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Abstract

We show that so-called deterministic even linear simple matrix grammars can be inferred
in polynomial time using the query-based learner-teacher model MAT proposed by Angluin
for learning deterministic regular languages in [4]. In this way, we extend the class of effi-
ciently learnable languages beyond both the even linear languages and the even equal matrix
languages proposed in [41, 48, 52, 5s, 54, 57, 56].

1 Introduction

Learning languages using a teacher-learner-dialogue (also known as MAT —minimally adequate
teacher— learning model) has become popular since Angluin published a polynomial-time learning
algorithm for regular languages [4] (or more precisely deterministic finite automata). Alternative
versions of algorithms for learning regular languages in the MAT model appeared in [9, 12, 28, 42,
63]. The limits of the model were explored in [5, 6]. One of the questions arising from Angluin’s
result is whether it can be extended beyond regular sets. For example, learning algorithms for
deterministic one-counter automata [10] and systolic automata [62] were exhibited.

Radhakrishnan and Nagaraja [41] proposed even linear languages for learning theoretical pur-
poses by giving a skeleton-based inference algorithm and showing possible applications in the area
of inference of pictures. Both the work of Takada [52] and that of Sempere and Garcia [48] showed
how the learning problem of even linear languages (introduced in [1]) could be reduced to the
learning of regular languages. Moreover, Takada and his colleagues proved the usefulness of the
concept of control languages (originating from [22]) in the reduction of the learning problem of
languages defined via controlled fixed grammars [52, 53, 54, 56, 57, 32, 34]. In particular, Takada
used this concept to develop an efficient learning algorithm of what he called “even equal ma-
trix languages” [53, 54, 57] which form a subclass of the equal matrix languages introduced by
Siromoney [50]. Here, we follow the conventions of the monography [18] and refer to the equal
matrix languages as “simple right-linear matrix languages”. In [58] equal matrix languages and
linear languages are compared.

As mentioned above, control languages are a natural tool for transferring Angluin’s learnability
result to, e.g., even equal matrix languages or even linear languages. Indeed, the learning problem
for those classes is reduced to the learning problem of (regular) control languages by using universal
grammar normal forms. Obviously, it is now possible to use, e.g., even linear languages as control
languages for universal even linear grammars, hence obtaining a whole hierarchy (similar to those



of Khabbaz [30, 31]) of efficiently learnable language classes by iterating the argument sketched
above. Takada’s papers [57, 56] explore the learnability of levels of such hierarchies.

In this paper, we show how to learn what we call simple even linear matrix languages of
arbitrary degree. In doing this, we extend Takada’s previous results in two ways:

e Even equal matrix languages are a subset of even linear matrix languages.

e The Khabbaz/Takada hierarchy of even linear languages controlled by even linear languages
and so forth is contained in the even linear matrix languages. More precisely, we show
that even linear matrix languages controlled by even linear matrix languages yield even
linear matrix languages, so that a further Khabbaz/Takada-like hierarchy extension of the
efficiently learnable language classes is not possible.

Furthermore, we exhibit several hierarchical relations between the considered language families
by making use of well-known properties of the control languages. In particular, we do not need
to prove pumping lemmas for our language families, since the translation to the control language
level allows us to apply pumping lemmas for regular languages directly.

For simple linear matrix languages, we refer to [39] and [18, p.68ff.]. Results on simple right-
linear and context-free matrix languages can be found in [18, 27, 37, 38, 50, 51]. Equivalent
formalizations can be found in [15] and [36]. In particular, all such languages are semilinear, a
fact that may be of some importance for learning theoretic purposes [55].

Intriguingly, there may be another source of interest in the mentioned language families: Weir
showed in [59] how the Khabbaz hierarchy [30] can be generalized in order to characterize tree
adjoined languages, which play a prominent role in computer linguistics. A future possibility
might be that those (formal) connections could lead to programs which are able to assist linguists
who are designing grammars for natural languages, e.g., by creating proposals of such grammars
automatically (in the sense of learning theory) or by certifying optimality conditions on these
grammars, e.g., a minimal number of variables in the case of “deterministic grammars”. Moreover,
the class of even linear simple matrix languages we propose for learning-theoretic purposes contains
both typical “pushdown languages” and typical “queue languages”. This observation should be of
particular interest when considering possible linguistic applications of learning theory, since natural
languages typically consist of both parenthesis structures (as exemplified by relative clauses) and
“copy-structures” (as can be found in Swiss German), cf. [49].

Such research might help close the “undesirable gap between the communities of linguists
and computer scientists, more specifically the communities of computational linguists and formal
language theoreticians” observed by Martin-Vide in [35].

This paper has the following structure: In Section 2, we present the basic definitions of simple
matrix grammars necessary for our paper. In Section 3, we introduce the concept of universal
grammar essential for Takada’s approach to the learning problem. Section 4 contains various
other characterizations of the language classes considered in this paper which are either valuable
for learning theoretic purposes or for proving further results. In Section 5 we discuss how to apply
our results to the inference of simple matrix grammars. Section 6 is devoted to exploring some
relations between the different language families. We show especially how the work of Takada is
extended —both concerning the learnability of even equal matrix languages and the learnability
of the Khabbaz-like hierarchy induced by even linear control languages. Section 7 elaborates on
several areas for possible research in the future.

2 Definitions and examples

In general, we use standard notions from formal language theory. So, |z| denotes the length of

a word x which is formally an element of the free monoid X* generated by some finite alphabet

X. X< is the set of all words in X* which are shorter than n. Let X" = X<n+l\ X<7 and

X<m = X<nt+l The neutral element in X* —called the empty word- is denoted by .
Sometimes, we use ¥, to denote an arbitrary but fixed m-element alphabet.



A linear simple matriz grammar of degree n, n > 1, is (cf. [39]) an (n + 3)-tuple
G=MW,...,Vo,, 5, M, S),

where {S},V4,...,V,, T are pairwise disjoint alphabets (Viy = |J;_; V; U{S} contains the nonter-
minals and ¥ the terminals), and M is a finite set of matrices of the form

1. (S—=A;...A4,),for A;eV;,;1<i<m,or
2. (Ay = x1,..., A, >z, for A, €V, €X*,1<i<m,or
3. (A > 1By, , An = o Bpyn), for A, B; €V, zi,y; € X*,1 <4 < n.

Matrices of the form 1.-2. are called initial matrices, terminal matrices, and nonterminal
matrices, respectively.

We now define three restrictions on such grammars:

G is a right-linear simple matriz grammar if the nonterminal matrices satisfy

3. (A1 — .'ElBl,. .. 7An — .QIan), Az,Bz (S W, x; € E*, 1<i<n.
G is an even linear simple matriz grammar if the nonterminal matrices satisfy

3" (A1 = 1By, ..., Ap = xpBryn), for A;, B; € Vi, x;,y; € £* such that |z;| = |y;| for all
1<i,j<n.

G is an even right-linear simple matriz grammar (or even equal matriz grammar as introduced
by Takada [54]) the nonterminal matrices satisfy

3" (AL = 21By,..., Ay = 2,By), A;, B; € Vi, z; € ¥* such that |z1| = |z;| for all 2 < i < n.

Let Vg = Vn UX. For z,y € V3, we write = y iff either (i) 2 = S, (S = y) € M, or (ii)
T = urA1v1 .. UnAnUn, Y = ULWIV] . . . UpWnUp, and (A1 = w,..., A, = w,) € M. As usual,
define L(G) = {z € £* | S > z}, where = is the reflexive transitive closure of relation =.

The families of linear simple matrix grammars of degree n, right-linear simple matrix gram-
mars, even linear simple matrix grammars, and even right-linear simple matrix grammars, as well
as the corresponding language families, are denoted by SL(n), SRL(n), ESL(n) and ESRL(n), re-
spectively. Sometimes, we use notations like ESL(n,m) in order to specify the terminal alphabet
¥ explicitly. Specifically, ESRL(1) = SRL(1) denotes the regular languages, ESL(1) the even
linear languages, and SL(1) the linear languages.

