Sayed et al., 2004). The overall area of the El-Qaa Plain is roughly
estimated to be 6070 kmz, with a maximum length of 150 km, and a maximum
width of 20 km in the north (Ghodeif & Gorski, 2001). It is also the narrowest in
the south (Azab & El-Khadragy, 2013). According to Sayed et al. (2004), the
eastern portion of the El-Qaa Plain includes a Precambrian mountain region with
varying elevations from 300 to 2624 m (Fig. 7.1). This region contains various
types of igneous rocks, such as diorite, granite, metagabbro, and volcanic varieties
(Han et al., 2010; Sherief, 2008). Its dominantly sedimentary sector can be found
in Gabal Qabaliat in the northwestern sector, where elevation reaches approxi-
mately 250 m and where the terrain moderately slopes toward the El-Qaa Plain. It
is also this northwestern site that separates the Gulf of Suez from the El-Qaa
Plain. Local sedimentary outcrops include limestone, sandstone, siltstone, gyp-
sum, and anhydrite formations. The central Plain is composed mainly of
Quaternary deposits that are generally not perfectly flat and are often dissected by
various wadies, alluvial fans, and terraces (Said, 1960). A study by Sherief (2008)
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El-Qaa Plain is contained within the black outline with its five ground-based stations
identified.
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divides the area between types of deposits, whether alluvial or Wadi derived
(McClay et al., 1998).

Rain-gauge network and in situ measurements

The study area is separated into two subareas, which are determined on their ele-
vation: (1) the Lowland subarea, ranging in elevation from 0 to 300 m, includes
the Ras Sudr (29.59°N, 32.71°E, 12 m) and Abu Rudeis (28.89°N, 33.18°E, 13 m)
stations in the northern part of the area, the El-Tor (28.24°N,33.62°E, 13 m) sta-
tion in the middle and the Sharm El-Sheikh (27.93°N, 34.32°E, 38 m) station in
the South; (2) the Highland subarea, ranging in elevation from 300 to 2000 m, is
represented by the Saint Catherine (28.55°N, 33.98°E, 1562 m) station in the mid-
dle of the area. Generally, Highland receives more rainfall than Lowland. The
accumulated monthly rain-gauge measurements in the period 2015—18 are given
in Fig. 7.2 for each station separately.

The Egyptian Meteorological Authority provided the in situ rain-gauge data.
This data revealed the rainiest days and the number of rainy days per month for
the period of 2014—18, along with the duration (in days) of each rain event. This
information was then used to evaluate the performance of the data derived from
the remote sensors. The most significant dates datawise were the March 9, 2014;
October 25, 2015; October 27, 2016; April 12, 2017; and June 28, 2018. Data
from these dates were those used to complete the statistical metrics presented
next. Although the distribution and number of current rain gauges are insufficient
for constructing an adequate understanding of the spatiotemporal distribution of
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Monthly rain gauge records at each rain gauge station for the period of 2015—18.
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rainfall at the study site, they were used in the present study as a benchmark, to
gain a general idea about the accuracy of the satellite-related data, as discussed
next. This was done using coherent statistical tests, to determine whether the
satellite-related data tied to the test site could be used without further validation.
The first precipitation event on March 9, 2014 is ranked as a heavy intensity
event, as three rain gauges recorded more than 10 mmday ', and two of them
recorded 1—10 mm dayfl. The second event (October 25, 2015) ranked as a moder-
ate intensity event, as three rain gauges recorded 1—10 mm day ', one rain gauge
recorded >10mm day ', and one gauge recorded 0.1—1 mmday '. The third
event (October 27, 2016) ranked as a heavy to moderate intensity event, as two rain
gauges recorded >10 mmday ', while three gauges recorded 1—10 mm day .
The fourth and fifth events (April 12, 2017 and June 28, 2018) ranked as light-

intensity events, as the majority of gauges recorded 0.1—1 mm day .

