Parallel Communicating
Grammar Systems
with Terminal Transmission

Henning Fernau

WSI-2000-15

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Unwversitat Tibingen

Sand 13

D-72076 Tubingen

Germany

E-Mail: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2000
ISSN 0946-3852






Parallel Communicating Grammar
Systems with Terminal Transmission

Henning Fernau
Wilhelm-Schickard-Institut fiir Informatik, Universitat Tiibingen
Sand 13, D-72076 Tiibingen, Germany
fernau@informatik.uni-tuebingen.de

August 1, 2000

Abstract

We introduce a new variant of PC grammar systems, called PC gram-
mar systems with terminal transmission, PCGSTT for short. We show
that right-linear centralized PCGSTT have nice formal language theoretic
properties: they are closed under gsm mappings (in particular, under in-
tersection with regular sets and under and homomorphisms) and union;
a slight variant is, in addition, closed under concatenation and star; their
power lies between that of n-parallel grammars introduced by Wood and
that of matrix languages of index n, and their relation to equal matrix
grammars of degree n is discussed. We show that membership for these
language classes is complete for NL. In a second part of the paper, we dis-
cuss questions concerning grammatical inference of these systems. More
precisely, we show that PCGSTT whose component grammars are ter-
minal distinguishable right-linear, a notion introduced by Radhakrishnan
and Nagaraja in [29, 30], are identifiable in the limit if certain data com-
munication information is supplied in addition.

Part 0: Motivation, Definitions and Examples

1 Introduction

Parallel communicating grammar systems (PCGS, for short) were introduced
in [27] in order to investigate concepts like parallelism, synchronization and
data communication with formal language theoretic means.

Unfortunately, the language families introduced in this fashion are rather
intricate from a formal language point of view, even if one restricts oneself to
right-linear grammar components, as has been done, for instance, it the already
quoted introductory PCGS paper of Paun and Santean. Only recently, sev-
eral closure properties have been shown by Autebert [4] by means of special
techniques. There are few non-trivial known inclusion properties with respect



to other language families studied in the literature. As regards to complexity
questions, in particular the fixed membership problem, the inclusion of so-called
centralized regular PCGS within the complexity class NL (defined by languages
acceptable by nondeterministic Turing machines whose work tape is only of log-
arithmic length in terms of the length of the input word) has been shown by Cai
in [10] by using a special construction. On the other hand, The technique used
by Abrahamson, Cai and Gordon to show NL hardness for so-called coherent
PCGS heavily makes use of non-centralized features and is, hence, not applica-
ble to our case [1]. In fact, NL hardness of the fixed membership problem for
non-centralized regular PCGS with two components already follows by its inclu-
sion of the linear languages proved in [12] in combination with the well-known
NL hardness result for linear languages due to Sudborough [38].

We will discuss a variant of PCGS which we call PCGS with terminal trans-
mission, PCGSTT for short, a model where only transmissions of terminal
strings are allowed in order to exclude the influence of the queried component
grammar on the querying component grammar. Systems with this property
were already investigated by Pdun in [28] under the name terminally synchro-
nized PCGS. They appear to have rather weak descriptive capacity. In our
version, we enhance the power of the mechanism by the simple trick that we
consider the so-called query symbols formally as terminal symbols (and not as
nonterminal symbols). We further show that right-linear PCGS with terminal
transmission (in our definition) have rather nice formal language properties, in-
cluding simple hierarchical relations to well-known regulated formal language
classes and complexity classes, contrary to the case of the classical variant of
regular PCGS. We will treat these questions in the first part of this paper.

Moreover, there is also another motivation for discussing this variant which
is intrinsic to PCGS: Parallel synchronized computation should be free from
side-effects, since this allows the calling processor to continue its work without
waiting for the end of the transmission of the results from the called proces-
sor. Otherwise, it is not reasonable to assume that communication (such as
derivation) takes only one step. We can also think of PCGSTT as modelling
data independence features by way of grammar systems, a notion well-studied in
the parallel complexity community under the name of owner read, owner write
PRAM (see [23, 24, 34]). Observe that data independence is a particularly useful
and reasonable assumption when considering both derivation steps and commu-
nication steps of a grammar system to happen in unit time steps since, then,
a possibly long communicated terminal string can be safely “buffered” some-
where, and the derivation of the system may proceed, since the communicated
string has no influence on the further development of the system.

Another aim and motivation of the present study was to investigate the
inferrability of certain right-linear PCGS language families, given positive sam-
ples only, within the learning model “identification in the limit” proposed by
Gold [19]. This is an important issue from two different angles: (1) People who
like to apply Gold’s learning model should be given the possibility to choose
among a great variety of grammar or automata formalisms the one which meets
their needs best. Concerning PCGS language families, applications where par-



allelism, synchronization and data communication are involved are good can-
didates. (2) It is always a challenge for theoreticians to make their work as
applicable as possible. For reasons explained below, we did not forsee good
opportunities to develop a learning theory for the PCGS formalism as defined
classically. Therefore, we introduced the present model. In particular, the data
independence feature seems to be needed for inference purposes. We will come
to this issue in the second part of this paper. We conclude that part with a
detailed possible application scenario originating from discussions with people
working in the hardware manufacturing industry.

A preliminary version of this paper is included in the proceedings of the
conference Grammar Systems 2000, see [15].

2 Definition of PCGS with Terminal Transmis-
sion

Definition 1 A right-linear parallel communicating grammar system with ter-
minal transmission with n components, where n > 1 (a PCGSTT for short), is
an (n+3)-tuple I' = (N, K, X,G,...,G,), where N is a nonterminal alphabet,
¥ is a terminal alphabet and K = {q1,¢>,--.,qn} is an alphabet of query sym-
bols. N, ¥ and K are pairwise disjoint sets, G; = (N;, 2 UK, P;,5;), 1 <i<n,
called the components of ', are usual Chomsky grammars with nonterminal
alphabet N; C N, terminal alphabet ¥ U K, a set of productions P; and aziom
(or start symbol) S;. The rules are of the form A — wB, where w € ¥*K* and
B € {\} UN. We require that N = N; U...UN,. G is said to be the master
grammar (or master) of T'.

Observe that query symbols are formally considered as additional terminal
symbols. Of course, it would also be possible to admit context-free or linear
grammar components, but since we are going to restrict our considerations to
the regular case in the following, we only defined right-linear PCGSTT above.

Definition 2 LetT' = (N, K, X, G4,...,G,), n > 1,be a PCGSTT. An n-tuple
(z1,...,2p), where z; € (£; UN; UK)*, 1<1i<n,is called a configuration of
T. (S1,...,8Sy) is said to be the initial configuration.

PCGSTT change their configurations by performing direct derivation steps.

Definition 8 Let I’ = (N, K,T,G4,...,G,), n > 1, be a PCGSTT and let
(z1,...,2p,) and (y1,...,ys) be two configurations of T'. We say that (z1,...,2,)
directly derives (y1,-..,yn), denoted by (21, ...,2Zn) = (Y1,---,Yn), if one of the
following two cases hold:

1. There is no z; which contains any query symbol, that is, z; € (NV; U X)* for
1 < ¢ < n. In this case, y; is obtained from z; by a direct derivation step in
G;, that is, z; =g, y;. For z; € ¥*, we have z; = y; in the normal mode. In
the fully synchronized mode, we block the derivation of the grammar system if
T; € X*.



