Nonterminal complexity of
programmed grammars

Henning Fernau

WSI-2000-26

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Universitat Tibingen
Sand 13
D-72076 Tubingen
Germany

email: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2000
ISSN 0946-3852

Nonterminal complexity of
programmed grammars

Henning Fernau
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tiibingen
Sand 13
D-72076 Tiibingen
Germany
email: fernau@informatik.uni-tuebingen.de

December 30th, 2000

Abstract

We show that, in the case of context-free programmed grammars with
appearance checking working under free derivations, three nonterminals
are enough to generate every recursively enumerable language. This im-
proves the previously published bound of eight for the nonterminal com-
plexity of these grammars. This also yields an improved nonterminal
complexity bound of four for context-free matrix grammars with appear-
ance checking. Moreover, we establish an upperbound of four on the
nonterminal complexity of context-free programmed grammars without
appearance checking working under leftmost derivations of type 2. We
derive nonterminal complexity bounds for context-free programmed and
matrix grammars with appearance checking or with unconditional trans-
fer working under leftmost derivations of types 2 and 3, as well. More
specifically, a first nonterminal complexity bound for context-free pro-
grammed grammars with unconditional transfer (working under leftmost
derivations of type 3) which depends on the size of the terminal alphabet
is proved.

1 Introduction

Descriptional complexity (or, more specifically, syntactic complexity) is inter-
ested in measuring the complexity of describing objects (in our case, formal
languages) with respect to different syntactic complexity measures. In partic-
ular, very economical presentations of languages are sought for. For example,
Shannon [21] showed the nowadays classical result that every recursively enu-
merable language can be accepted by some Turing machine with only two states.

Similar complexity considerations may be carried out for any language de-
scribing device. In the case of grammars, natural syntactic complexity measures
are the number of nonterminals and the number of rewriting rules. In this pa-
per, we will consider the nonterminal complexity of certain regulated grammar
formalisms which characterize the recursively enumerable languages. In the lit-
erature, several interesting results on this topic appeared in recent years. For
example, in the case of scattered context grammars, there has even been some
sort of race for the smallest possible complexity bound, see [14, 15, 16]. Here ,
we will concentrate on the question: how many nonterminals must a context-
free programmed grammar (working under free derivation) with appearance
checking necessarily have in order to be able to generate every recursively enu-
merable language? Previously, a solution using eight nonterminals has been
known [4, Theorem 4.2.3]. We improve this bound to three by using a rather
intricate Turing machine simulation. This is our main result. This result could
also be useful within the emerging area of membrane computing [19]. As a
corollary, we derive that three nonterminals are enough to generate every recur-
sively enumerable language by using context-free programmed grammars with
appearance checking working under leftmost derivations of type 3. The same
bound was previously claimed for context-free programmed grammars without
appearance checking working under leftmost derivations of type 2 by Meduna
and Horvéth [17, Theorem 5] (within Kasai’s formalism of state grammars [13]).
Since we think that the proof given there is incorrect, we give a new charac-
terization of the recursively enumerable languages through programmed gram-
mars without appearance checking working under leftmost derivations of type
2 with four nonterminals based on the construction leading to our main theo-
rem. Similarly, a nonterminal bound of four can be derived for grammars with
unconditional transfer checking working under leftmost derivations of type 2.

Our main result also yields an improved nonterminal complexity bound for
context-free matrix grammars with appearance checking (namely four instead
of six as previously published in [18], also see [4, Theorem 4.2.3]; independently,
this bound was achieved recently by Freund and Paun [9]). This bound holds
for matrix grammars working under free derivations and working under leftmost
derivations of type 3, as well.

Finally, we can derive a first nonterminal complexity bound for context-free
programmed (or matrix) grammars with unconditional transfer (working under
leftmost derivations of type 3), under the assumption that the terminal alphabet
is fixed.

We use standard mathematical and formal language notations throughout
the paper, as they can be found in [4, 12]. In particular: =; selects the jth
component of an n-tuple; A denotes the empty word; wF denotes the reversal
of string w. Moreover, we will not consider two languages L; and Ls equal if
L\ A} = Lo\ {A}.