TMPA and IMERG precipitation data

For each event, eight scenes from the TRMM (TMPA) Rainfall Estimate L3 of 3-
h temporal resolution and 0.25-degree spatial resolution version 7 (TRMM_3B42
7, hereafter called simply TMPA) were used in the present analysis, downloaded
from the official NASA website (mirador.gsfc.nasa.gov). A GIS software was
used to process the data. This was achieved in four steps complementing the first
stage of the statistical metrics. The data were opened as a raster layer and clipped
to match the study site. The data’s pixel size was resampled to match the IMERG
data. The value of each pixel was extracted and recorded in a spreadsheet, with
values corresponding: the starting point of an event (0 h), 3 h later (3 h), 6 h later
(6 h), 9h later (9 h), 12 h later (12 h), and 1 day later (24 h). Subsequently, the
data were divided into those corresponding to the Lowland and Highland groups,
on the basis of the elevation of the area represented by the pixel. The values of
the pixels whose locations coincided with those of the rain gauges were entered
into a spreadsheet on a daily basis, at both the 0.25- and 0.1-degree resolutions.

A total of 50 daily scenes of GPM IMERG Final Precipitation L3 with half-
hour temporal resolution and 0.1-degree spatial resolution version 06
(GPM_3IMERGHH 06, hereafter simply called IMERG) data were downloaded
to encompass the previous rainy events from 2015 to 2018. This did not include
data from 2014, as the GPM mission had yet to officially start. Therefore the
2014 event was excluded from the relevant statistical metrics. The official NASA
website (mirador.gsfc.nasa.gov) was also used to download the scenes. The data
were opened and clipped using the GIS software. The value of each pixel from
the 0-, 3-, 6-, 9-, 12-, and 24-h scenes was calculated and stored in a spreadsheet.
Next, the values of pixels whose locations coincided with those of the rain gauges
were collected in a separate spreadsheet for further statistical treatment.

Precipitation maps were created for the three data sources, namely, the TMPA
data with 3-h temporal resolution and 0.25-degree spatial resolution, the TMPA
data with 3-h temporal resolution and 0.1-degree spatial resolution, and the
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FIGURE 7.3

Spatial distribution of rainfall over the area for each of the four events studied using TMPA
and IMERG accumulated scenes (mm day ). IMERG, Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement; TMPA, Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis.

IMERG data with half-hour temporal resolution and 0.1-degree spatial resolution.
Individual maps were created for all the precipitation events mentioned between
2015 and 2018. The distribution maps illustrate the differences between the three
resolution-based datasets. TMPA at 0.25 degrees and 0.1 degrees revealed very
similar results. However, noticeable changes were seen between the TMPA data-
sets and that of the IMERG, especially in the 2016 event, which was the event
exhibiting the highest rainfall intensity (see Fig. 7.3).

Statistical metrics

In this section the various statistical metrics that have been utilized in the analysis
are outlined.

7.7.4.1 Statistical tests with TMPA and IMERG

Statistical tests were performed with the purpose of evaluating the differences,
coherence, and correlation between the TMPA and the IMERG data, both with
0.1-degree spatial resolution. These tests include the Shapiro—Wilk normality test
(Shapiro & Wilk, 1965). This test rejects the hypothesis of normality when the
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respective P-value (denoted by Py,,) is less or equal to .05 (i.e., Py, =.05). The
Wilcoxon signed-ranked test (Wilcoxon, 1945) compares two dependent samples
to determine if their populations have the same distribution by comparing their
medians. The two samples show no differences and considerable dependency
when the respective P-value (denoted by P,,) is greater than .05 (i.e., P,,>.05).
The Spearman correlation coefficient (denoted by R,) determines the correspon-
dence between two variables. If the two samples exhibit a perfect positive correla-
tion, then R;=1. For a perfect negative correlation, R;= —1, and for no
correlation, R; = 0. The null hypothesis (Hp) that any correlation between the two
variables is due to chance is tested by calculating the Spearman test P-value
(denoted by Py). This test examines whether the rankings of each dataset are simi-
lar (the relationship does not have to be linear). In this study, for P;<.01, Hy is
very strongly rejected, for .01 =P;<<.05, H, is strongly rejected, for
.05 = P, <.1, the evidence for rejecting Hy is weak, and for P, =.1, the evidence
for rejecting Hy is very weak.