2. There is some z;, 1 < i < n, which contains at least one occurrence of query
symbols. Let z; be of the form z; = 2¢;,q;, - - . ¢;, A, where z € £*, A € NU{\}
and ¢;, € K, 1 <1 <t In this case, y; = 21%i, T;, - .. 25, A if, for all 1 <[ <¢,
x; € (8;, UK)*. If a would-be communicated string z;, contains a nonterminal
symbol, the derivation blocks.

In the returning mode, all non-queried components are reset, i.e., y; = S; in
those cases.

In the non-returning mode, all non-querying components continue their work,
i.e., y; = x; in those cases.

The first case is the description of a rewriting step: if no query symbol is
present in any of the sentential forms, then each grammar component uses one
of its rewriting rules, except for those which have already produced a terminal
string. If a terminal string has been produced, we distinguish two cases. Observe
that the derivation is blocked if a sentential form of some component grammar
is not a terminal string, but no rule can be applied to it.

The second case describes a communication: if some query symbol, say ¢;,
appears in a sentential form, then rewriting stops and a communication step
must be performed. The symbol ¢; must be replaced by the current terminal
sentential form of component G;, say x;. Observe that in classical PCGS, query
symbols are not communicated. Instead, first only components querying other
components whose sentential form does not contain any query symbol may get
their queries satisfied, and the other components whose sentential forms contain
query symbols stay with these same sentential forms until they, in the next steps,
eventually may satisfy their queries. It is seen quite easily that our model is
indeed equivalent to this “classical” definition.

To finish a communication step, the components are reset according to the
choice between returning or non-returning mode. Note that this is a slight differ-
ence to the “classical” model of returning PCGS, where only queried components
resume their work on the axiom, but when considering terminal transmission,
it seems to be unreasonable to assume that queried components maintain their
(terminal) sentential forms; at least, they should restart.

If a circular query appears, the derivation continues forever without produc-
ing a terminal string as a result.

Let = e and =), denote a rewriting step and a communication step, re-
spectively. Let =* denote the reflexive transitive closure of =:==>,.¢,, U =com-

Definition 4 Let I' = (N, K, %, G4, ...,Gy) be a PCGSTT with master gram-
mar G1 and let (S, ..., Sn) denote the initial configuration of T. The language
generated by the PCGSTT I is

L(T) = {1 € T* | (S1,-..,50) =* (cu, ..., an)}

Thus, the generated language consists of the terminal strings appearing as sen-
tential forms of the master grammar Gj.

Our studies in the present paper will focus on returning PCGSTT which are
centralized, i.e., only the master grammar may introduce query symbols. Hence,



circular queries will never occur. Furthermore, the communication in these
parallel communicating grammar systems can be called truly data-independent,
since both the (indirect) influences on the calling grammar via communicated
query symbols and via nonterminals is explicitly excluded.

Let the class of returning centralized right-linear PCGSTT with at most n
right-linear components, as well as the class of languages generated by these
systems, be denoted by PC,,GSTT. When an arbitrary number of components
is considered, we use * in the subscript instead of n. We add fs in our notation if
we consider full synchronization, so that, for example, we arrive at the language
class PC,.GSTTfs.

3 Examples of PCGSTT

Example 5 Consider a PCGSTT with 3 components, where the master gram-
mar contains the rules S; — aS; and S; = aga2q3, G2 has the rules Sy — bSs
and Sy — b and G3 has the rules S3 — ¢S3 and S3 — ¢. This PCGSTT
generates

{a*btc™ |1 <t,m <k}

in the normal mode and
{a™b™c™ |1 <m}

when viewed as fully synchronized.

Example 6 Consider a PCGSTT with 2 components, where the master gram-
mar contains the rules S; — S; and S; — ¢2¢2 and G5 has the rules Sy — aSs,
Ss — bSy and Sy — A. This PCGSTT generates

{ww | w € {a,b}"},
both in normal and fully synchronized mode.

These examples show that particularly the full synchronization mode can
be of help to define languages which are “complicated” when considering its
Chomsky type.

Example 7 Consider the following example of a PCGSTT with three compo-
nents: T' = ({5, A}, {¢2, g3}, {a}, G1,G2,G3), where G; has rule set P; with:
P = {S — S,S — (_I3A7A — A,A — $(I2(]3Q2A,A — q3}, P, = {S — S,S —
$4,A - aA,A—>a}and P;={S - 5,5 =+ 85,5 - aS,5 - $,S = a}.

Due to the looping rules S — S, the fully synchronized mode is equivalent,
in this case, to the normal mode. Now, consider the language L = L(T') N
($a™$%a™)*T$. Let w € L. w encodes an instance of the graph accessibility
problem for directed graphs in the following way:

e The nodes of the graph are coded as subwords $a‘$, designating node
number ¢ in this way.



e Each subword of the form $a!$$a’ codes an arc from node 4 to node j.

e The graph accessibility problem asks whether there is a directed path from
some specified start node iy to some specified target node é;. In our coding,
we simply assume that the first coded node ¢y, which is represented as the
prefix of the form $a?$ in w, is the start node, and that the last coded
node iy, which is represented as the suffix of the form $a%$ in w, is the
target node.

Now, if w € L, then w encodes an instance of the graph accessibility problem;
in particular, this means that there exists at least one directed path from the
encoded start node to the target node of the graph. This is guaranteed by
the two calls of the second grammar component. The third component is only
necessary to “hide away” the created path within other edges generated by the
third component.

On the other hand, any instance of the graph accessibility problem can be
coded in this way.

This third example shows that our systems can generate languages of a
higher computational complexity than any single component may create, since
regular languages are complete for the complexity class NC!, while the graph
accessibility problem is the paradigmatic hard problem for NL, nondeterministic
logarithmic space.

Lemma 8 For alln > 1, PC,GSTT C PC,,GSTTfs.

PRrROOF. In each non-master component, one has simply to introduce a “looping
rule” of the form S — S, where S is the start symbol of that component. In this
way, the component may defer its termination to the required synchronization
point. O

Part 1: Formal Language Issues

4 Closure Properties

Closure properties are known for regular PCGS only by recent results, see [4].
Their proofs generally require the combination of several techniques specific to
PCGS. We give here positive closure results for PCGSTT, basically using only
standard arguments.

First, recall the notion of a generalized sequential machine (gsm): a gsm
v =(Q,%,A,d,q0, Q) has state alphabet ), input alphabet ¥, output alphabet
A, start state go € @, a set of final states Jy C ) and a finite transition relation
0 CQ x ¥ x A* x Q, whose rules are also written as ga — wq’, where ¢q,¢' € Q,
a € ¥ and w € A*. These rules define a rewriting system: a string of the
form ugav with u € A*, ¢ € Q, a € ¥ and v € ¥* yields uwq'v, written
ugav =, uwq'v, when the rule ga — wq' is applied. Then, for L C X*, let



v(L) = {w € A* | v € £*Jgy € Qfqov :*>7 wgqy }, where =*>7 is the reflexive
transitive closure of =,.

Theorem 9 PC,GSTT and PC,GSTTfs are closed under gsm mappings.

PROOF. A variant of the “pair construction” (remembering the original plus
the current state of the simulated gsm) may be used for the proof. The non-
master components are multiplied (times the square of the number of states of
the considered gsm), so that the appropriate gsm simulating component can be
queried by the master.