The paper is organized as follows. Section 2 introduces Turing machine as
generators of formal languages, a formalism rarely encountered in the literature,
albeit it is natural and adequate for our purposes. In Section 3, we introduce the
notion of programmed grammars which is basic for the whole paper. Section 4

contains the proof of the main result of this paper, namely, that three nonter-
minals are enough to generate all recursively enumerable languages by means of
context-free programmed grammars with appearance checking. In Section 5, we
explain the consequences of our main result for the nonterminal complexity of
programmed grammars with leftmost derivations of types 3 and 2 and of matrix
grammars. Section 6 discusses regulated grammars with unconditional trans-
fer. Finally, we consider the question wether our main result could be further
strengthened.

2 Turing machines

In order to be able to reason more formally, in the following, we give a definition
of a Turing machine which is adapted to our purposes. The reader can probably
easily check its equivalence with his or her favourite definition.

Definition 1 A (nondeterministic) Turing machine (with one one-sided tape)
is given by

M= (Q, 27 Fa 67 qo,4qf, #La #RJ #)7
where @ is the state alphabet, ¥ is the input alphabet, I' (with ¥ C T' and
I'Nn@ =) is the tape alphabet, § C Q xT' x {L, R} x @ x I is the transition
relation, qo is the initial state, gy is the final state, #5, € I is the left endmarker,
#r €I is the right endmarker and # € T is the blank symbol.

A configuration (also called instantaneous description) of M is described
by a word ¢ € #.T*#rQ U #.T*QT*#5 with T =T \ {#r,#r}. Here c =
#rwqu means: The head of the Turing machine is currently scanning the last
symbol a of #rw. We now describe possible (and the only possible) successor
configurations ¢ of ¢ = #rwqu (given §), written ¢ b ¢’ for short:

1. Ifa # #1, a # #g and (g,a,L,¢',a') € § with o’ € T, then for w = w'a,
c=#rw'aqu by #rw'q'a’v holds.

2. Ifa # #1, a # #r and (¢,a,R,¢,a') € § with o’ € T, then for w = w'a
and v = bv' with b € I'\ {#1}, c = #Lw'agbv’' Fpr #wbg'v' holds.

3. If a = #1, and (q,#1,R,q',#1) € 0, then for w = X and v = bv' with
beT\{#L}, c=#rqbv' Far #1bg'v' holds.

4. If a = #g and (¢, #r,L,¢,a'") € § with o' € T, then for w = w'#g,
c = #rw'#rq by #rw'q' a'# g holds.

As usual, |}, denotes the reflexive transitive hull of the binary relation k.
The language generated by M is given as:

L(M) ={w € X" | #rqo#Rr s #rwEqs#Rr, where £ € #*}.

Observe that only the last condition given in the definition of successor con-
figuration allows for prolongating the working tape. This ability is, of course, es-
sential for obtaining the power to describe all recursively enumerable languages,
see also the famous workspace theorem [12]. In the following, RE denotes the
class of all recursively enumerable languages, which can be characterized as the
family of languages generatable by Turing machines.

3 Regulated grammars

The notion of a programmed grammar is crucial to this paper.

Definition 2 A (context-free) programmed grammar (with appearance check-
ing) is given by a quadruple G = (N,X%, P,S), where N is the nonterminal
alphabet, ¥ is the terminal alphabet, S € N is the start symbol and P is a
finite set of rules of the form (r : A = w,o(r),¢(r)), where r : A - wis a
context-free rewriting rule, i.e., A € N and w € (N U X)* (hence, erasing rules
are permitted), which is labelled by r, and o(r) and ¢(r) are two sets of la-
bels of such context-free rules appearing in P. A — w is termed core rule of
(r:A— w,o(r),¢(r)). o(r) is also called success field of r and ¢(r) is called
failure field of r. By A(P), we denote the set of all labels of the rules appearing
in P.