7.7.4.2 Compatibility of TMPA and IMERG data to rain-gauge
measurements

The second group of verification statistics was selected with the purpose of identi-
fying the remote sensing product with higher compatibility with the in situ
gauges. A Spearman correlation coefficient test was applied between the rain-
gauge data and the TMPA (0.25 degrees), TMPA (0.1 degrees), and IMERG (0.1
degrees) data, which were all collected between 2015 and 2018. This was done to
determine the correlation strength between the remote sensing data and the
benchmark.

A root mean square error (RMSE) test was performed to determine the distri-
bution of the error. A bias test (Bias%) was used to evaluate the size of the differ-
ences between the two datasets, and a mean absolute error (MAE) test
corresponds to the mean magnitude of the errors without considering their direc-
tion. The mathematical expressions for these statistical metrics are as follows (see
Chen et al., 2018; Kim et al., 2017):

1 n
RMSE = |- Z (P sati— P gaui)® (7.2)
=
1 n
Bias =~ (P sati — P gaui) (7.3)
=
] n
MAE = — P sati — P j 7.4
. Z | sati gauz! (7.4)

i=1

In the abovementioned expressions, P,,, refers to satellite-related precipitation
records, P, represents the records derived from the in situ rain gauges, and 7 is
defined as the number of samples.
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7.7.4.3 TMPA and IMERG data in detecting rainfall

The ability of the TMPA and IMERG data to accurately detect rainfall rates at
three different threshold values (0.1, 1, and 10 mm) was analyzed. The group of
categorical statistics that was used consists of the probability of detection (POD),
the false alarm ratio (FAR), and the Critical Success Index (CSI). These were cal-
culated for each single event in an effort to investigate the potential of the satel-
lite products at the abovementioned three rainfall thresholds (Chen et al., 2018;
Kim et al., 2017). The three categorical statistics are calculated as functions of
Hits, Misses, and False Alarms, as explained in the contingency Table 7.2. The
POD determines the fraction of the correctly detected precipitation events (Ebert,
2007), the FAR provides the fraction of false alarms (Kim et al., 2017), and the
CSI calculates the correct number of detected events divided by a total number of
False alarms, Hits, and Misses. The following are the mathematical expressions
for the POD, FAR, and CSI, as they have been used in the analysis:
Hits

POD= ——— 7.5
Hits + Misses (7.3)

FAR False alarms (7.6)

" Hits + False alarms

Hits
1= .
cs Hits + False alarms + Misses a.7)

Discussion of results

The results of the statistical tests for the TMPA and IMERG datasets are given in
Table 7.3. The results of the Shapiro—Wilk normality test have revealed that both
datasets are nonnormally distributed, with P, <<.05, at all times and for both the
Lowland and Highland regions. This test was essential for determining the subse-
quent statistical analysis to be applied, as elaborated next. First, given that the
data were determined to be nonnormally distributed, the Wilcoxon signed-rank
test was applied to elucidate the similarities and differences between the two sets.
For the 2015 Lowland event, no significant differences between the two datasets
were noted at the start of the event but significant differences were noted later.
Moreover, the two datasets pertaining to the Highland region featured significant
differences at alltime thresholds of the precipitation event. For the 2016 event a

Table 7.2 Contingency table for the compatibility between the rain gauges
and satellite precipitation products for each precipitation threshold.