More precisely, let I' = (N, K, %,Gq,...,G,) be a PCGSTT(fs).

Without loss of generality, we can assume that all non-master components
generate infinite languages since, otherwise, calls to components generating fi-
nite languages can be incorporated directly in the master component and, fur-
thermore, blockages for the grammar derivation due to components generating
finite languages can be simulated within the master component by simple count-
ing.

For simplicity, we may assume K = {2,...,n}, i.e., i € K can be considered
as label of G;. Consider a gsm v = (Q, X, A, 6, g0, Q@ ¢).We define a PCGSTT (fs)

I'=(N,K'=KxQxQ,AGy,...,G.)

, with n' =1+ (n —1)|Q|?.

The new master grammar G contains, for each rule p of Gy, several rules
according to the following two cases.
Case 1: p=A — wiy...iyB, w € ¥*,i; € K, B € N. Then, G contains all
rules of the form

(Aaq) — wl(ilaqlaQZ) te (ikanaqk-i-l)(B’qk-i-l)a

where ¢, q1,-..,qr+1 € Q and quw =, w'q;.
Case 2: p=A = wiy...%, w € ¥*,4; € K. Then, G} contains all rules of the
form

(A, q) = w'(i1,q1,62) - - - ik, Gk> Qrt1),

where ¢,q1, - .., qr+1 € Q, g1 € Q and quw =, w'q;.
If S is the start symbol of Gy, then (S, qo) is the start symbol of G.

Consider a non-master grammar G;- with label (i.e., corresponding query
symbol (i,7,7')). Then, G’; simulates G; and, in parallel, it simulates v starting
from state ¢ and terminating in state ¢. If A - wB, w € X*, B € N is a rule
in Gy, then (4,q) = w'(B,¢') is a rule in G, where ¢,¢' € Q and quw :*>'y w'q'.
If A— w with w € £* is a rule in G;, then (4,g) — w' is a rule in G, where
q € Q and qw =, w'g. If S is the start symbol of G;, then (S,q) is the start
symbol of G. O

We refrain from giving a formal inductive proof argument of the construction
in the previous proof. Instead, we mention the following observations:



1. The returning mode is essential for the correctness of the construction
since, otherwise, the synchronized simulation of one grammar component
G; of the original grammar by a number of grammar components G'; of
the simulating grammar couldn’t be guaranteed.

2. The simulation works both in normal and in fully synchronized mode.

3. The construction does not transfer to the more general case of arbitrary
rational transductions, since desynchronization effects due to A-transition
might occur. Only subsequential transductions where, basically, a regular
set may be appended at the end of a string translation by a gsm, can
be simulated; this result immediately follows from the gsm-closure shown
above and the catenation closure proved below. For different notions of
transductions, we refer to [5].

By making use of standard constructions, one can show:

Theorem 10 For each n > 1, PC,GSTT and PC,,GSTTfs are closed under
homomorphisms. O

Theorem 11 PC,GSTT and PC,.GSTTfs are closed under union.

Sketch of Proof: Assume that L; is generated by a PCGS G; with ny compo-
nents with axioms A;,...,A,,, and that Ly is generated by a PCGS G2 with
ng components with axioms By, ..., B,,. We may assume that the nontermi-
nal alphabets of G; and G2 are disjoint. The PCGS G generating the union
L = LiULs, hasn = ny +ns—1 components. Assuming a new axiom S; for the
master component, the master grammar has all rules of the master grammars of
G1 and G2 (where the query symbols have to be adapted in an obvious manner)
plus the new start rules (which play the role of nondeterministic choice rules
in the classical textbook constructions) S; — w, for all rules A; — w of the
master component of G; and for all rules B; — w of the master component of
G5. The second through nith components are the non-master components of
G1, and the (nq + 1)th through (nq + ns — 1)th components are the non-master
components of G3. Querying rules of G1 and G2 (which are now collected in
the new master component of G) have to be updated accordingly. a

Theorem 12 PC,GSTT and PC,.GSTTfs are closed under plus and star op-
erations.

Sketch of Proof: We only show the construction for the plus operation. Due
to the closure under union, the claim concerning the star operation follows
immediately.

Let a PCGS generating L consist of n components. We describe a PCGS
for LT with n + 1 components in the following. The (n + 1)th component has
just the rules S, 11 — Sp+1 and S, 11 — X and is used as a “synchronizer”. For
every rule A — w where w = sq with s € ¥* and ¢ € K*, put A — sqqp+151



as an additional rule into the master grammar. In this way, all components
(besides the master component) reset their work and start new derivations from
their start symbols again. m|

Observe that the “blow-up” of the number of components is only due to
the fact that we have to synchronize all components by querying a “dummy
component”. This is not necessary if all terminal rules A — w of the original
master contain query symbols. This can be seen best by the following example:

Example 13 {a™b" | n > 0}* € PC,GSTTHs.

Proor. Consider I' = (N, K,¥,G1,G2), where G has the rules S; — A,
S1 = aA, S; — agsS1, A = aA and A — aqyS1, and G has the rules So — bSs
and Sy — b. O

Again, observe that the returning mode feature is essential for the correctness
of the construction in Theorem 12; otherwise, the “synchronizer” would not
work.

Theorem 14 PC,GSTT and PC,GSTTfs are closed under concatenation.

Sketch of Proof: It is clear that the language families in question are closed
under concatenation with finite languages; this can be easily done within the
master component alone.

Hence, we can assume that both languages which are to be concatenated
are infinite. This allows us to combine the proofs given for the closure under
union and under star: We start simulating both involved grammar systems in
parallel (as in the union construction), but with the master component first
simulating the first PCGS master component and then switching (as in the
star construction) to the simulation of the second PCGS master component. In
this switching phase, all non-master components are reset by querying a dummy
component generating the empty string as in the star construction. We need the
assumption that the original languages are infinite in order to prevent unwanted
derivation blockages in the full synchronization mode. |

Since the synchronization feature of PCGS poses some problems, it is not
known whether the corresponding language classes are closed under inverse ho-
momorphism. In particular, it is open whether PC,GSTTfs or PC,GSTT forms
a full AFL (abstract family of languages). Furthermore, closure under intersec-
tion and complementation is not fully explored.

5 Hierarchy Relations

We can prove that PC,.GSTTfs strictly include the parallel right-linear gram-
mars defined by Wood and Rosebrugh [31, 32, 33, 44] and are strictly included
in the class describable by context-free matrix grammars of finite index. This
immediately yields that the fixed membership problem for right-linear PCGSTT
is in NL, a result which has also been proven in the classical case by Cai, see [10]



and, more generally, [9]. We elaborate on this in the following section. More-
over, we strongly conjecture that PC,GSTTfs are incomparable with right-linear
simple matrix languages, an issue discussed more thoroughly in the first part of
the conclusions.

Definition 15 (n-parallel right-linear grammar) For n > 0, an n-parallel
right-linear grammar (n-PRLG) is an (n + 3)-tuple G = (NVy,...,N,,T, S, P),
where N;, 1 <14 < n, are pairwise mutually disjoint nonterminal alphabets, T is
the terminal alphabet, S ¢ NUT is the start symbol where N = Ny U...UN,,
and

PCNx(T*NUTH)U{S} x (Ny...N,UT"

is a finite set of rules, written X — x.