In the following, we give three examples (which are the common languages used by linguists
to prove that natural languages are not context-free) to show the power of the mechanisms.

Example 2.1 Consider G1 = ({A1},{Az2},{a, b}, P1,S), where Py contains the following matri-
ces:

1. (S = A Ay),
2. (A1 = A\ A = )N,
3. (A1 = ad1, As = ads), (A1 = bA1, Ay = bA).
G1 is an ESRL(2) grammar which generates L(G1) = {ww | w € {a,b}*}.

Example 2.2 Consider Gy = ({A1,B1}, {A2, B2}, {a, b}, P2, S), where Py contains the following
matrices:

1. (S — A1A2),
2. (Al — )\,AQ — )\), (Bl — )\,BQ e )\),



3. (A1 — aA;1, Ay — aAs), (A1 — bBy, As — bB3), (B — bBy, By — bBs).
G2 € ESRL(2) generates L(G2) = {a"b™a™b™ | n,m > 0}.
Example 2.3 Consider Gs = ({41}, {A2},{4s3},{a, b}, P5,S) where Ps contains the following
matrices:

1. (S = A1AxA3),

2. (A1 = A\ Ay > X\ Az = ),

3. (A1 = aAy, As — bAs, A3 — ad3).

G35 is an ESRL(3) grammar which generates L(G3) = {a™b"a™ | n > 0}.

3 Universal grammars and normal forms

Takada [52] proved the existence of a universal grammar for the class ESL(1) (in our notation).
He used this notion in order to derive similar results for other language classes, as well [54, 56, 57].
The notion of universal grammar, which inspired some interest in formal language theory as early
as 1980, see [24, 26, 29, 45], is based on the even older concept of control language, see [22] which
we are going to deal with in the next subsection.

3.1 Control languages

Let G = (V1,...,V,, 2, M, S) € SL(n) be chosen arbitrarily. To every valid derivation sequence,
there corresponds (at least) one sequence of matrices 7 € M*! (which have been applied in order
to get that derivation sequence), and every sequence of matrices 7 € M* determines (at most)
one valid derivation sequence. For short, we write z =™ y if y is obtained from z by applying the
matrices listed in the so-called control word 7 in that sequence. For C' C M*, define

Lo(G)={weX |IreC:S5=>"w}.

L¢(G) is called the language generated by G with control set C.
In the following, we need two auxiliary notions. Let G be an SL grammar.

1. @ is said to have terminal matriz bound £1 > 1 if, for all terminal matrices
(A1 = 21,..., A, = 2,) in G, we have |z1| + ...+ |z,] < 4.

2. @ is said to have nonterminal matriz bound 5 > 1 if, for all nonterminal matrices
(A1 = 21B1y1,..., Ap = £p,Bryy) in G, max(|z1y1], - - -, |Zayn|) < €2 is valid.

Lemma 3.1 Let n > 1. For every SL(n) grammar G and every regular control set C' (given by
a right-linear grammar for example), one can construct an SL(n) grammar G' generating Lo (Q)
with the same terminal and nonterminal matriz bounds. The analogous statement is valid for
ESL(n), SRL(n) and ESRL(n) grammars, as well.

Proof: Let G = (Vi,...,V,, %, M,S) be the given SL(n) grammar. Let the regular control
language be given by a right-linear grammar G¢ = (V, M, P, S). Further assume that all rules in
P have the form A - aB or A — a for A,B € V,a € M. Construct an ESL(n, m)-grammar

G =WV xV,Va,...,V, 5, M, S)

simulating C-controlled derivations in G' by using the following matrices:

!Here and in the following, we consider the finite set of matrices as a new alphabet.



1. For every start matrix m = (S — A; ... A4,) in M and every S — mA € P, take
(S — (Al,A)AQ .. An) into M'.

2. For every terminal matrix m = (A — z1,..., A4, = x,) in M and every A — m € P, take
((A1,A) = 21, A2 = 29,..., Ay = z,) into M.

3. For every nonterminal matrix m = (41 — z1Biy1,...,4n = T, Bryn) in M and every
A —> mB € P, put

((Al, A) — 21 (Bl, B)yl, A2 — IL'QBQyQ, ey An — .’L‘anyn)
into M'.

It is rather obvious how the simulation of the grammars G and G¢ work. Observe that the
terminal and nonterminal matrix bounds are not influenced by the construction, and the even and
right-linear properties are preserved. O

Therefore, we can deduce that regular control sets do not increase the descriptive power
of simple linear matrix grammars. On the other hand, they might help simplify the notation
of SL languages; to see this, we need another auxiliary notion. Consider Ggr(n,m,£1,¥0s) =
({S1}, -, {Sn}, Em, M (n,m, €1, £3),S) where M (n,m,{1,£;) contains the following matrices:

2. Mg,z = (S1 = 21,...,8, = xy,) for all z; € £ such that |x1| + ...+ |z,]| < 41
3. Moy, ozniyrreyn = (51 = 215191, - - -, Sn = 2 Spyn) for all z;,y; € ¥,
such that max{|z1y1|,. .., |Znyn|} < L.

Let us term Ggr(n,m,f1,£2) standard SL(n) grammar. Imposing the appropriate restrictions,
one can also define standard X-grammars for X € {ESL(n), SRL(n), ESRL(n)}, denoted by
Gx(n,m,{1,£2). Obviously, L(Gx (n,m, £1,£€3)) = X%,.

Lemma 3.2 Letn > 1 and X € {SL(n), ESL(n), SRL(n), ESRL(n)}.
For every X-grammar G = (V1,...,Vy, B, M, S) with terminal and nonterminal matriz bounds
L1 and l2, a regular control set C' can be constructed so that L(G) = Lo (Gx (n, m,f1,£2)).

Proof: The following construction works for X = ESL(n) and X = SL(n). The analogues for
X =SRL(n) and X = ESRL(n) are easily obtained. Consider G = (V3,...,V,, %, M, S). Define
the right-linear grammar G' = (V, M(n,m,¥¢;,45),P,S) by V. =V; x ... x V,, U {S}, and let P
contain the following rules:

1. S—)ml(Al,,An)lf(S—)AlAn)GM
2. (Al,...,An) = Mgy, 2 if (A1 — .’L'1,...,An — .’L'n) e M.
3. (Al, v ,An) = Mgy, TniY1yeYUn (Bl, .. Bn) if (A1 — .’L’lBlyl, .. .,An — a:anyn) e M.

The claim L(G) = Lg(g)(G(n,m,£y,£s)) can be shown by induction on the length of the control
words. O

In conclusion, we can state that language class X (for X € {SL(n), ESL(n), SRL(n), ESRL(n)})
can be characterized as containing those languages which can be generated by some standard gram-
mar Gx(n,m, {1, £2) with the help of a regular control set. We aim to narrow the set of necessary
standard grammars for this construction in the following.



3.2 Decreasing nonterminal and terminal rule bounds

Lemma 3.3 Let n > 1. FEvery ESL(n) language can be generated by some standard grammar
GgsL(n,m, £1,2) without unit productions (i.e., nonterminal matrices are of the form mq, ... 4. :b1,....bn
with a;,b; € T, only) with the help of a regular control set.

Proof: Due to Lemma 3.2, we can assume that L € ESL(n), L C X}, is generated as
L¢(Grsi(n,m, £1,03)), where C C M(n,m,£1,¢2)* is a regular set.
Consider the following morphism h : M (n,m, £1,42)* — M(n,m,{1,2)*:

1. h(m1) = ma;
2. M May,..wn) = My,

3. h(ma,..xn,...,0) = A, and furthermore,

h(mzl,---,mn;yl,---,yn) = Mbpyy,.bniicinsescnt * - * Mbip,.cburiCir,sCnrs
where z; = b;; ...b; and Yi = Cir ...Ci1, bi,ci € X, forl <i<r< 62/2

Obviously, L = Lyc)(GesL(n, m,£1,2)), and h(C) is regular. O

In a similar way, analogous results can be proved for the other three classes considered here.
Without a proof, we state the claim. Note that Takada proved a similar result for ESRL(n)
without the help of control sets in his argument.