Gauge = threshold Gauge<threshold

Satellite = threshold Hits False alarm
Satellite < threshold Misses Correct negatives




Table 7.3 Results of the statistical tests for comparing Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation
Analysis and Integrated Multi-Satellite Retrievals for Global Precipitation Measurement data over the Highland and Lowland
regions at successive times of 0, 3, 6, 9, 12, and 24 h from the start of the rainfall event: (1) the Wilcoxon signed-rank tests
(P, values P, <.05 are denoted as D, indicating a significant difference between the two sets, otherwise they are denoted as
ND (no difference), (2) the Spearman correlation coefficient (Rs; negative values indicate a negative correlation), (3) the
Spearman P-value range (Ps, where VS (very strong) denotes very strong evidence for rejecting the null hypothesis [Ps<.01], S
strong evidence [.01 = P;<.05], W weak evidence [.05 = P;< .11, and VW (very weak) very weak evidence [Ps=0.1].

Event

2015

Region

Lowland

Highland

Time (h)

- ©O© O W O

Wilcoxon

P-value

Py

ND [0.1873]

ND [0.5814]

D[3.325x 1079
D[3.189 X 107 9]

D[1.62x 1079

D [2.894 X 107 9]

D [0.0002]

D [0.0002]

D[9.49 x 107"

D[2.2x 1079

D[2.2x 1079

D[2.2x107'9

Spearman correlation

Rs
-0.16
0.61
0.39
0.28
0.43
0.46
—0.04
—0.03
—0.33
—0.62
—0.44
—-0.28

Spearman
P-value
Ps
VW [0.1922]
VS [8.919 X 1079
VS [0.0015]
S [0.0228]
VS [0.0003]
VS [0.0001]
VW [0.6976]
VW [0.7823]
S [0.0003]
VS [9.125 X 10719
VS [3.934 X 1077]
S [0.0018]

(Continued)
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Wilcoxon Spearman correlation Spearman
Event Region Time (h) P-value P-value
Py Rs P
2016 Lowland 0 D[1.722%x 1077 0.68 VS [3.609 X 10719
3 ND [0.0630] 0.44 VS [0.0002]
6 D [7.602 X 107°] 0.03 VW [0.7942]
9 D[1.763x 1079 —-0.51 VS [1.097 X 1079
12 D[1.641 x 1079 -0.52 VS [7.236 X 1079
24 D[1.641x107"9 -0.52 VS [7.236 X 1079
Highland 0 D[2.2x 1079 0.87 VS [22%x 10719
3 ND [0.4478] 0.91 VS [22%x107'9
6 D [1.541 X107 0.49 VS [3.234 X 1079
9 D[2.2x 1079 —-0.14 VW [0.1266]
12 D[2.2x 1079 —0.21 S [0.0244]
24 D[2.2x107'9 -0.1 S [0.0244]




2017 Lowland 0 ND [0.2178] 0.56 VS [1.06 X 1079
3 D [0.02497 0.38 VS [0.0020]
6 ND [0.7156] 0.52 VS [8.462 X 1079
9 ND [0.9647] —-0.27 W [0.0294]
12 D [0.0004] 0.14 VW [0.2550]
24 D [2.039 X 1079 0.23 VW [0.0671]
Highland 0 D [0.0012] 0.15 VW [0.1070]
3 ND [0.1134] 0.01 VW [0.9563]
6 D[8.091 X 1079 -0.02 VW [0.8219]
9 D [0.0001] -0.55 VS [1.234 X 10719
12 D [0.0002] —0.46 VS [1.133 X 1077
24 ND [0.261] -0.1 VW [0.2988]
2018 Lowland 0 ND [0.0612] 0.42 0.0085]