For (z1,71), (x2,72) € (NUX)* x A(P), we write (z1,71) = (2, r2) iff either

x1 = yAz, xo =ywz, (1 : A— w,0(r1),06(r1)) € P, and o € o(r1)

or r; = 2, (r1 : A = w,o(r1),¢(r1)) € P, A does not occur in z; and
ry € ¢(r1). Let = denote the reflexive transitive hull of =. The language
generated by G is defined as

L(G)={we X" | (S,m) = (w,rq) for some ri,79 € A(P)}.

The language family generated by programmed grammars is denoted by PR.
The language family generated by programmed grammars with at most k& non-
terminals is denoted by PRy.!

In the literature, two important variants of programmed grammars are dis-
cussed:

e In a programmed grammar G = (N, X, P, S) without appearance checking,
for every r € A(P) we have ¢(r) = 0.

e In a programmed grammar G = (N, X, P, S) with unconditional transfer,
for every r € A(P) we have ¢(r) = o(r).

Dassow and Paun [4] present the following results:

In any case, a number as subscript in the corresponding language class denotation will
refer to a nonterminal bound for that class.

Theorem 3 PRg = PR = RE.

Dassow and Paun pose as an open question whether or not that complexity
bound could be improved.

For better distinguishability from leftmost derivations, we will call the deriva-
tion relation defined above free derivation.

In a leftmost derivation of type 3, a selected rule (r : A — w,o(r), ¢(r)) of
a context-free programmed grammar is applied to a sential form a always in a
manner choosing the leftmost occurrence of A in « for replacement. Already
Rosenkrantz [20] showed for the corresponding language family PR 3:

Theorem 4 PR ™ = RE.

Let PRUT*? denote the class of languages generatable by context-free pro-
grammed grammars with unconditional transfer working under leftmost deriva-
tions of type 3. We have shown in [8]:

Theorem 5 PRUT 3 = RE.

A derivation according to a context-free programmed grammar (without
appearance checking) G = (N, X, P, S) is leftmost of type 2 if it develops as
follows:

1. Start with S and apply any rule (r : S — z,0(r),0) in P to S (yielding =
and the set of rule choices o(r)).

2. Let y be the current sentential form and R C A(P) be the current set
of rule choices. Then, y derives x if there are a rule label r € R, where
(r: A= a,0(r),0), and a decomposition y = y; Ays of y such that there
is no rule 7' € R, where (r' : A’ — o/,0(r'),0) and A’ is contained in
y1; moreoever, the string = equals y1ays and o(r) is the new set of rule
choices.

3. Continue in this way until a terminal string is obtained.

A context-free programmed grammar without appearance checking working un-
der leftmost derivation of type 2 is also known as state grammar [13, 17]. Due
to In [4, Theorem 1.4.3], we find for the corresponding language family PR*~2:

Theorem 6 PR ™2 = RE.

It is also possible to define leftmost derivations of type 2 for programmed
grammars with appearance checking (and hence, with unconditional transfer).
Corresponding definitions can be found in [6, 8]. Due to some technicalities
of the definitions (which would probably deviate from the focus of this paper),
we will discuss syntactic complexity issues for these grammars only in form of
remarks. We briefly mention the following result [8]:

Theorem 7 PRUT 2 = RE.

Definition 8 A (context-free) matriz grammar is a quintuple G = (N, X, M, S, F),
where N, ¥, and S are defined as in Chomsky grammars (the alphabet of non-
terminals, the terminal alphabet, and the axiom), M is a finite set of matrices
each of which is a finite sequence m : (A1 — wy, A2 = wa,..., A, = wy),

n > 1, of context-free rewriting rules over N U X, and F is a finite set of occur-
rences of such rules in M. For some words z and y in (N U X)* and a matrix
m: (A = wi, Ay = wa,..., A, = w,) € M, we write z = y (or simply

x = y if there is no danger of confusion) iff there are strings xg ,m Z1,---,%y such
that g = z, x, =y, and for 1 <4 < n, either

! ! !
Xio1 = 2i—14i2;_1, T; = zi_1w;z,_, for some z;_1, z;_; € (NUX)*

or x;_1 = x;, the rule A; — w; is not applicable to z;_1, and this occurrence
of A; — w; appears in F. One says that the rules whose occurrences appear in
F are used in appearance checking mode, and that a matrix grammar is defined
with (without) appearance checking if F' # () (F = (). The language generated
by G is defined as L(G) = {w € £* | S = w}. The family of languages
generated by context-free matrix grammars with appearance checking shall be
denoted by MAT.