The yield relation is defined as follows: for z,y € (NUT U{S})*, z = y iff
eitherx =S and S >y € P,orz =1 X1...ynXn, ¥ = Y121 - . YnZp, Where
Yy €T*, z; e T*N;UTT, X; € N;and X; — x; € P, 1 <i<n. We extend =
to = in the usual way. L C T* is an n-parallel right-linear language (n-PRLL)
iff there exists an n-PRLG G generating L. The family of n-PRLL is denoted
by Rn. Let Ry =,,>1 Rn-

Rosebrugh and Wood have shown that R, is strictly contained in the family
of n-right-linear simple matrix languages, a class which we do not introduce
formally here. We refer the reader to [11, 21, 37].! Below, instead, we introduce
matrix languages of index n which, in turn, generalize the n-right-linear simple
matrix languages.

Loosely speaking, one can think of an n-PRLG as consisting of n right-linear
grammars working in parallel. There is one subtlety one has to observe: at the
very beginning, there is some sort of coordination between the grammars, since
the start points of the grammars are selected in a coordinated manner. If this
feature is excluded, one arrives at the so-called n-parallel finite state languages
which form the proper subclass 7, of the class R,,, see [43, 44].

We would like to discuss briefly the relations to terminally synchronized
centralized PCGS as introduced by [28, Section 5] shortly, supplementing [28] in
this way. Without giving definitions and details here, we mention the following
properties:

1. For every terminally synchronized centralized PCGS with right-linear com-
ponents, there exists an equivalent system of the same kind with only two
components. Namely, since there will be only (at most) one query of
some non-master component at the end of the derivation, one non-master
component can simulate a bunch of non-master components by nondeter-
ministic choice at the very beginning of its computation. This observation
somehow sharpens [28, Theorem 6] for our purpose.

IThe formalism of right-linear tuple languages is equivalent to right-linear simple matrix
languages, see [25, 33]. The language class has been named “equal matrix languages” by
Siromoney [37].

10



2. The language class derivable by terminally synchronized centralized PCGS
with right-linear components are strictly included in the class PCoGSTT.
Due to the first property, we may assume that the terminally synchronized
centralized PCGS which we have to simulate has only two components.
Now, interpreting the query symbol as a terminal symbol proves the in-
clusion. The strictness may be seen through Example 6, since the systems
according to Paun’s definition can only generate context-free languages,
see [28, Corollary 1].

3. The language class derivable by terminally synchronized centralized PCGS
with right-linear components are included in the class R2. Actually, an
argument as in the previous point applies.

Theorem 16 R, C PC,GSTTI1s.

PrOOF. Let G = (Ny,...,N,,T,S, P) be an n-PRLG. Let N = {J;_, N;.
We give a simulating PCGSTTfs with |N| + 1 components, namely a master
component M and components G4, where A € N. Let g4 denote the query
symbol for component G 4. M has the following rules:

e a “waiting rule” S — S;

o for every rule S — y with y € T*, S — y is contained in the master’s rule
set; and

e for every rule S — X;...X, with X; € N;; S = ¢x, -..qx, is in the
master’s rule set.

Component G 4, where A € N;, has the rule set PN N; x (T*N; UTT).

The strictness is easily seen by making use of Example 13. The fact that
that language is not contained in R, can be seen by noticing that that language
is not even a linear simple matrix language, see [11, Lemma 1.5.6(iii)]. m|

It is moreover possible to characterize R, languages in terms of PC,GSTTfs:

Theorem 17 L € R, iff there exists a PCGSTTfs T' whose non-master com-
ponents are grouped into n disjoint sets whose query symbols are from K;, with
L(T) = L such that T'’s master contains only one form of rules besides the wait
rule S — S, namely, rules of the form S — k, where S is the master’s start
symbol and k € K1 ... K, is a string of query symbols.

Sketch of Proof: The previous theorem shows that each R. language can be
simulated by a PCGSTTfs of the required form.

On the other hand, if we are given a PCGSTTfs of the required form, let us
assume that all nonterminal alphabets of all components are pairwise disjoint.
We then put all rules of all non-master components into the simulating PRLG
rule set plus rules of the form S — X; ... X, iff S — ¢;, ... q;, is a query rule in
the master component of the simulated PCGSTTfs and X is the start symbol
of component i; for 1 < j < n. m|

Furthermore, we mention without proof:

11



Theorem 18 L € 7, iff there exists a I' € PC,,GSTTfs, with L(T') = L such
that T'’s master contains only one form of query rules, namely, rules of the
form A — vqs .. .qn, where A is some nonterminal symbol of the master and vy
is some terminal string. O

Definition 19 (matrix language of index n) A matriz grammar (cf. [11])
is a quintuple G = (N, T, M, S), where N, T, and S are defined as in Chomsky
grammars (the alphabet of nonterminals, the terminal alphabet and the axiom)
and M is a finite set of matrices, each of which is a finite sequence m : (a; —
Bi,az = Ba,...,ar = Br), 7 > 1, of context-free rewriting rules over V.= NUT.
For some words z and y in V* and a matrix m : (aq — f1,02 = fa,...,0p —
Br) in M, we write z =y (or simply z = y if there is no danger of confusion)
iff there are strings xoyjarl,...,mr (called intermediate sentential forms) such
that 29 =z, z, =y, and for 1 < <,

! ! ! *
XTio1 = Zi—10uZi_q, T; = Zi—1i%;_, for some z;_1, z;_4 € V*.

The language generated by G is defined as L(G) = {w € T* | S = w }.

G is of index n (cf. [11, 26]) if every terminal word derivable in G has a
derivation where each of its intermediate sentential forms has less than n +
1 occurrences of nonterminal symbols. The corresponding language class is
denoted by MAT ,(CF) or MAT,(CF) if the index is not important. L €
MAT .(CF) is also called a matrix language of finite index.

Theorem 20 PC,GSTTfs C MAT.(CF).

PrOOF. We sketch the simulating matrix grammar in the following. Let
I = (N,K,X%,G1,...,Gpn) be a PC,GSTTfs. We may assume that all non-
terminal alphabets of the components of the simulated PCGSTT I' are pairwise
disjoint. Moreover, without loss of generality we can assume that all non-master
components when considered “stand-alone” (i.e., as usual right-linear gram-
mars) generate infinite languages. Let S; be the axiom of the ith component
G;. Now, we can describe the simulating matrices:

Start rules: If there is a rule A — sg;, ...q; B in the master grammar of the
simulated PCGSTT where A € N and B € NU{\}, s € £* and ¢;, € K,
then we put a start matrix of the form

(S — (Sl,il ’Lk,S)SSl S,kE)

into the matrix set of the simulating grammar, where £ = ) if B =
A and E is a new distinguished nonterminal, otherwise. In this way, a
nondeterministic guess of the querying rule the master will choose some
time in the future is made. This starts the simulation of the grammar
components which are going to be queried in the correct way. Note that
we do not have to worry about simulating grammar components which
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are not going to be called, since they will restart after the future query
(of other components) due to the returning mode.

If there is a rule A — s in the master grammar of the simulated PCGSTT
where A € N and s € X*, then we put a start matrix of the form (S — S1),
as well as a terminating matrix of the form (A — s), into the simulating
matrix grammar.