3 ND [0.0556] 0.71
6 D [0.0046] 0.7

9 ND [0.1368] 0.64
12 ND [0.1368] 0.64 0.0007]
24 ND [0.1368] 0.64 0.0007]

VS |
VS [0.0002]
VS |
VS |
VS |
VS |

Highland 0 D[2.2x 10719 0.42 VS [1.776 X 1079
VS |
VS |
VS |
VS |
VS |

5.82 X 1077
0.0007]

3 ND [0.7851] 0.71 2.2%x107'9
6 ND [0.3289] 0.7 2.2%x107'9
9 D [0.0329] 0.64 2.2%x107'9
12 D [0.0329] 0.64 2.2x107'9
24 D [0.03293] 0.64 2.2%x107'
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large difference was observed between the two datasets, in both the Lowland and
Highland regions at almost all times. For the 2017 event, no significant differ-
ences were noted between the Lowland datasets at time thresholds 0, 6, and 9 h;
significant differences were, however, apparent at the 3, 12, and 24 h time marks.
Regarding the Highland region, there were significant differences at 0, 6, 9, and
12 h, and no significant differences at 3 and 24 h. The 2018 event featured highly
significant differences between the two sets collected over the Lowland region at
0, 6, and 9 h. However, no differences were recorded at 3, 12, and 24 h. The
Highland region is marked with no significant differences between the two data-
sets at 3 and 6 h but with highly significant differences at 0, 9, 12, and 24 h.
Comparing the dataset differences during light-intensity events with those of the
moderate-to-heavy-intensity events, it is clear that the data associated with light-
intensity events generally feature reduced variability and higher coherence.
Comparing data from the Lowland and Highland regions, there was also a greater
uniformity over the Lowland region.

Second, the calculations for the Spearman’s rank correlation coefficient (R;)
and its associated P-value (P,) revealed a very strong evidence for a positive
correlation between the two 2018 satellite-based datasets, at all times and for
both the Lowland and Highland regions (see also Fig. 7.4). However, for the
other events, the situation is not straightforward. At the onset of the 2015 event,
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FIGURE 7.4

Bar plot of the Spearman correlation coefficient (Rs) of the two sets of remote sensing
data, TMPA and IMERG, over the Highland and Lowland regions between onset and 24 h.
IMERG, Integrated Multi-Satellite Retrievals for Global Precipitation Measurement; TMPA,
Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis.
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a very weak evidence that the data are correlated was observed over the Lowland
region; however, a strong or very strong evidence of correlation was found for
the subsequent time thresholds. Over the Highland region, the 2015 satellite-
based datasets exhibit a negative R; at all times, with a very weak evidence for
correlation at onset and at 3 h, but with a very strong evidence afterward. For the
2016 event, there is a very strong evidence that the two datasets are correlated
except for limited times after the onset of the events. Also, the correlation was
found to be negative for all time thresholds from 9 h onward, for both the
Lowland and Highland regions. For the 2017 event the Lowland region exhibits
evidence for a very strong correlation during the first 6 h of the event that subse-
quently changes into a weak or very weak; the correlation is positive at almost all
times. Regarding the Highland region, the situation is generally reversed, with
very weak evidence during the first 6 h, subsequently changing into very strong.
The correlation coefficient is positive initially, but it turns negative into the later
stages of the event.

The Spearman correlation coefficient and the respective P-value were also cal-
culated in an attempt to establish the relationship between the in situ rain gauge
records, on the one hand, and the 0.25-degree resolution TMPA data, on the other
hand, in this respect, it was found that R, = 0.328 and P = .157 (see Fig. 7.5). A
similar approach was followed in establishing the relationship between the in situ
rain- gauge records and the 0.1-degree resolution TMPA, where R, =0.546 and
P, =.012. For the relationship between the in situ rain gauge records and the 0.1-
degree resolution IMERG, R;=0.745 and P;=.00016. Bearing in mind these
results, it can be inferred that IMERG exhibited the strongest evidence for corre-
lation with the rain gauges, whereas the 0.25-degree resolution TRMM data the
evidence for correlation with the rain gauges was very weak. Moreover, the 0.25-
and 0.1-degree spatial resolution TMPA records revealed an underestimation of
precipitation during the moderate and heavy-intensity events, while the light event
records were highly coherent with the rain gauge records. IMERG displayed this
same coherence with the light events, but both underestimated and overestimated
values were recorded during the heavy-intensity events.