Lemma 3.4 Letn > 1 and X € {SL(n),SRL(n), ESRL(n)}.
Every X language can be generated by some standard grammar G x(n,m,£1,1) without unit pro-
ductions with the help of a regular control set.00

In the following, we mainly focus on ESL(n) grammars. We say that an ESL(n)-grammar
G=MW,...,Vy, X, M, S) is in normal form if the rules of G are of one of the following forms:

1. (S—=A4,...4,),for 4, €V;,1<i<mn,or
2. (A= M. A1 o MA, o), for A; €V, 1<i<n,z e |z| <2n,or
3. (A1 = 1By, An = 2 Bpyn), for A, B; € Vi, 24,y € 2,1 <i < n.
Theorem 3.5 Every ESL(n)-grammar can be algorithmically transformed into an equivalent ESL(n)-

grammar in normal form.

Proof: Consider an arbitrary ESL(n)-grammar G with L(G) C £¥,. According to Lemmas 3.2
and 3.3, a regular control set C' can be constructed from G, so that L(G) = Lo(GrsL(n, m, 41,2)),
where £; is the terminal rule bound of G.

A typical control word from Mggy,(n,m,#1,2)* (for a terminal derivation in G) looks like the
following;:

T = T1Mp11,...;bn1;C11,Cn1 * = - Tb1g,e.sbng;ClgseesCng VT 1 4eeey T - (1)

(Here, b;j,c¢ij € Xp.) With the help of this control word, Ggst.(n, m, ¢1,2) generates the word

n
w=]]
=1 \jJ
Assume now z; # A, i.e., z; = z}a for some a € ¥,,. Consider the control word 7, ; defined as

m m
1 b11,---,bi1,,bi+2,1,---,bn1;611,---,ci—1,1,,Ci+1,1,---,cn1
q—1
- [lj=am
1= b1jy--sbigs| bit1,j—1 ybi+2,j,---,bnj§clj,---,Ci—l,jaaCi+1,jy---aan
m
blqv“abiqaab’i+2,q)---abnq;clqa“'aci—1,qa|z|ac’i+1,qa~~~acnq
m - .
$1,---,93i—1,, bit1,qTit1 pTit2,-,Tn

q

q
bej-we- [ [ cogrri
1 j:l



(We indicate the important changes from 7 to m,; by using box frames.) Obviously, w can also
be generated using that control word, since

i—1
w= [ (ngl bej e [15-1 Ce,q+1—j)
1
( ;1':1 bi,j)l' zi - (a- H?:1 Ciyg+1-5)
(ciyt - T30 bivng) - (ir,g@igr) - (TTjo Civrq41—5)

| J <H;I':1 bej-ze- [Ti—y cogri—j) -

Passing from 7 to 7, ; means a local “right shift” in the derivation tree structure.

For 1 < i < n and d > 0, consider now the rational transductions ? 7;_,;41 4 which map
Mggsi.(n,m, £1,2) into itself. Such a mapping transforms = into =, ; as indicated above if |z;| > d,
and preserves 7 if |2;| < d. (Since only control words of the form (1) are of interest, 7;_;11,4 may
map other words in Mgsr,(n,m,¥¢;,2)* into the empty set.)

Analogously, one could define a “left shift” in the derivation tree structure. Consider again w
generated using 7 as defined above under the condition that z; # A, here, z; = az. Define 7y ;

to be
mi; m
b11,...,bi_1,1,,bi+1,1,...,bn1;611,...,cz’—2,1,,Ci,l,...,cnl
q—1
- [lj=am

1= b1jy--bim1,55 Di,j+1 [Did1,5505bn33C15e-5Ci—2,55| Cim1,j—1 [;Ci,js---1Cnj

m . . .
bigsewsbim1,05 8 [Bit1,q51bnaiClaseesCiv2,0: Cim1,a1 |Ciss-esCna

m
Z1y.-9T5—2,| Ti—1Ci—1,q | T;

For 1 <i < n and d > 0, define the rational transductions 7;_,;_1,4 by m — mg,; if |2;] > d, and
m o if |z <d.
First, transform a control word 7 into

L Zi4254-49Tm

7= (1) = T g (g 0(m)) - ).

One easily verifies that
7' € A(n,m) - {mx,.. rz. | |To] <0}
with the prefix set
A(n,m) = {m1 H{mb,,... bnsc1,0ren | bis€i € B}
Further, transform 7' into

7= 7'2(771) = 72;8—>1,2s(- .- (Tzin—l,zs(ﬂl)) )
where s is the truncated result of dividing ¢; by 2n and r is the remainder of such division, so
that /1 = 2sn + r, and

Tnj,d(7) = Tjt155,d( - - (Tnon-1,a(7)) ...)
results in a “left-shift” in the derivation tree of n — j units. Now,
7' € A(n,m) - {mg,, 2. | |T1| = ... = |Tp_1] is even, |z,| < 2n + |21]} . (2)

Finally, consider the homomorphism g that acts as identity on all letters except for terminal rule
matrices used in (2) which are transformed according to

! 1" e 7 )
‘@, _q,1)0n1--Qnsay .00 .a

»Yns

g(mall...alsa’ls...a’ll,...an_lyl...an_lysa’n 1

1,8t
= ”
nl

el P e l! " 1” "
mau,...,anl,an,...,a mals,...,a"s,als,...,a"smz\,...,/\,al...aT )

where a;j,a;;,a} € Ty v < 2n.
So, we get a regular set C' = g(m2(m1(C))) such that Lo (Grsr (n, m, £1,2)) = Lo (GrsL(n, m, 2n—
1,2)). Applying finally Lemma 3.1, we get the required normal form representation. O

2For further information on rational transductions, we refer to [11]; any rational transduction can be realized
by a so-called rational transducer, i.e., a nondeterministic finite automaton with output. It is well-known that the
regular languages are closed under rational transductions.



3.3 Universal grammars

Let G(n,m) be a family of linear simple matrix grammars, each having the same m-letter terminal
alphabet X, and the same degree n, defining a language class L(n,m). Now, Go € G(n,m) is
called universal for L£(n,m) (with respect to regular control languages) if £L(n,m) = {Lc(Go) |
C is regular }.

Takada has already shown in [54] that the ESRL(n, m)-grammar

Gr(n,m) = ({S1},...,{Sn}, %, Mg(n,m),S), ®3)
is universal for ESRL(n,m), where Mg(n,m) contains the matrices
1. my=(S—51...5,) and
2. my =(S1 2 A,..., 81 =\ S, = ) with z € I5™ and

3. Mpy,. b, = (S1 = b1S1,...,5, = bpSy) with b; € £, for 1 < j <n.

n

We will demonstrate universality of the similar ESL(n,m)-grammar
G(n,m) = ({S1},-.-,{S:}, %, M(n,m), S), (4)
where M (n,m) contains the matrices
1. mi=(S—5:...5,) and
2. my=(S1 = A...,S 1=\ S, = z) with z € 352" and

3. Mpy.bncrien = (Sl = b01S1¢1,...,5, = bnSncn) with bj,Cj €Yy, forl1 <j<n.

Proposition 3.6 L(G(n,m)) = X%, and every word in T}, has a unique derivation in G(n,m).
Moreover, exists a linear time algorithm which transforms an input word w € X}, into its control

word w € M (n,m)*.

Proof: We only sketch the following short recursive transformation algorithm:
1. output(mq).
2. if |w| < 2n then output(m,,); stop.

3. if |w| > 2n then if w is decomposed as w = bywicy ... bywncy, biy¢; € Ty, |wi| = ... =
w1}, [wnl < w1] +2n (cf. (2)), then

(a) output(mp,.. b,.cr...cn)i
(b) set w=w; ... wy;
(c) goto 2.