In a leftmost derivation of type 3, a rule A — w from a matrix of a context-
free matrix grammar is applied to a sential form a always in a manner choosing
the leftmost occurrence of A in « for replacement.

A matrix grammar G = (N,X, M, S, F) has unconditional transfer if F
contains every occurrence of a rule. The family of languages generated by

context-free matrix grammars with working under leftmost derivation of type 3
is denoted by MATUT 3.

If MAT (MAT* 3, respectively) denotes the class of context-free matrix
languages with appearance checking working under free or leftmost derivations
of type 3, respectively, then we know from [4, Theorem 4.2.3]

Theorem 9 MATs = MAT = MAT ™ = RE.

Furthermore, results from [6, 8] imply:

Theorem 10 MATUT ™ = RE.

Due to several technical differences and problems encountered in the defini-
tion of matrix grammars with leftmost derivations of type 2, see [3, 4, 6], we
will not consider these matrix grammars here, although that it is quite clear
that nonterminal complexity bounds similar to those which are derived in this
paper hold for any of these grammatical mechanisms, too.

We conclude this section with discussing a simple example, namely, the
language

L={a® |n>0}

and showing how to generate L economically (in terms of nonterminal complex-
ity) by various introduced mechanisms. Observe that L cannot be generated by

any context-free programmed grammar without appearance checking using free
derivations or leftmost derivations of type 3.

Example 11 G = ({4, B}, {a}, P, A), where P contains the following rules:

(1 :A— BB, {1}, {2}),
(2 :B=A, {2}, {L,3}),
(3 :A—a, {3}, {3}

G generates L both under free derivations and under leftmost derivations of
types 2 or 3.

Example 12 G; = ({4,B,F},{a},Pi,A), where P contains the following
rules:

:A— BB, {1,2}),

:A— F, {3}),

:B— A, {3,4}),

:B — F, {1,5}),

5 :A—>a, {5}).

GGy is a grammar with unconditional transfer and generates L both under free
derivations and under leftmost derivations of types 2 or 3.

NN TN N N
=N =

Example 13 G» = ({A,B,Y},{a}, P»,B), where P contains the following

rules:
:B— AY, {1,5}, 0),

:A— BB, {1,2}, 0
Y oY, {3}, 0
:B— A, {3,4}, 0
Y Y, {1,5), 0
:A—a, {5,6}, 0
6 :Y =) {6}, 0).

G, is a grammar without appearance checking and generates L under leftmost
derivations of type 2. Note that replacements of Y only take place when all sym-
bols have been transformed in the preceding loop due to the leftmost derivation
condition.

NN N N N N N
LU LN = O

Example 14 G' = ({A,B, X}, {a}, M, B, F), where M contains the following
matrices:

[X - XY B - X 4],

[X - X%, B —» XXXA],

[X -\ X — X4 A— XBB,A— 4],

[X >\ X > X% A— XXBB,A - X1,

X - \X—=>\X—>X4B— XXA B— B,

X > A\X—=>\X—> XY B— XA, B— X4,

X A\ X =2)A\X—>XYB—- XXXA,B— X1,
X2 AX>MX 5 \A - XXX,

X > A X 2> AX > MNA-5 X4 B— XX - X1,

G' generates L both under free derivations and under leftmost derivations of
type 3 when rules with right-hand side X* are applied in appearance checking
manner. Observe how X is used to code the rule number of the corresponding
programmed grammar G in unary.