Simulation of a normal rewriting step: Assume rules A; — «;B; from
Gl: T(J) = A’ij — aijBij from Gij; A17A’i17 - '7Aik7BlaBi17' i 7Bik € N7
where identical rules 7(j) = r(j') are selected if i; = ij. Such rules are
simulated in the matrix grammar by the matrix

((Alail ...ik,S) - al(Blail ---ik;3)7Ai1 - ai1Bi17---aAik - aikBik)7

where the indices i1, ...4; and the terminal string s come from the first
case discussed in the start rules;

If there is a rule A — s in the master grammar of the simulated PCGSTT,
we add the matrix (A; — a1 B1) to the matrix set.

Simulation of a communication step of the form A — sg;, ...¢; B in the
master grammar of the simulated PCGSTT, where A € N and Be NU
{A}, s € ¥* and ¢;; € K: Let r(j) = A;; — «;; be terminating rules
of Gj;, ie., a;; € T*, where identical rules r(j) = r(j') are selected if
ij =1 .
In the case B # A, consider the matrix
((A,il ...ik,S) — /\,141'1 — ail,...,Aik — Ozz'k,E — (B,jl ...jg,t)tSjl ...Slel),

where we assume that there is a rule B — tg;, ...¢;,C in the master
grammar of the simulated PCGSTT, where B € N and C € N U {)\},
te€¥* and g;; € K, and E' = X if B = X\ with E' = E otherwise.

In the case B = A, consider the matrix

((A,il ...7:]9,8) — )\,Ail — ail,...,Aik —>a,-k).

Observe that the simulating matrix grammar has finite index, but this index
need not correspond to the number of components of the simulated PCGSTT,
as the following example shows. m|

Example 21 The language sequence L, = { (a™b)™ | m > 0} has an arbitrar-
ily large matrix grammar index (refer to the proof of Theorem 3.1.7 in [11]),
but each of these languages lies in PCo GSTTHs (more specifically in PC,GSTT),
since the master needs only to query the same second component n times.

In view of the results of the preceding section and keeping in mind the fact
that MAT . (CF) forms an AFL, it would be interesting to see a proof of the
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conjectured strict inclusion of PC,GSTTfs within MAT .(CF), as well as of the
strictness of the inclusion of the smallest AFL containing PC.GSTTfs within
MAT «(CF).

Due to [11, Lemma 3.1.5], we may conclude:

Corollary 22 Fach language in PC.GSTTfs is semilinear.

6 Remarks on Complexity

We now turn to the complexity of the membership problem. Actually, we deal
with the so-called fixed membership and the non-emptiness problems. The
first of these problems fits profits from the language-theoretic hierarchy con-
siderations of the preceding section. More precisely, we consider the following
membership problems:

Fixed membership with fixed number of components in the case of PCGS:
Let a PCGS G with n components be fixed.
For given word w, is w € L(G)?

Fixed membership with fixed index in the case of matrix grammars of fi-
nite index: Let a matrix grammar G of index n be fixed.
For given word w, is w € L(G)?

NL denotes the class of languages which can be accepted by nondeterministic
Turing machines whose working tape is logarithmically space bounded.

It is known that the fixed membership problem with fixed index is NL com-
plete in the case of programmed grammars of finite index, see [16, Fig. 1]. This
implies, in particular, that MAT.(CF) is contained in NL due to [11, 35].
Fortunately, the classical techniques developed by Sudborough are applicable
[39, 38] to our language classes, so that we can show NL-completeness for our
variant rather straightforwardly. Namely, we have shown in Example 7 how to
encode the graph accessibility problem of directed graphs into a PCGSTT with
only three components. Hence, we can conclude:

Corollary 23 For each n > 3, PC,,GSTT and PC,GSTTfs are complete for
NL. m]

Since PC1GSTT = PCyGSTT coincides with the regular languages, we may
state:

Corollary 24 PC,GSTT and PC;GSTTfs are complete for NC*. a

(The complexity class NC! is defined via special forms of circuits. For further
information, the reader is referred to any modern textbook on computational
complexity.)

When analyzing Example 7, we notice that the third component is only
needed to “hide” the path which is created by the second component within a
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list of further edges, so that a simulating logspace Turing machine needs to be
able to make nondeterministic choices. Therefore, by making use of a similar
construction, hardness of PCoGSTT for the class L, i.e., deterministic logspace,
can be shown.

Corollary 25 PCy;GSTT and PCo,GSTTfs are hard for L. |

Unfortunately, we do not know whether any of these two classes is contained
within L. We also do not know containment in superclasses of L which are
subclasses of NL (e.g., so-called symmetric logspace or unambiguous logspace),
see, e.g., [23].

Now, we turn to the non-emptiness problem.

Theorem 26 For each n € N, the non-emptiness problem for PC,GSTT and
for PC,GSTTfs grammar systems is complete for NL.

PROOF. Since the non-emptiness problem is complete for the right-linear
grammars which coincide with PC;GSTT = PC;GSTTfs in our notation, the
claimed NL-hardness follows immediately.

We need to show how an instance of the non-emptiness problem can be
solved on a nondeterministic Turing machine with logarithmic work tape. We
only sketch this in the following.

Let T = (N,K,%,G1,-..,Gy) be a PC,,GSTTfs. L(T") # 0 iff there are
communication points ki,...,k. € K1 such that, for some terminal strings
w1, ..., wr4+1 and nonterminals Ay, ..., A, of the master (where Ag is the mas-
ter’s axiom),

Ao :*> ’U)1k1A1 é ’11]2]?2142 é . =*> ’U)rk‘rAT é Wr41

is a valid derivation (of the master grammar). We assume that “intermedi-
ately” (i.e., in derivation steps indicated by :*>), there are no communications.
This validity of course depends on the derivability of strings in a certain num-
ber of derivation steps in the called components. Let K; C K be the set of
components called, possible more than once, through k;. Clearly, the derivation
sketched above is valid if all called components in each of the sets K; yields some
terminal string. The simulating nondeterministic Turing machine proceeds as
follows:

REPEAT FOREVER

Guess whether there will be a next communication point.

IF not: Verify non-emptiness as for right-linear grammars (only consider
the master component); in parallel: verify that all other components! may make
at least as many derivation steps as the simulated master component did. IF
successful, answer: YES (to the non-emptiness question).

IF so: Simulate in parallel all components, i.e., start with all components
with the start symbols, and then repeatedly update all nonterminals of all n
components’ according to the grammar rules. In such a simulation, only the
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nonterminal symbols need to be recorded and not the terminal strings. Of
course, the communication points are also of interest. If, in the course of such a
simulation, the master introduces some k; € K7, then all queried components
must be able to generate a terminal string at this point.

END REPEAT

Observe that a dagger symbol ! indicates a place where it is necessary that
we fix the number of components in order to stay in NL, i.e., treat the non-
emptiness problem for PC,,GSTT and not for PC,GSTT. O

Question: Is non-emptiness for PC,GSTTfs hard for P? Observe that non-
emptiness is even PSPACE-complete for MAT ,(CF), see [16, Fig. 1].
Acknowledgments: We thank Markus Holzer for discussions regarding this
section.