O

Theorem 3.7 Grammar G(n,m) defined as in (4) is universal for ESL(n,m) for each n,m > 1.

Proof: Lo(G(n,m)) € ESL(n, m) according to Lemma 3.1. The proof of Theorem 3.5 reveals that
for every L € ESL(n,m), there exists a regular control language C' such that Lo (G(n,m)) = L.
O

The last three results are essential for the transferrence of known MAT algorithms to the
efficient learning of ESL(n) by using control languages. We return to this issue in Section 5.

Sometimes, we let ¢, denote the unique mapping of control words into derived words, i.e.,
we have S =7 ¢, (7) using the universal grammar G(n,m). On the other hand, to every word
w derivable in a universal grammar controlled by language C, i.e., w € Lg(G(n,m)), there cor-
responds a unique control word ¢, !(w). If n is clear from the context, we will omit the index
n.



3.4 Formal language issues

From the notion of universal grammar, several properties which are important from the formal
language point of view (but which would also be interesting from the point of view of learning
theory) can be easily deduced.

Corollary 3.8 FEach class ESL(n,m), n,m > 1 is closed under the Boolean operations union,
intersection and complementation.

Proof: Let Ly, L, € ESL(n,m). Due to Theorem 3.7, there exist regular languages C; such that
L; = L¢,(G(n,m)) for i = 1,2. Now, for every binary logic operator § we find

(weLiswe Ly) <= (7' (w) € Crsp Hw) € Cy),

(which is true since derivations in G(n,m) are unambiguous) so that the assertion concerning
union and intersection is verified by taking § € {V, A}. Moreover, since w ¢ L; iff o=!(w) ¢ Ci,
the closure of regular languages under complementation implies the corresponding closure property
for the class ESL(n,m). O

Theorem 3.9 Let n > 1 be fixed. The equivalence, inclusion, emptiness and finiteness problems
are decidable for ESL(n)-grammars but undecidable for SRL(n)-grammars if n > 1.

Proof: The undecidability results are proved in [18, Theorem 1.5.7] and [27]. For the decidability
part, consider the representation of an ESL(n)-grammar G via a regularly (C-)controlled universal
grammar G(n, m) such that if 7 € C, then S =™ w in G(n, m) for a terminal word w. If w € L(G),
then there is trivially a w € C such that S =™ w in G(n,m). Therefore, all problems mentioned
can be answered on the level of regular control languages with the aid of the known test algorithms
for right-linear grammars. O

Remark 3.10 Since the transformations ¢, and @' can be computed in deterministic logarith-
mic space if n is fized (even ACC circuits suffice), the computational complexities of the equiv-
alence, inclusion, emptiness and finiteness problems for ESL(n)-grammars are the same as the
complexities of the corresponding problems for right-linear grammars. In the case of determinis-
tic ESL(n)-grammars (as defined below), the complexities of the mentioned decidability questions
correspond to those for deterministic finite automata.

In formal language theory, universal grammars have been used to derive Chomsky-Schiitzenberger-
Stanley characterizations of language families. With this in mind, and similar to [26, Theorems 1
& 6], one can deduce:

Corollary 3.11 For each n,m > 1, there exist an alphabet X(n,m), a language L(n,m) C
Y(n,m)* and a letter-to-letter morphism h : X(n,m)* — X, so that, for each language L €
ESL(n,m), there exists a regular set R C X(n,m)* such that

L = h(L(n,m)N R).

On the other hand, every language represented as h(L N R), where h is a letter-to-letter morphism
mapping into X and R is a regular set, lies in ESL(n,m).

Proof: The idea of this construction is simple. Grammar G(n,m) can be modified in such a
way that it will print the protocol of its matrix-applications, codified in an extension of G(n,m)’s
terminal alphabet: e.g., the leftmost nonterminal may use alphabet M (n,m) instead of just X,,
when printing the symbol to its left-hand side. More formally, a rule ms, ..., c...c, is replaced by

n

(Sl —> Mpy...bp,c1...0n Slcly Sy Sp — bnSncn)



If C = {mi}R'{m, |z € £,,|z| < 2n} is the control set C as defined in the proof of Theorem 3.7,
define R = R'S}, C E(n,m)* = (£, UM (n,m))*. Finally, the homomorphism acts as identity on
¥ and maps mp, .. b, ,cq...c, O 1.

On the other hand, one can show using standard constructions that ESL(n) is closed under
intersection with regular sets and letter-to-letter morphisms. O

Corollary 3.12 ESL(n) is closed under (inverse) letter-to-letter morphisms and intersection with
regular sets.O]

Remark 3.13 The previous theorems and corollaries are also valid for the corresponding classes
of ESRL languages, cf. [54]. We omit details here.

We will now turn to simple matrix (right-)linear grammars without the “even”-restriction for
a moment. The following normal form is easily obtainable for these grammars:

Lemma 3.14 Letn > 1.
1. Every SL(n)-language can be generated by a SL(n)-grammar obeying

3T (A1 = 21B1Y1,- -, An = TnBuyn),
for Ai, B; € Vi, zi,y; € £, 1 <i < n.

instead of condition 3 in the definition of SL(n)-grammars.
2. Every SRL(n)-language can be generated by a SRL(n)-grammar obeying

3+t (‘41 - xlBlr--;An — .Z'an),
for A, B; € V;, 3, € 851 1 <i<n.

instead of condition 3' in the definition of SRL(n)-grammars.

With this normal form, it is easy to prove an analogue of Theorem 3.7 for SL- and SRL-
grammars, too. Instead of stating this formally, we only formulate the corresponding morphic
characterization result for SL(n), which is similar to that of Chomsky-Schiitzenberger-Stanley.

Corollary 3.15 For each n,m > 1, there exist a language L(n,m) € ESL(n) over some alphabet
Y(n,m) and a morphism h : X(n,m)* — X% | so that for each language L € SL(n,m) there exists
a regular set R C X(n,m)* such that L = h(L(n,m) N R).

On the other hand, every language represented as h(L(n,m) N R), where h is a morphism
mapping into X, and R is a regular set, lies in SL(n,m).

Proof: Using Lemma 3.14, it is easy to show via a padding construction that every SL(n)-
language is a morphic image of some ESL(n)-language. So, from Cor. 3.11 we may deduce the
first assertion in this corollary. Since SL(n) is closed under homomorphisms and intersection with
regular sets by Theorem 1.5.6 of [18], the second claim follows. O

Remark 3.16 Again, a statement similar to the previous corollary is valid for SRL(n)-languages,
too.

Corollary 3.17 The full trio® closure of ESRL(n) equals SRL(n).
The full trio closure of ESL(n) equals SL(n).

3A full trio is a family of languages closed under rational transductions, or equivalently, due to the theorem of
Nivat [11], a family which is closed under arbitrary morphisms, inverse morphisms and intersection with regular
sets. The full trio closurs of a language family £ is the smallest full trio containing L.
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4 Characterizations

We generalize some characterizations of even linear grammars (ESL(1), as we refer to them) of
Sempere and Garcia [48] to our case.

4.1 Deterministic grammars

Adapting Definition 2 of [48], we call an even simple (right-)linear matrix grammar in normal form
deterministic if both (Ay — a1 B1by,..., A, = apBpb,) and (A1 — a1C1by,..., Ay — a,Crby)
are rules of the grammar, then By = C, ..., B, = C,,.

Similarly to [48, Theorem 2], we can show:

Theorem 4.1 Every even simple (right-)linear matriz language L of degree n can be generated
by a deterministic even simple (right-)linear matriz grammar in normal form of degree n.