Example 15 G' = ({A,B, X, E,E'},{a}, M, B, F), where M contains the fol-
lowing matrices:

[X - X* B - XAEa],

[X - E,E—-\X— X*A— XBB,A— A,

[X - E,E—-\X— X*A— XXBB,A— X1,

[X - E,E-\X—>EE—)\X—X'B— XXA,B— B,

[X - E,E—-\X—>EE—)\X—>X"B— XA B X1,

[X - E,E—-\NX—>EE—)\X—X",B— XXXA,B— X4,

X =AM X2 AX >3 AB—o X A EE—-)\NE— XXXE,

X AN X—=>AMNX—>A\B—-> XY E—-XY\A—-E E' - \E — XXXE'a],
X AN X2 A X2 MNA XU ES XY B XU X - XY E —).

G' generates L both under free derivations and under leftmost derivations of
type 3 when rules with right-hand side X* are applied in appearance checking
manner. FE (and its primed version) serves as a “success witness”: only if
Z € {E,E'} is not erased from the sentential form when applying any of the
matrices (besides the first and the last one), the guess of the rule labels (again,
coded in unary through X) has been correct.

4 Main result

In this section, we are going to sketch a proof of the following result, thereby
improving the previously known nonterminal complexity bound considerably:

Theorem 16 PR3 = RE.

Due to Theorem 3, only the inclusion D has to be shown.

4.1 Informal explanations

We proceed by giving several explanations concerning our construction on a
rather intuitive level. Of course, we only need to show how to simulate a Turing
machine generating some language L by a programmed grammar with three
nonterminals. The three nonterminals of the simulating grammar are: A, B,
and C. We consider a fixed Turing machine M = (Q,%,T, 9, qo, g5, #1, #r, #)

4.1.1 Encodings

Given a configuration ¢ € (T UQ)* of M, let B(c) € {0,1}* denote some binary
encoding of ¢ using v = [log,(|T'|+|@|)] many bits per symbol from TUQ. Since

I" contains at least three special symbols, namely, #r, #r and #, and one input
symbol and since @) contains at least one symbol, we have v > 3. We interpret
strings ((c) as natural numbers given in binary in a standard manner, i.e., 001
for example, would be the three-bit binary representation of the number 1. We
further assume B3(#) = 07, B(#z) = 071 and B(#g) = 107~1. Observe that
|B(c)| = |e|y. Obviously, ¢ can be codified uniquely over the unary alphabet
{A} by AP() which is not the empty word, because ¢ always starts with #p,.

There is a special technique which can be called “passing over symbols”
which we describe next.

4.1.2 Passing over symbols

How can a tape symbol be “passed over”, e.g., in the simulation phase? To this
end, consider the following program fragment:

(n1,1): A= {(r1,2)} {(1,3)}
(n1,2): A—=C {11} {(r1,3)}
((r1,3): C—=A4 {(r1,3)} {(r21)}

Such a program fragment is useful to transfer A™ into A™ with m = |n/2]. In
other words, the rightmost bit of 8(c) is erased. Such a loop is useful in several
circumstances:

1. within the simulation loop, in order to pass over symbols which are unin-
teresting in the simulated step; here, one has to store the skipped symbols
somehow (to this end, the symbol B is going to be used);

2. when checking the correctness of the guess on where to actually start the
simulation of one Turing machine step;

3. when transforming a codified terminal string, e.g., AP#rwasr#r) into w
with w € ¥*.

In each of the three described situations, the two different branches towards
(r,1,3) could be used to test the contents of the currently last bit of the string
z stored in A”.

4.1.3 Simulation loop

Our aim is to give several rules of the programmed grammar such that ¢ s ¢/
is reflected by (AP B, r) & (4°() B, 1'). We assume that the Turing machine
state g of configuration ¢ is somehow stored in the label r.

The grammar scans A°(¢) searching for some codification of the subword
aq, where the assumed input symbol a is guessed nondeterministically. To this
end, a nondeterministically chosen number of letters is passed over, until the
guessed subword aq is chosen to be verified. At the end of the verification of the
correctness of the subword guess (at the chosen position), a replacement (chosen
from the possibilities given by 4§, hence yielding ¢ from ¢) is simulated. Finally,
the intermediate representation has to be converted back into the standard
codification AP(¢).

4.2 A formal construction
4.2.1 Initialization

Consider
(init : A — APF#L00#r) B simstart(go), 0)

as the start rule. Here, simstart is a label set indicating possible starting points
of the simulation. simstart will be defined formally below.