The RMSE, MAE, and BIAS were calculated for each event and are summa-
rized in Table 7.4 and delineated in Fig. 7.6 as boxplot graphs featuring the maxi-
mum and minimum limits, the 25th percentile, the 75th percentile, and the
median of each metric. The IMERG dataset displayed the lowest RMSE values
for the 2015, 2016, and 2018 precipitation events (10.677, 10.562, and 1.883,
respectively). Also, IMERG exhibited the lowest MAE values for 2015, 2016,
and 2018 events (6.726, 8.076, and 1.367, respectively). The values from the
TMPA 0.1-degree dataset were close to those of the TMPA 0.25-degree dataset,
but with better performance. As it should be expected, the lowest bias is related
to the coarsest resolution dataset, namely, IMERG. Furthermore, in the BIAS test
for the 2015 and 2016 events, IMERG exhibited values closest to O.

The third group of categorical statistics was applied to the three different pre-
cipitation thresholds: 0.1, 1, and 10 mm. The results, shown in Fig. 7.7, illustrate
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FIGURE 7.5

Spearman correlation (Rs) and P-value (Ps) between remote sensing data, at spatial
resolutions of TMPA 0.25 degrees (top), TMPA 0.1 degrees (middle), and IMERG 0.1
degrees (bottom) and rain gauge records. The solid line represents the fitted linear
regression. IMERG, Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement; TMPA, Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis.
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Table 7.4 Root mean square error (RMSE), mean absolute error (MAE), and
bias (BIAS) for each recorded event with spatial resolutions specified.

Metric
Event (product) RMSE MAE BIAS
2015 (TMPA 0.25°) 11.51 7.45 0.63
2015 (TMPA 0.1°) 11.23 7.35 0.64
2015 (IMERG 0.1°) 10.67 6.72 0
2016 (TMPA 0.25°) 10.43 8.93 0.69
2016 (TMPA 0.1°) 10.72 9.038 0.68
2016 (IMERG 0.1°) 10.56 8.07 0.36
2017 (TMPA 0.25°) 0.82 0.72 -1.62
2017 (TMPA 0.1°) 0.76 0.57 —0.81
2017 (IMERG 0.1°) 1.2 0.89 -1.71
2018 (TMPA 0.25°) 1.94 1.47 0.96
2018 (TMPA 0.1°) 1.91 1.37 1.01
2018 (IMERG 0.1°) 1.88 1.36 1.01

IMERG, Integrated Multi-Satellite Retrievals for Global Precipitation Measurement;, TMPA, Tropical
Rainfall Measuring Mission (TRMM) Muiltisatellite Precipitation Analysis.
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FIGURE 7.6

Boxplots of RMSE, BIAS%, and MAE values recorded by every single event. MAE, Mean
absolute error; RMSE, mean square error.

the high capability of the TMPA and IMERG analyses in detecting light-intensity
events, as the 0.1-mm threshold performed best with both types of remote sensing
data, calculating a 1 in the POD and CSI tests, and 0.4 and 0.2 in the FAR test.
The second threshold also results in a 1 in the POD test for both datasets, but the
CSI calculates at 0.8 and 1, and the FAR test results in 0.4 and 0.5. The highest
threshold, 10 mm, produces the worst results. TMPA amounts to a 0 on all the
aforementioned tests. IMERG records a 1, 1, and 0.3 for the POD, FAR, and CSI,
respectively. In general, the IMERG data show better results than that of the
TMPA. Both datasets feature higher certainty for light-intensity events.