Proof: L can be generated by a universal grammar G of degree n controlled by a regular set R. R
can be given by a deterministic right-linear grammar G g, where there are only productions of the
form A — X and A — aB satisfying the following condition: if A — aB and A — aC are rules of
the grammar, then B = C. The conversion of G and G into an even simple (right-)linear matrix
grammar shown in Lemma 3.1 yields a deterministic even simple (right-)linear matrix grammar
in normal form of degree n. O

4.2 A Nerode-like equivalence

We now generalize [48, Theorem 3].* Given n, every word w € £* can be partitioned uniquely in
the form w = uwjv; ... Up_1Vp—1UpW'vy,, where all u; and v; have the same length, and |w'| < 2n,
cf. the algorithm given in the proof of Prop. 3.6. Hence, we can also write u;(w) for the subword
u; of w.

Given a ESL(n)-language L C ¥*, two words w; and ws, each of a length divisible by 2n, are
called indistinguishable under the language L, written wq =7 wo, iff for all w € ¥*,

1:[ uj(wi)u;(w)v; (w)oj (W) | - un(ws)un(w)w' (w)on (w)on (wr) € L
j=1

if and only if
nl:[ uj (w2 )u; (w)v; (W)v; (W2) | - Uun(W2)un(w)w' (w)vn (w)vn (w2) € L.

Theorem 4.2 L C ¥* is an ESL(n)-language iff equivalence relation =% has a finite number of
equivalence classes.Od

Since the proof is quite similar to [48, Theorem 3] (but much more tedious), we omit it here.
Observe that there is another way of proving that result, namely by exploiting again the control
language characterization and using the well-known Nerode equivalence on the control language
level.

Remark 4.3 Similarly to the well-known case of finite automata, the number of equivalence
classes equals the number of states of the minimal DFA controlling G(n,m). This number of
minimal states is an important complexity measure for the learning algorithm we present in the
next section 5.

4A Nerode-like equivalence relation has already been considered by Amar and Putzolu in [2] as well as by Pun
and Novotny in [40] for even linear languages. They use notions different from ours for the presentation of their
results.
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Remark 4.4 Analogous statements can be made in case of ESRL(n)-languages. Here, we must
take another equivalence relation of course.

4.3 Protocol languages

Recall that L is protocol language for language family £ iff for every language L' € L there is a
rational transducer 7 such that (L") = L.

Theorem 4.5 SRL(n) is the class of languages with protocol language {w™ | w € ¥3}.

Proof: Guess the control language and write the corresponding protocol with the aid of a
rational transducer. O

Remark 4.6 In [13, p. 116] another characterization of equal matriz languages is mentioned
without a proof: SRL is the smallest class of languages containing the regular sets and closed
under homomorphic duplication, i.e., (hi,...,h,)(L) = {hi(w)...h,(w) | w € L}. Another
characterization is possible via restricted checking stack automata, see [13, p. 116].

Analogously, we obtain:

Theorem 4.7 SL(n) is the class of languages with protocol language {(ww®)" | w € £3}.

Interestingly, one can develop a corresponding characterization programme for “even” language
classes as well, using a natural restriction on the notion of subsequential transducer as defined
in [11]: Let us call a 7-tuple 7 = (Q,X,Y, H, qo, Qf, qz) coding transducer with n-tail if Q) is a
finite set of states, X and Y are finite (input and output) alphabets, go € @ is the initial state,
Q5 C Q is the set of prefinal states, ¢y is a final state and H is a finite subset of (@ \ {gs}) x X x
Y x (Q\{agr})UQs x X<"x {A} x {gs}. The interpretation is simple: If 7 is in state ¢ € @ \ {gy}
and reads symbol a € X, then it may print symbol a’ € Y and go into state ¢' iff (¢,q,a’,q") € H;
if it is in a prefinal state, it may also read a string of length at most n and go into the final state
without producing any output symbol.

Without a formal proof, we present the next result, itself closely related to Cor. 3.12:

Theorem 4.8 Let n,m > 0 be fized.

1. L € ESL(n,m) iff there exists a coding transducer T with 2n-tail such that x € L iff
7(2) € {(ww")" |w € 33, }.

2. L € ESRL(n,m) iff there exists a coding transducer T with n-tail such that x € L iff
T(z) € {w" |w e}, }.O

Note that Cor. 3.17 can be deduced from our results on protocol languages as well.

5 An application to learning theory

We now turn to the learning of ESL(n) languages for a given n > 1. The model we use is the
following: a learner L has the task of deducing an ESL(n) grammar for a certain ESL(n) language
L known to its teacher T. At the beginning, L is informed only of the terminal alphabet ¥, of L.
L may query T about the following:

Membership query Isw € L ?
Equivalence query Does the ESL(n) grammar G generate L?
Teacher T reacts as follows to these questions:

1. To a membership-query, T answers either “yes” or “no”.
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2. To an equivalence-query, T answers either “yes” (here, the learning process may stop, since
L has performed its task successfully) or “no, I will show you a counterexample w.”

Following Theorem 3.9, teacher T can answer equivalence-queries algorithmically.

We now give a learning algorithm based on the ideas of Takada [52]. We assume there is a
learner L' which can learn deterministic finite automata, e.g., the one described by Angluin [4].

Learner L will transform a counterexample x received from T into a string ¢! () by using the
algorithm given in the proof of Prop. 3.6.

On the other hand, a query w of L' will be translated by L into the unique ¢(w) determined
by S =% ¢(w) using the universal grammar G(n,m), see (4). That ¢(w) will be passed to the
teacher T.

Finally, if learner L' has a guess C of a possible regular (control) set, L transforms this guess
into an ESL(n) grammar G¢ for Lo (G(n,m)) as in the proof of Theorem 3.7 and passes G¢ to
teacher T.

So, L functions primarily as an interface between the ESL(n)-teacher T and the regular set
learner L'.

Using Angluin’s algorithm [4, pages 94-96] for learning regular languages, the above-sketched
algorithm has a running time polynomial in both the number of states of a deterministic finite
automaton for the control set C' and the length of the longest counterexample and the parameter
n (which influences the size of the alphabet of the control set to be learnt). So, in view of
Theorem 4.1, we can only claim to have a polynomial learning algorithm if we want to learn
deterministic even simple (right-)linear matrix grammar; else, we would get an exponential running
time due to the state explosion of the subset construction hidden in the proof of Theorem 4.1.
More precisely, the impossibility argument given in [6] applies here a fortiori.

Theorem 5.1 (Learnability) For each n > 1, the class of deterministic ESL(n) grammars is
inferrable in polynomial time using membership and equivalence queries within Angluin’s MAT
model.0

Remark 5.2 Observe that the functionality of the above-sketched relies only on the fact that there
exists a one-to-one correspondence between words and “their” control words via the mappings ¢,
o L. Since ¢! can be seen (basically) as a family of permutations Y, m : L% — I any “rea-
sonably computable” family of such permutations defines a “new” class of languages learnable in
polynomial time. A source for such language families may be those with “rational structure gener-
ating functions” as considered in a series of papers by Kuich, cf. especially [33, 46]. The intuition
experienced which hints at the fact that permutations are the backbone of all main constructions
in this paper is further underlined by Theorem 4.8: In effect, the protocol language describes the
family of permutations.

In this context, it might be worth noting that ESL-languages (and already even linear ones)
contain all regular languages, since they come up simply by permuting the input of a finite au-
tomaton in a regular fashion. It would be of interest to know other language classes obtained by a
family of permutations v, m which extend the regular languages in this way.

6 Hierarchy relations

6.1 Auxiliary results

In order to argue better about ESRL-languages, we need:
Proposition 6.1 Let j,n,m > 1. Let
G[j] — S[l] S[j] Sl] sl ¢ bl S 5
R(n7m) ({ 1 »--">» 1}7"'7{ mn 2" n}7 ? R(n7m)7 ) ()

contains the following matrices:
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1. my=(S—SM. .Sy and

2. my =M M xS S 2 with 2 € S5 and
gomi = (S = by ST g, s b Si med IHy

with'b, € Sy for 1<v<n, 1<i<j.