7 Concluding Remarks 1

We introduced a new class of right-linear PCGS which fit nicely into previously
defined language models (it lies between PRLL languages and matrix languages
of finite index) and possesses attractive language theoretic properties. Any-
how, many things remain to be clarified from a formal language point of view.
We mention, especially, the exact relations to obviously related (but probably
incomparable) classes like right-linear simple matrix languages and regular va-
lence languages. {a™b™ | n > 0}* is an example of a PCGSTTfs language
(see Example 13) which is neither a right-linear simple matrix language nor a
regular valence language, see [21, 22]. On the other hand, we conjecture that
the right-linear simple matrix language { wh(w) | w € {a,b}*}, where h, the
morphism defined by h(a) = b and h(b) = a, is not a PCGSTTfs language and
that the regular valence language { a™b™a™b™ | n,m > 0} is not a PCGSTTfs
language.

Moreover, decidability questions have been tackled only superficially.

We just mention here that a result of Wood [44] can be sharpened by stating
that each 2-parallel right-linear language is a regular additive valence language
or, equivalently, a language acceptable by a nondeterministic finite automaton
with one blind counter [20]. That result can be generalized to the following fact
which we state without proof:

Theorem 27 R, is contained in the class of reqular multiplicative valence lan-
quages>. O

On the other hand, we remark that the family of languages acceptable by non-
deterministic finite automata equipped with one blind counter which is allowed
to make at most one turn (i.e., one change between an incrementing and a decre-
menting phase), a family which can be characterized as the least trio containing

2or, equivalently, in the class of nondeterministic finite automata with multiplication with-

out (intermediate) equality tests, cf. [22]
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{a™" | n > 0}, see [8], is included in the family of 2-parallel languages. The
simulation itself is rather straightforward; the “first grammar” has only to mem-
orize its target state (which is reached exactly at the point where the simulated
grammar [or automaton] makes its turn) which is the interface to the “second
grammar” working in parallel (hence, simulating the counter applications).

The most important language theoretic issue would be to develop criteria for
proving non-containment of certain languages in PC,GSTT and PC,GSTTfs.

Let us mention, finally, that it is quite easy to develop “analyzing” or
automata-theoretic models equivalent, in particular, to PC,.GSTTfs (also, in the
case when generalizing those systems by allowing arbitrary context-free compo-
nents), a task which has been proved to be quite hard for the “classical” PCGS
definition, see [7].

Part 2: Language Identification

8 Machine Learning

The topic of Machine Learning possesses an ever-growing field of applications,
in particular triggered with the advent of the internet as a mass medium and
the need to collect pieces of information automatically, leading to newly coined
catchwords like “data mining” and “discovery science”.

There are various models of machine learning around, i.e., ways to formalize
an automatic induction process. The simplest one is certainly “identification
in the limit from positive samples”, which was introduced by Gold in 1967 [19]
and further studied by Blum & Blum in [6] and Angluin [2]. The identifica-
tion machine IM gets an infinite stream of words (wi,wa,...) (possibly with
repetitions) from the (unknown) target language L = {w;, w2, ...} and outputs
a hypothesis device (grammar or automaton in most cases) Dy after having
received the words wy,...,wy . L is identified by IM if the sequence of devices
Dy, D, ...converges to some D with L(D) = L in the discrete topological space
of devices, i.e., there is a constant n (depending on the enumeration of L) such
that for all ¢ > n, D; = D,,. IM is called a learner for a language class L iff
IM identifies any language from £ correctly and independent of its enumeration
order (which may also contain repetitions).

Unfortunately, the learning model is very weak from a formal language point
of view. For example, Gold has shown that there is no learner for a “superfinite”
language class, i.e., a class containing all finite and at least one infinite language.
This seems to exclude any reasonable class of formal languages, since nearly all
“nice” language properties concerning closure operations are lost. In particular,
all classes of the Chomsky hierarchy are not identifiable.

(From a philosophical viewpoint, the non-learnability of any superfinite lan-
guage class is not such bad news: obviously, for the task of induction, it is nec-
essary to generalize from some given finite sample set towards a concept, i.e.,
an infinite language. This means that any finite sublanguage of that concept
which contains the given finite sample set (which is also called a “characteristic
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sample (set)” of the concept) cannot be learned, since it would immediately be
generalized to the (hopefully intended) concept.

The weakness of the model results, in particular, from four facts: (1) The
such-defined learning algorithms are deterministic (i.e., they do not contain
stochastic elements), (2) exact (not approximate) identification is required, (3)
no further information (like “negative samples”) is given, and (4) the IM is
“passive” and cannot ask questions to a “teacher” on its own. On the other
hand, the first three points make the language classes amenable to analysis
using tools from formal language theory.

9 Identification of PCGS Languages

One way to show identifiability is to transfer known results on learning by
formal language constructs. This has been successfully undertaken by using
control languages [13, 18, 40, 41] and certain context conditions [17]. We try to
pursue a similar method in the case of PCGS here.

In order to explain the difficulties that arise in this approach when taking
the “classical” PCGS definition, let us describe a typical identifiable subclass of
regular languages.

9.1 Terminal Distinguishable Right-Linear Languages

Let « € ¥*. Then, define Ter(z) = {a € ¥ | uav = z and u,v € ¥*} and
Ter(L) = Uy, Ter(w).

Definition 28 Let G = (N, T, P, S) be a right-linear grammar with
P C (N\{S}) x (T(N\{S}) U {S} x (N \ {S}).

G is called terminal distinguishable right-linear, or TDRL for short, if it has the
following properties:

1. G is backward deterministic. (B — w and C — w implies B = C).

2. For all A e N\ {S} and for all z,y € L(A), Ter(z) = Ter(y) holds.

3.If (a) S— Band S — C are in P with B # C or

if (b) A = aB and A — aC are in P with B # C, then Ter(B) # Ter(C).

It has been shown in [13] based on [14]:

Theorem 29 A language is TDRL for short iff there is a TDRL grammar
generating it. O

In actual fact, Radhakrishnan and Nagaraja [29, 30] had already claimed a
similar grammatical characterization for TDRL, but they gave no proof. Our
grammatical definition of TDRL mainly adds point 3(a) to their definition, but
this turns out to be an essential point in the equivalence proof. For further
discussions, we refer to [13].
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How does an inference algorithm for TDRL work? We need some auxiliary
notions to explain its behaviour. The algorithm receives an input sample set
St ={wi,...,wm}. Let w; = aj1...Qip,;, where a;; € 2,1 <i<M,1<j<
n;. The skeletal grammar for the sample set is defined as

Gs+ = (Ns+U{S}X,Ps+,S), where
Ng+ = {Ny|1<i<M,1<j<n;} and
Ps+ = {S—=>Ny|1<i<M}

U {Ni]-—>az-jN,~,j+1|1§i§M,1§j<n,~}
U {Nin maim |1<i< M}

The frontier string of N;; is defined as FS(NV;;) = aij...ai;. This means
that L(N;;) = {FS(N;;)}. The head string of Nj; is defined by the equation
HS(N”)FS(N”) = W;, i.e., HS(N”) = Q1 ..-055-1-

Now, consider to nonterminals NN; ; and Ny ; of a right-linear skeletal gram-
mar as TDRIf—faquz'valent, denoted by J'Vi,j =TDRL N, i}‘f ETDRL:‘:\+D I
i.e., the transitive closure of the reflexive symmetric relation =pRt,, which is
given by Ni’j :TDRL Nk,l iff

1. FS(N;;) = FS(Niy) and Ter(HS(N; ;) = Ter(HS(Ny.)), or
2. HS(N;;) = HS(Ni,).

Without formal proof, we state:

Lemma 30 =TpRy, s an equivalence relation on the set of nonterminals of
the skeletal grammar Gg+. m|

Now, define the grammar G as having nonterminals [N]TpRL,, Where [N]TpRI,
is the set of those nonterminals of Gg+ which are TDRL-equivalent to N, and
the following rules:

initial rules S — [N;1]TpRy, for some 1 <i < M;

transition rules [N;;|TpR1, = @i.;[NVij+1]TpRL for some 1 <i < M, 1<
7 < ny; and

terminal rules [N; ., ]TpRL, = @i,n; for some 1 <i < M.