228 CHAPTER 7 Satellite-elated precipitation data sources

(A) (8) (©)
1.00 |y o 1.00 0.050
0.75 0.75 ' 0.025
0.50 0.50 _ 0,00 s i s
a ‘ 0:25 0.025
l = 1
(1] e —— 0.00 I i
o (D) (E) F) FAR
= 100 |mmm - 1.00 il 1.00
S =l
0.75 0.75 0.75 e
0.50 0.50 0.50
0.25 [— 0.25 0.25
0.00 0.00 e 0.00 |
Variable
FIGURE 7.7

Bar plots of POD, FAR, and CSI results of the TMPA and IMERG for three different
thresholds (0.1, 1, and 10 mm) using data from all events. Parts (A), (B), and (C)
represent the 0.1-, 1-, and 10-mm thresholds for the TMPA data, respectively; parts (D),
(E), and (F) represent the 0.1-, 1-, and 10-mm thresholds for the IMERG data. CS/,
Critical Success Index; FAR, false alarm ratio; IMERG, Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement; POD, probability of detection; TMPA, Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis.

Concluding remarks

With an increasing spatiotemporal resolution of the satellite-related rainfall data-
sets, more emphasis is given worldwide in using these sources of rainfall analyses
in a wide range of applications. Two such datasets have been utilized in the pres-
ent study, TMPA and IMERG. These datasets were compared between them and
against a local rain gauge network in El-Qaa Plain, Sinai Peninsula.

The statistical metrics are used to demonstrate the low correlation and signifi-
cant differences between the pixel values of the TMPA and IMERG datasets
in the moderate and heavy intensity 2015 and 2016 events; datasets from the
light-intensity events, namely, 2017 and 2018, were more highly correlated.
Additionally, the values recorded over the Lowland region were more uniform
than those of the Highland region, where a greater variation was observed.

When the two satellite-related rainfall datasets were compared to the rain-gauge
data, it was noted that their performance was best during the light-intensity events,
particularly around the event onset (3 and 6 h). In contrast, poorer performance was
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noted during intense events and at the later precipitation stages in such events (12
and 24 h). Data coherence and uniformity were lower in the Highland region when
compared to the Lowland region data. TMPA and IMERG were compared to the
limited rain-gauge records, using various statistical metrics to evaluate their effec-
tiveness in replicating in situ observations. Performance varied, with the IMERG
data demonstrating the best performance, producing the lowest RMSE, BIAS, and
MAE values. This was followed by the 0.1-degree resolution TMPA and the 0.25-
degree resolution TMPA data, with the latter exhibiting the weakest performance.

Categorical statistics have indicated high performance by both the TMPA and
IMERG, during the light-intensity events. However, low certainty was observed for
the high-intensity events. Overall, the IMERG dataset performed better than the
TMPA in all thresholds. The findings of this study could be used to support the pos-
tulation on the superior performance of IMERG over TMPA in arid and semiarid
areas, but this cannot be generalized. Despite the general superior performance of
the IMERG dataset, lack of sufficient data over the mountainous region as well as
heavy-intensity precipitation events, indicating that it would not be used as a substi-
tute for rain-gauge data. However, it can be used as a promising alternative for rain-
gauge records during the relatively frequent light-intensity events until a new rain-
gauge network is in place, optimized, and implemented. Even when such an
upgraded network is put into operation, IMERG can continue to supplement the in
situ data, either for monitoring purposes or for filling in the gaps in the network.

Any alternative or complementary rainfall estimating systems (i.e., satellite-
related) adopted in arid and semiarid environments receive most of their precipita-
tion during cases with small amounts of rainfall. The skill of such a system to
estimate precipitation adequately during such events is very important. Due to the
limited amount of in situ data, the effect of elevation on the estimation of rainfall
from satellite-derived products cannot be done in a satisfactory way in the present
study. This is a very challenging viewpoint that has been pursued in other studies
with more ground-based data (e.g., Retalis et al., 2020).

The inconsistencies between the satellite-derived products and the in situ mea-
surements underline the necessity for improving future versions of IMERG algo-
rithms, by taking into account the variations in meteorology and geography,
especially in semiarid areas of the globe. The need is for more efficient physically
based algorithms, based on a comparison with surface observations across all major
precipitating synoptic conditions.
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