Then, every L € ESRL(n,m) can be generated by a universal grammar G%] (n,m) controlled by a
regular set C, i.e., L = LC(G%] (n,m)).

The universal grammar G%] (n,m) corresponds to that introduced by Takada, see (3), and for gen-
eral j, the claimed normal form can be derived from Takada’s with some formal effort. We will only
sketch that proof in the following. Proof: For every regular C, LC(GEJ{] (n,m)) € ESRL(n,m),

since G%] (n,m) € ESRL(n,m), see Lemma 3.1. On the other hand, let L € ESRL(n,m) be given
by a regular control language C C (Mg(n,m))*, where C is generated by the right-linear gram-
mar G = (V,Mgr(n,m),P,S). Now, let j > 1. We explain how to define a right-linear grammar

GUl = (v, M (n,m), P, §) with Ly gy (G% (n,m)) = L. Namely, let

VI ={S}UV x{0,...,5n} UV x {0,...jn}> x (J[ =x079) x 50797 x {1,..., j}.

v=2

Instead of defining P! formally, we prefer to explain the semantics of the new nonterminal sym-
bols, leaving details to the reader. S’ is the new initial symbol. At the very start, the derivation
of the control grammar Gl nondeterministically selects between two options: Whether to derive
a control word which mimics a x-step derivation of G, where x < jn or whether to derive a longer
control word. The simulation of the first option is done using the subalphabet V' x {0,...,jn},
where the second component of the alphabet realizes a step counter. The second simulation option
is more involved and will be explained in the following, where the numbers refer to the components
in the cartesian set product.

1. As in the simulation of the finite part of “short words” explained above, one needs to keep
track of the nonterminal state the simulated grammar G assumes.

2. Similarly, one has to count up to jn in order to prevent premature termination, since short
words have been dealt with before. Moreover, this counter helps to build up the information

stored within the ([])_, =72 5 w20 component as explained below.

3. The second counter is used to count the last jn derivation steps; the beginning of this
counting process is guessed nondeterministically. The twofold use of this counter is explained
below.

4. In order to explain the use of component ([])_, T2 o w200 ongider the subdi-
vision of a word w = ay ...aspy1 € L (this means, we restrict ourselves to the special case
n=3and j =2):

ai -..0k—1,0k; Qg1 - - - A25—2, A2k —102k; A2k+1 - - - A3k—3, A3k—203k—1A3k; A3k+1-

According to grammar G g (n,m), nonterminal S; would derive the part a; . . . ag, nonterminal
So the part agyy ... agk, and the third nonterminal S5 would derived both asg1 - . .asx and,
by using a terminal matrix, the last letter aggy1. The described partition is indicated in
the sample word by way of a semicolon. Similarly, the partition induced by the (intended!)

derivation using Gg] (n,m) is indicated by way of a comma. Now, observe that symbol
ay, is generated as the last terminal symbol from nonterminal S; in grammar Ggr(n,m),

while it is the first terminal symbol generated from nonterminal S in grammar GE] (n,m).
Therefore, in the simulation control of Gz] (n,m), symbol ay, is nondeterminally guessed and
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stored in the initial part of the derivation, while the guess is verified in the final part of the
derivation. Recall that there are step counters for the initial and final parts of the derivation
as described above, which obviously help to verify this guess. Similarly, the strings asx_1a2k
and as_2a3,_1a3, have to be guessed, stored and finally verified.

On the other hand, when simulating, e.g., the first application of nonterminal Sy, we “know”
that symbol ajy1 has been generated. This knowledge has to be stored, because only the
next derivation step of the simulating can actually make use of this knowledge, whilst then
the “knowledge” concerning symbol a2 has to be stored. So, we need a “sliding window

storage”, whose size for the v-th (v > 1) part of the word is (at most) (j — 1)v — 1; this

sliding window can therefore be formalized by a word from oy,

5. Finally, a counter mod j is needed to ensure that applications of termination matrices are
only possible if the counter has the value of one. This mirrors the fact that in G[Ié] (n,m),
terminal matrices can be applied only to the nonterminal sequence (Sgl], .. .SI[\I,]).

O
In order to avoid giving a long and tedious formal argument, we only state an analogous result
for ESL languages.

Proposition 6.2 Let j,n,m > 1. Every L € ESL(n,m) can be generated by a universal grammar
Gl (n,m) controlled by a regular set C, i.e., L = Lo(GUl(n,m)), where

GU(n,m) = ({S1, ..., 871}, ... {sY, ..., s}, 5, MUl(n,m),S) (6)
contains the following matrices:
1. my=(S— SM.. sy and
2. my=(SM s A 8 X S S ) with z € £527 and

3. mll = () = bySlamed It LS, b, S med D)

by...bn;c1...Cn

with b,,c, € Xy for 1<v<n,1<i<j.

We now show that non-membership of certain languages can be proved for language classes
with universal grammar characterization without deriving a special pumping lemma as [57, Lemma
3.8].

Example 6.3 L = {(ww®)" | w € 3} € ESL(n), see Theorem 4.8. Consider now the mapping
@R associating derivation words to control words via universal grammar Gg defined in Eq. (3). If
L € ESRL(n), then 3" (L) is regular, but

‘plgl(L) = {ml(wwR)mA | w € {ma,...asMb,..s} "}

Example 6.4 L = {a**(ab)** | k > 0} € SRL(2). The “control language” (assume the language
would be in ESRL(2)) is

©r (L) = {m1(ma,ama)** (Ma,amsp)fma | k> 0}

which is not regular, indeed, so that L ¢ ESRL(2). We can show further to this that if L were in
ESL(2), then
Soil(L) = {m1 (maa;bbmab;aa)kmga;abm)\ | k> 0}

would be regular, a contradiction.
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6.2 Hierarchical relations
Theorem 6.5 For all n > 1, we have:
1. ESRL(n) C SRL(n) C SL(n);

2. ESL(n) C SL(n);
3. ESRL(n) C ESL(n).

Proof: The inclusion relations themselves follow by definition, aside from the last one. Since
the inclusion proof itself is not completely apparent at first glance, we include it here. Consider
L € ESRL(n,m) with L = Lo (H (n,m)), where the regular control language C' is given by a right-
linear grammar G = (V, M'(n, m), P, S). We define a right-linear grammar G' = (V, M (n, m), P, S)
which generates C' and controls G(n,m) so that LC(G%] (n,m)) = La(G(n,m)). Let P = P x
P x ¥sin,

initial matrices If S = mg,, .. A4, B = mp, .. .5, C,C = my € P,
we put S = M., anbi,....bn (A4, B, A) into P.

If S = mq,,.. 0.4, B— m;)l,m’an, C—>me..c €P,0< k< 2n,
we put S = Mgy, anibiyebn_1,06 (A, B, bnci - .. cp—1) into P.

nonterminal matrices If A — my,,. 0,4 and B = my, , B' € P,or A = my, . A
and B — my,,..p.B' € P, then put (4,B',\) = My, anibr,...bn (A", B,A) into P as well as

(A,B',c1...Ck) = May,.ansbiybn_1,06 (A B,bper .. cp—1) for all 0 < k < 2n, ¢; € &y,

terminal rules Put (4,4,z) — m, into P for all A € P, 2z € £327.

The derivation of the regular grammar is simulated in parallel from left to right (for the left-
hand part of the control word) and from right to left (for its right-hand part). The only formal
difficulty arises from the fact that the “remainder” of the input word decomposition is at a different
location in linear and right-linear grammars. Instead of giving a formal induction argument, we
supply an example of this construction (see Example 6.6 below).

Now, we show the strictness assertions:

Claim 1. (a) For n = 2, see Example 6.4. Similar counterexample languages for n > 2 can be
easily defined.

(b) L, = {a¥...ak, | k > 1} ¢ SRL(n), see [18, Lemma 1.5.6 (iv)]. It is easy to give an
ESL(n) grammar for this language.

Claim 2. For n = 2, see Example 6.4. Similar counterexample languages for n > 2 can be
easily defined.