Since G is reduced, G is isomorphic to the canonical objects for TDRL
defined in [13, 14] in terms of product automata. Hence, the sketched procedure
is indeed an identification algorithm for TDRL.

As exhibited in [14] (based on the implementation of the O-reversible lan-
guage identification algorithm due to Angluin [3]), the algorithm sketched above
can be implemented to run in nearly linear time, i.e., in time O(a~'(2%n)2n),
where £ is the size of the input alphabet (this will become somewhat important
in the following investigations), n is the total input size and a~! is the inverse
of the Ackermann function as defined by Tarjan [42].
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Example 31 The skeletal grammar of ST = {w; = ab, ws = aab} is:

Gs+ = ({S,Ni1,N12,Na1, Nag, Nag, Nog}, {a, b},
{S = Ni1,N11 = aNi2, N12 = b,
S — N21,N21 — aN22,N22 — aN23,N23 — b},S) .

€ Ng|HS FS Ter(FS)
N11 A ab {a,b}
a b {b}
Ny A aab {a,b}
Nya a ab  {a,b}
N23 aa b {b}

The reader may verify that the inferred grammar is

G =({S,A,B},{a,b},{S—> A, A— ald,A— aB,B = b},5),

where A = [Nll]TDRL and B = [le]TDRL More precisely, A= {NII; N21, N22}
and B = {Nj2, Nag}. G generates {a"b | n > 0}.

In addition, “structural information” is sometimes provided to the learning
algorithm (see [36] in the case of TDRL). It is argued that in applications,
certain structural information is always known.

9.2 Structural Information in PCGS

In the case of PCGS, typical structural information would concern the data
communication. Having this information somewhat supplied, a natural idea
would be to “learn” every component language separately. The main difficulty
in this approach lies in the fact that classical PCGS allow the communication
of “state information”, i.e., nonterminals, from one component to another. It
is not clear how to cope with these symbols without telling the IM beforehand
which nonterminals will occur in the grammar, information which is generally
regarded as part of the inference task.

Therefore, we introduced a variant of right-linear PCGS to avoid this draw-
back.

10 Concerning Learnability

We discuss PCGSTT whose grammar components are, in some sense, TDRL
languages. To this end, we must include the information of where transmission
of terminal strings occurred explicitly within the sample words.

In order to define the inclusion of the transmission information rigorously,
let us reconsider the definition of a derivation step between two configurations
(x1,...,zn) and (y1,...,yn) of a PCGSTT T = (N, K, X%, Gy, ...,G,). We con-
centrate on centralized returning PCGSTT in the following. When z; contains
no query symbol, the relations =g and =g we are going to define coincide with
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=. If z; contains at least one occurrence of query symbols, we obtain a differ-
ence. Let z1 be of the form z1 = 2qi, ¢, - --qi, A, where z € ¥*, A € NU {\}
and ¢;, € K, 1 <1 < t. In this case, y1 = 21¢i, i, - - - ¢i, Tiy Tiy - - - T, A in the
case of the relation =¢ and y1 = 21¢;,¢;, - - - ¢;, A in the case of the relation
=¢. The other parts of the definition of =g and =¢ are as in the definition
of =, especially concerning the differences between the fully synchronized and
normal mode of derivation.

Definition 32 Let I' = (N, K, %, G4, ...,Gy) be a PCGSTT with master gram-
mar G4 and let (Si, ..., S,,) denote the initial configuration of T'. The Q-language
generated by the PCGSTT T is

LoT) ={a1 € T* [ (S1,.--,80) =05 (1,---,an)}.
The Q'-language generated by the PCGSTT T is
Lo/(T) ={ar €T | (S1,...,8) =g (a1,...,a0)}.

Therefore, an idea would be to design an inference machine for Lg(T) in-
stead of L(T). In this way, we formalize what we mean by explicit information
about the communication structure. Since the contributions of the non-master
components cannot be uniquely reconstructed from this representation, we con-
centrate on what we call even PCGSTT. A PCGSTT is called even if every
right-hand side a of every rule in the PCGSTT contains exactly one symbol
from the terminal alphabet X.

Consider the following example:

Example 33 T' = ({51, S2, S5}, {¢2,43}, {a,b}, G1,G2,G3), where G; contains
the rules S; — aS1, S1 — agz2q3, G2 contains the rules Sy — bSy and S2 — b,
and G3 contains the rules S3 — aS; and S3 — a. Obviously, T' is an even
PCGSTT. Considered in the full synchronization mode, I' generates

L(T) = {a™b™a™ | m > 0}.
Moreover, we find that
Lo(T) = {a™g2q3b™a™ | m > 0} and
Lq(T) = {a™gag3 | m > 0}.

Given some word a™g2q3b™a™ in the example above, it is quite easy to tell
what the exact contributions of the non-master components are, since I' was
even and worked fully synchronized; namely, since the word derived by the
master component up to the first query situation has length m, each of the
two words queried from components 2 and 3 must have length m, too. This
means that ™ has been contributed by the second component and the postfix
a™ has been contributed by the third component. Moreover, it is easy to see
that the word a™gags from Lg: (T') “corresponding” to a™gqag3b™a™ in Lg(T)
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can be deduced in this fashion, as well. Observe that Lg' collects the genuine
contributions of the master grammar.
In general, we obtain the following decomposition algorithm.

Algorithm 34 (Decomposition algorithm)
Let w = vikivoks ... vpkevey1 be in the Q-language of some even PCGSTTfs,
where v; € * and k; € Kt; more precisely, let k; = g1 ...q;,j;, with ¢;; € K.

Then v, can be decomposed as va = v1,1 ...v1,j, V5, Where |[v1| = |v11] = ... =
|v1,4,], since v1,m is the contribution of the mth component queried by the
master in step m; therefore, |vi,;,| = |vi|. Similarly, vs can be decomposed as
U3 = Va1 ...U2j,Vs, where |vh| = |va1| = ... = |va ;| and so forth. Finally, v,yq

is a part which is derived by the master grammar only (without further queries
to other components).

This decomposition allows us to use the following inference algorithm (based
here on the inferrability of TDRL; of course, any inferrable regular language
subclass could be “plugged in” instead) for the class which we are going to call
TDRL-PC, GSTTfs.® More precisely, let TDRL—PC,,GSTTfs denote the class
of languages which will be output by the inference algorithm given below. The
corresponding languages contain query symbols as guidance for the inference
procedure.

Algorithm 35 (Inference of TDRL — PC,,GSTTfs)

1. Every input word w can be decomposed in order to obtain sets of words
W; generated by component i.

2. W; can be given to a TDRL algorithm for the ith component.

We have to be a bit careful with the master component, due to the presence
of query symbols in words from L.