Claim 3. For the strictness of the inclusion, either consider Example 6.3 or the language given
in part (b) of 1. O

Example 6.6 G = ({Al,Az,Ag},{Bl,Bz}, {G, b},M, S) with

M = {(S — A1B1),(A1 — /\,B1 — /\)}
U {(Ai = aA(imod 3)+1,Bj = bB3_;) [1<i<3,1<j <2}

is a ESRL grammar that generates
L(G) = {a®™b" | n > 0} .
We shall later consider the simulation of the following sample derivation in G:

S = A1 B = aAsbBy = aaA3bbB,
= aaaA;bbbB, = aaaalsbbbbB, = aaaaaA3zbbbbbB,
= aaaaaaA;bbbbbbBs; = aaaaaabbbbbb.
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The construction of the preceding theorem yields the following equivalent ESL grammar:
G' = ({(A15A1)7 (AlaAQ)) (A13A3)’ (A25A1): (A2,A2): (A2aA3)) (A33A1)5 (A3aA2)) (A35A3)})
{(BlaBl)’ (BlaBQ): (BQJBl); (BQJBQ)}J {aa b}’ MI; S)’ where

M = {(S— (A1, A1)(B1,B1))}
U {((45,4:) = X\ (B;,Bj) = N [1<i<3,1<j<2}
U {((Ai; At mod 3)+1) = a(A(i mod 3)+1, Ae)a, (Bj, Bs_ym) = b(Bs_j, By )b) |
1<i,0<3,1<4,m<2}.

The sample derivation can be simulated as follows:

S = (Al,Al)(Bl,Bl) = a(Ag,A3)ab(Bg,B2)b
= aa(As, A2)aabb(B1,B1)bb = aaa(A1, A1)aaabbb(Ba, Bs)bbb
= aaaaaabbbbbb

Corollary 6.7 Let n > 1. ESL(n) and ESRL(n) are not closed under
e homomorphism,
e inverse homomorphism,
e rational transductions,
e catenation, and
e Kleene star.

Proof: Combining Cor. 3.12, 3.15 and Theorem 6.5, we obtain non-closure of the language
families under homomorphism and hence under rational transductions.

Non-closure under catenation and Kleene star immediately follows from the corresponding
results on SL(n) (SRL(n)) languages, since the typical examples for proving such results are
already ESL(n) (ESRL(n)) languages. O

Following Greibach [25] and Khabbaz [30], let CONTROL(G, L) denote the family of lan-
guages which is defined by controlling type-G-grammars using languages from £. This concept is
interesting for learning theory, since it can be iterated by defining CONTROLq(G, £) = £ and

CONTROL,(G, £) = CONTROL(G, CONTROL,_, (G, £)),

and in case G contains an unambiguous grammar which, controlled by some language from
L, describes CONTROL(G, L), and if £ can be learned efficiently, then the whole hierarchy
CONTROL,(G, L) can be learned efficiently as well. Takada explored in [56] the hierarchy
CONTROL,(ESL(1), ESRL(1)). He posed the question what would happen if

e CONTROL(ESRL(n), ESRL(£)) or
e the hierarchy CONTROL, (ESRL(2), ESRL(2))

were to be considered. The following theorem will answer that question (and others, too).

Theorem 6.8 Let n,f > 1. Then

1. CONTROL(ESRL(n), ESRL(¢)) = ESRL(nf).
CONTROL(ESL(n),ESL(¢)) = ESL(nf).
CONTROL,(ESRL(2), ESRL(2)) = ESRL(2"1).

™ e

CONTROL,(ESL(1), ESL(1)) = ESL(2").
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Proof: Claim 1. We will restrict the following argument to languages from |J,, Z7*. There
is no loss of generality, since one can construct universal grammars both for ESRL(n) and for
ESRL({) with terminating matrices of the form (S1 — A,...,S,—1 = A, S, = z) with r = n or
r=/{and 2z € <™ as in Prop. 6.1.

Therefore, consider a word w = a1as...ane from an ESRL(nf) language. This essentially
means that the permuted sequence

(a1ap41 - -- a(ne—1)k+1)(a2ak+2 - a(ne—1)k+2) ... (arasg - . - aner) (7)

~

~
n{ elements
“ P
~-

k groups

lies in the canonical regular control language. Now, consider w as belonging to an ESRL(n)
language, which means that the permuted sequence

(ar1agpyr --- a(n71)£k+1)(a2a€k+2 cee a(nfl)fk+2) .- (aerazer, - - - aner)

~ /

~-
Lk groups

lies in the canonical ESRL(¢) language, which in turn results in a regular control language con-
taining
[(alagk+1 [N a(n_1)4k+1)(ak+1 .. ) PN (a(g_l)k+1 [N a(ng_l)k+1)] e s (8)

~ S
~~

n elements

~ v

~-
£ subgroups
N P

~
k groups

It is now easy to see that a finite automaton capable of recognizing sequences consisting of &
groups each of nf elements as in (7) (note that each “group” can be seen as a special letter in the
control alphabet) can be easily modified to recognize sequences consisting of £k subgroups each of
n elements as in (8) and vice versa, since each subgroup in (8) is merely a permuation of a group
in (7) and because n and ¢ are considered constants.

Claim 2. By using Prop. 6.2, we can restrict our following discussion to words w = a1as . . . Ganek
of a length divisible by 4nf. Assume that w € ESL(2nf). This essentially means that the permuted
sequence

(@1G2k+1 - - - Q(2ne—1)2k+15 A2k QA - - - Qantk) - - - (AkA3k - - - Adngh—k} Q1 - - - Adnek—k+1) 9)

~

~
4n{ elements
N _
~

k groups

lies in the canonical regular control language. Now, regard w as an element of an ESL(n) language,
meaning that the permuted sequence

(ara4¢r41 - - -Q(n—1)40k+15 Q4Lk - - - A4ntk) . (a2raqopyok - - - Q(n—1)40k+2k> @)

~ J

subgroup of 2n elements
(A2k+1Q40k+2k+1 - - - O(n—Dyatkr2k+1;8) e

(a(€—1)2k+1a4£k+(£—1)2k+1 e a(n—1)4ek+(e—1)2k+1;7)- . (aserager - .. Q(4ntk—2¢k); 3)

[Remarks: The description has 2k rows corresponding to groups of parenthesized element sub-
groups. We used the abbreviations

A4lk—2k+1 - - - Adnlk—2k+1,
A4gk—2k - - - Vntk—2k;

A4gk—(£—1)2k - - - A2nek—(¢—1)2k and

S, 2 ™ R
I

= 02¢k+1 - - - Q(4nlk—20k+1) y
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lies in the canonical ESL(/) language, which in turn results in a regular control language containing

[(a1Gaek+1 - - - An_1)aek+15 Qack - - - Qantk)
(@2k+104ek4 2541 - - - A(n—1)4€k+2k+15 A4Lk—2k - - - Q4ntk—2k)

(0(5—1)2k+1 - - Q(n—1)40k+(£—1)2k+17 V4l —(£—1)2k - - -a4nz1c—(e—1)2k);
(azkasertok - - - Q(n—1)4Lk+2k; V40k—2k+1 - - - Ogpik—2k+1)

(azeraeek - - - Q(n—1)40k+20k> A20k+1 - - - a(n71)4fk+22k+1)]

The whole word is decomposed into k groups the first one of which is listed above in detail. Such a
group (indicated as a word within brackets) contains 2¢ subgroups (indicated by parentheses) each
having 2n elements. We want to consider this first group alone in order to verify that the set of
indices collected therein is the same as the set of indices of the first group of the ESL(2nf) decom-
position listed in Eq. (9). The first part of the sequence ajasg1 - - - 2ne—1)2k+1; A2k Qak - - - Qanek
can be obtained by subsequently reading from that group:

the first letter of the first part of the first subgroup of the first part;

the first letter of the first part of the second subgroup of the first part; ...

the first letter of the second part of the last subgroup of the second part;

e the first letter of the second part of the penultimate subgroup of the second part; ...

e the second letter of the first part of the first subgroup of the first part;

e the second letter of the first component of the second subgroup of the first part; ...
Similarly, the second part, i.e. asgaay . .. asner is obtainable via reading:

e the first letter of the first part of the first subgroup of the second part;

e the first letter of the first part of the second subgroup of the second part; ...

e the first letter of the second part of the last subgroup of the first part;

e the first letter of the second part of the penultimate subgroup of the first part; ...