We suggest the following variant for coping with query symbols:

A word

Wi = a1 - Qi K1 541 -+ Qi in ko - R pQi g0 - - Gy,
from Lo with a; ; € X and k; ; € K+ can be generated by using the rules
e S— N,
o N;j—a;;jNijp1forj#i,,1<v<~I041,

° Ni,i,, — ai,iuki7,,Ni,iy+1 for 1 S v S E, and

3Let us point the reader to a subtle minor point we will not discuss further: The TDRL
grammars which are inferred by the algorithm given above are not “even” according to our
PCGSTT definition, since the start symbol plays an extra role. However, this does not affect
the decomposition algorithm just described and may, hence, be neglected.
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b B30 41 - Qiigyq -

The merging conditions are as before, now considering “symbols” which are in
fact words from X K™*. This means, in particular, that the “alphabet” one has to
consider is not fixed beforehand but may keep on growing for some time when
new examples (with new sequences of query symbols) emerge.

Let us explore this phenomenon a bit more formally. Consider some language
Ly . Let Q@ = {g € Kt | Juagbv € Lgy,a,b € £}U{A}. Consider [EQ] = ZQ as
a new alphabet and the natural homomorphism & : [EQ]* — (£ U K)* defined
as the trivial decoding h(ag) = ag for a € ¥ and symbols ¢ from Q. Then, L¢g
will be inferred by the suggested algorithm iff h~!(Lg) C [EQ]T is a TDRL
language.

Let us continue our example in order to clarify our ideas:

Consider as input words agsgszba and aagsqsbbaa.

This means that the words [agags] and [a][ag2gs] are passed to the TDRL
inference algorithm of the master grammar. That inference algorithm would
yield S1 = Ni11, N11,1 — aNig,1 and Ny11 — agags. (We use an additional
index in the nonterminals to distinguish the different grammar components.)

Similarly, the words b and bb are given to the TDRL inference algorithm
of the second component, yielding the rules So — Na 1,1, Na1,1 = bN2,1,1 and
N2,1,1 — b.

Analogously, the TDRL inference algorithm for the third component outputs
the rules 53 — N3’1’1, N3’1’1 — aN3,1,1 and N371,1 — a.

In this way, a correct PCGSTTfs is induced.*

Is there a way of characterizing the language class TDRL — PC,GSTTfs
somehow? It is tempting to assume that Lg € TDRL — PC,GSTTfs iff the
“component languages” (as they could be defined by the decomposition algo-
rithm given above) lie in TDRL. There is one subtle thing that this conjecture
might overlook: It is possible that not all words of the language generated by
a non-master component are actually queried by the master; more precisely, we
have to single out the length of words which could be queried by the master.
Let M; be the set of lengths of words generated by the ith component which
can be queried by the master.

In order to understand this difficulty, consider the following example:

Example 36 T' = ({51,571, 52, S3}, {¢2, 3}, {a, b}, G1,G2,G3) where G con-
tains the rules S; — aSj, S — aS; and S| — agaq3, G2 contains the rules
Sy — bS; and Sy — b, and G5 contains the rules S3 — aS3 and S3 — a.
Obviously, T is an even PCGSTTfs. We have

L(T) = {a®"b*"a®™ | n > 0} .

The inference algorithm would yield —after the trivial conversion into the even
PCGSTTfs form discussed in the footnotes above— the system

= ({‘5175{752,5575375&}7 {q27q3}7 {aab};G17G27G3)7

41t is trivial to convert this induced PCGSTTfs into an equivalent even PCGSTTfs.
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where (1 contains the rules S; — aSi, S] — aS1 and S| — agags, G2 contains
the rules Sy — bS5}, S5 — bSs and S) — b, and G3 contains the rules S5 — a5},
Si — aS; and S§ — a. Obviously, I is an even PCGSTT{s which is equivalent
to I'.

Nevertheless, we can state:

Theorem 37 Fizn € N. Lg € TDRL — PC,,GSTTfs iff
e h™'(Lg ) € TDRL, and
o for all 2 < i <mn, there exists a language L; € TDRL such that
Lin{weX*||w € M;}
is the language queried by the master component.

ProoF. Consider a grammar system which is output by the identification
algorithm. Obviously, the Lg language of such a system is of the form required
by the theorem.

On the other hand, consider a language Lg satisfying the above require-
ments. Observe that the length sets M; can be computed from the words in
Lg. Now, let h™'(L¢) be enumerated as input of the TDRL-identification al-
gorithm of the master component. Obviously, since h=!(L¢/) € TDRL and due
to the identifiability of TDRL, there will be some time step n; of this algo-
rithm from which on the hypothesis grammar for the master component will not
change any more and the corresponding generated language equals h='(Lg).

Now, consider some enumeration of L} = L; N {w € ¥* | |w| € M;} to
the TDRL identification algorithm (of the ith component). Due to [14, Lemma
9], the finite automata sequence corresponding to the output sequence of right-
linear grammars evoked by the enumeration of L} consists solely of sub-automata
of the canonical finite automaton A of L; (where “canonical” refers to the defini-
tions in [13, 14]). Since the identification algorithm is conservative in the sense
that it does not change its hypothesis as long as it is consistent with all the enu-
merated samples, and since the search space (the subautomata of A) is finite,
the algorithm will converge, i.e., the output will be constant from a certain time
step m;o onward, yielding some L; satisfying L, = L; N {w € * | |w| € M; }.
In conclusion, the proposed identification algorithm will converge, and the ob-
tained TDRL — PC,,GSTTfs system generates Lq. m|

Corollary 38 For eachn > 1, the class TDRL — PC,,GSTTfs is identifiable in
the limit from positive samples. O

Let us mention that the canonical objects required to define the convergence
of the identification algorithm properly can be easily derived from the previous
theorem and the canonical objects for TDRL-languages, as exhibited in [13, 14].
Moreover, in this way, suitable characteristic samples for languages in TDRL —
PC,,GSTTfs can be obtained.
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It is easy to see that in this way, one extends the class of identifiable lan-
guages (compared to the basic class TDRL) considerably at the cost of providing
the additional transmission information contained in Lg. Of course, one can
consider “standardized” or uniform transmission information. For example, as
suggested by Theorems 17 or 18, one can define learnable subclasses of R..

11 Concluding Remarks 2

In the second part of this paper, we discussed identifiability of language classes
defined via right-linear PCGS with terminal transmission. We focussed on the
notion of terminal distinguishability. Naturally, similar results can be obtained
based on f-distinguishable languages for some arbitrary so-called distinguishing
function f, see [13]. Referring to the formal language problems discussed in the
first section, we mention that these questions could be discussed for subclasses
such as TDRL — PC,GSTTfs, as well.

Of course, the practical applicability of the sketched learning approach has to
be verified. Here, it is natural to make experiments with identifiable subclasses
of the regular languages different from TDRL, as well.

We only sketch one possible application scenario, motivated by discussion
with people working in the hardware manufacturing industry:

Consider some hardware where some central unit collects its own error pro-
tocol, as well as the protocols of other components. Based on these common
error protocols of the whole machine (each common error protocol corresponds
to one run of the machinery), an engineer has to extract the “typical errors” and
express these as regular expressions (for each of the hardware units). Assuming
the different hardware components to be finite automata (which is, indeed, rea-
sonable from a practical viewpoint) and assuming, further, that the protocols
allow for distinguishing the origin of different error messages (as can be done in
the formalization developed above by means of the decomposition algorithm),
some inference algorithm for PC,,GSTTfs can be used to aid the engineer in
his/her task, where n is the total number of hardware components involved.
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