Since a group spelled in this way comprises just one letter from the terminal alphabet of the
control language, the assertion is verified, as the procedure described above results in re-naming
the terminal alphabet.

Claims 3. and 4. These are straight-forward consequences from the first two assertions by
induction. O

Theorem 6.9 Let n,n' > 1. Then
1. ESRL(n) C ESRL(n') iff n divides n'; ESRL(n) # ESRL(n') iff n # n'.
2. ESL(n) C ESL(n') iff n divides n'; ESL(n) # ESL(n') iff n # n'.

Proof: Let us first show the inclusions in case n divides n/, i.e., n' = fn.

Claim 1. We can make use of Prop. 6.1 by assuming that we are to simulate the control language C
of a universal G%] (n,m) grammar by a control language C' of Ggr(¢n,m). Since Lo (Gr(fn,m)) =
Lei(Gr(n,m)) for some C" € ESRL({) as shown in Theorem 6.8, the inclusion is proved by
observing that regular languages are included in ESRL(¢).

Claim 2. This property can also be reduced to ESL(1) € ESL(¥¢) (which is not hard to comprehend,
although the complete formal proof of this fact is quite tedious; basically, one can use ideas
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from Theorem 6.5, taking some special care of the terminal matrices) by using Prop. 6.1 and
Theorem 6.8.

As regards counterexamples, consider again the case of ESRL-grammars firstly. Assume that
n does not divide n’. For a moment, assume further that n and n' are relative primes, i.e., the
greatest common divisor of n and n' is one. Consider now

L, ={a}...ak | k > 1} € ESRL(n).

We will show that the canonical control language C on the universal grammar Ggr(n’,n) is not
regular.’ Assume the contrary, that C' would be regular. This means that C is accepted by a
minimal deterministic finite automaton (DFA) with p states, i.e., p is the “pumping constant” of
the pumping lemma for regular languages. Consider the control word corresponding to

_ 2pn/ 2pn’
w=a;  ...af" € L,.

What does the corresponding control word (i.e., the induced permutation on w) look like? In order
to avoid unnecessary complication, we restrict our argument to two concrete examples, covering
the two cases n > n' and n < n'. Firstly, suppose n = 5, n’ = 2. The permutation of w is

w' = (a1a3)*(a1a4)* (azas)?? (azas)?? (azas)P.
If w' is accepted by some p-state DFA, by the pigeon-hole principle, some suffix
w'" = (araz)? (al04)2p(f12a4)2p(a205)2p(a3a5)2p

of w' must also be accepted for some p' < 2p, since some state of the DFA must be entered
twice while scanning (a;a3)?”. Since w' contains less a; symbols than as symbols, the “reversed
permutation” cannot lie in L,,, contradicting our assumption that C' is regular. Secondly, consider

n = 2, n' = 5. The permutation of w is w' = (a}a3)??(a?a3)?”. The pigeon-hole principle now

shows that some w” = (a3a2)?' (a?a3)? must be accepted by the p-state DFA accepting C. This
obviously destroys the balance between the number of occurrences of a; and that of as, so that
the “reversed permutation” cannot lie in L,,, contradicting our assumption that C' is regular. This
argument can be easily generalized to any pair of relative primes n, n'. If n and n' are not relative
primes, then n = r¢, n' = r¢ for some r > 1. Now, L; € ESRL(n') iff L, € ESRL(¢'), but
L, ¢ ESRL(¢') according to the argument given above.

We consider now the case of ESL-grammars. The argument concerning a counterexample
is similar to that given above for ESRL-grammars, but technically more involved. The following
therefore contains only a brief outline of the proof. We now consider as a counterexample language

L, ={a¥...a%, | k> 1} € ESL(n).

In the case of n being relatively prime to n', L! ¢ ESL(n'). This can be seen when taking into
account

_ 2pn’ 2pn’ LI
w=a;  ...0y, € L,,

where we assume that there exists a p-state DFA for the control language of G(n’, 2n). In the case
of n = 5, n' = 2 (representing the case n > n'), we must regard the permutation (assumed control
word)

w' = (a1as; aga10)?? (azas; arag)*? (asas; agas)?

corresponding to w. In the case of n = 2, n' = 5 (representing the case n < n'), we obtain the
permutation

"

} 2 . 2
w'" = (a1a1a203a4; a102030404) P (a1a2a2a304; a1a2a3a3a4)°P.

Applying the pumping argument to w' and w'”, one easily sees that the assumed p-state DFA
cannot exist, contradicting the assumption L!, € ESL(n'). The case when n and n' are not
relatively prime can be dealt with as above. O

5In our counterexamples, we use a rather huge alphabet; by rather simple coding, one can find counterexamples
of languages over the alphabet 5.
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7 Conclusions and prospects

We showed in this paper how techniques well-known in formal language theory can be used to
generalize published learning algorithms for regular languages to infer non-regular languages. In
actual fact, most of the technical parts of the paper are formal language results; but we also show
how these results can be employed to design learning algorithms within the MAT model.

We suggest five ways to continue our work.

e It could be interesting to investigate sub-classes of even linear matrix languages: e.g., it is
easy to define even n-parallel linear languages (compare [43, 60, 61]). Maybe, such classes
have better learning properties. In general more restricted are the n-metalinear languages
[21] (which lack the synchronization feature in n-parallel linear languages); however, an
“even” version of this mechanism is conjectured to be uncomparable with its n-parallel
linear even counterpart. Note that also for that case control language hierarchies have been
investigated by Khabbaz [31].

e On the other hand, our results can be easily adapted to so-called k-linear (matrix) languages
(compare [2, 47]). Unfortunately, we were unable to extend our arguments uniformly to cover
all ratios k.

e Furthermore, there should be connections to learning of multi-tape finite automata as sug-
gested by the constructions given in [44, 60, 52, 57]. Especially, Yokomori [64] uses a more
general notion of “deterministic automaton” (more accurately referred to as “unambiguous
automaton”) based on works of Brauer and Lange [14] which are also learnable in polynomial
time using an algorithm different from Angluin’s.

e Instead of using a DFA learner in order to learn control languages of the universal grammar
G(n,m), one could use, e.g., deterministic one counter-learner, see [10], or deterministic bi-
nary systolic tree automata, confer [62], which easily extends the class of efficiently learnable
languages.

e Other learning models should be taken into account. For example, which subclasses of
ESL(n) are learnable using only positive examples? According to the famous result of
Gold [23], not all such languages can be learnable, but interesting subclasses can be easily
identified using the framework of control languages, confer, e.g., [3, 20].

Finally, we should like to point to the fact that Balcdzar, Diaz, Gavalda and Watanabe de-
velopped in [8] a CRCW PRAM learning algorithm that uses polynomially many processors and
learns DFA in time O(n/logn) exactly. Since the machinery exhibited in this paper mainly uses
uniform re-ordering of the letters of the input word in order to create an input of the DFA learner,
we get a similarly efficient parallel learning algorithm for each of the classes considered here for
learning as well. Moreover, the bound is tight, because it is shown in [8] (based on [7, 16, 17])
that no CRCW PRAM machine using a number of processors polynomial in n and m can identify
DFA in o(n/logn) time.

Acknowledgments: We thank for discussions with E. Makinen, J. M. Sempere, F. Stephan, and Y.
Takada. The talk at COCOON’99 [19] (based on this paper) was given by K. Reinhardt.
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