We already point here to one subtlety of the definition of programmed gram-
mars: since no explicit starting rule for the grammar is given, taking A as the
start symbol means that in principal, the work of the programmed grammar
could start at many places. Our construction will be such that at no place
other than in rule init, the code of # is generated. Since at the end of the
simulation it is tested whether #, is present in the string (in this case only, the
simulation will possibly yield a terminal string), it it clear that one has to start
any successful generation through the programmed grammar with rule init. 2

4.2.2 Skipping a symbol

The rules for this task will have the labels (skip, ¢,4,7), with ¢ € @, 1 <i <«
and 1 < 5 <9. More precisely, we take the following rules:

((skip,q,%,1): A—C, {(skip,q,i,2)}, 0)
((skip,q,%,2): A— A, {(skip,q,,3)}, 0)
((skip,q,i,3): C — A, {(skip,q,i,4)}, 0)

((skip, q,i,4) : B — C?, {(skip,q,i,4)}, {(skip,q,i,5)})
((skip,¢,%,5): C — B, {(skip,q,4,5)}, {(skip,q,%,6)})
((skip, ¢,%,6): A — X, {(skip,q,4,7)}, {(skip,q,%,9)})
((skip,q,i,7): A—C, {(skip,q,?,6)}, {(skip,q,%,8)})
((skip,q,%,8) : B — B?, {(skip,q,i,9)}, 0)
((skip,¢,4,9): C — A, {(skip,q,4,9)}, exit-skip(i))

Here, exit-skip(i) equals {(skip,q,i + 1,1)} if ¢ <y and simstart(g), otherwise.

4.2.3 Simulation

We give a separate simulation for each of the four possible cases of a Turing
machine step. Fix some rule r = (q,a, X, ¢',a') € § in the following.

Case 1: a €T (Recall that T =T\ {#,#r}.) and X = L.
Let B(ag) = B1 ... B2y with B; € {0,1} and B(q'a’) = B ... B, with B € {0,1}.

20ne could have avoided such additional complication by considering graph-controlled
grammars as suggested in [5] as a possible clearer grammatical model. In fact, all results of
this paper as stated for programmed grammars are also valid for these related grammatical
mechanisms.

10

The simulation of a Turing step has two sub-phases: firstly, it it checked
whether ag is codified in the current position (which has been reached by re-
peated applications of the skip procedure), and then ¢'a’ is generated in its
place.

We take the following rules in the checking phase:

((sim-1,r,4,1): A—C, {(sim-1,7,7,2)}, 0)
((sim-1,7,4,2) : A— A, {(sim-1,7,7,3)}, 0)
((sim-1,7,4,3) : C = A, {(sim-1,7,i,4)}, 0)
((sim—l,r,i,4) A)‘a {(sim—l,r,i,S)}, fO,i(6277i+1))
((sim—l,r,i,5) Ao C7 {(sim—l,r,i,4)}, fl,i(62'yfi+1))
((sim-1,7,4,6) : C — A, {(sim-1,7,4,6)}, cont-sim-1(¢))
Here,
_ 0, if j # b;
fi40) = { {(sim-1,7,,6)}, if j = b;
and

{(sim-1,r,4+1,1)}, ifi < 2y;

cont-sim-1(i) = { {(sim-1,r,1,7)}, ifi=2y.

Moreover, we take the following rules in the generating phase:

((sim-1,7,4,7): B — C%, {(sim-1,r,4,7)}, {(sim-1,7,i,8)})
((sim-1,7,4,8): C —= B, {(sim-1,7,4,8)}, f{(B}))
((sim-1,7,4,9) : B — B?, exit-sim-1(i), 0)

Here,
oo exitsim-1(), if b= 0;
£i(b) { {(sim-1,7,1,9)}, ifb=1:

and exit-sim-1(7) equals {(sim-1,7,i+ 1,7)} if i < 27 and {(return,¢’,1)}, oth-
erwise.
In any case, we have 1 <i<2yand 1< j<9.

Case 2: acl,bel\{#z}and X =R.

Let B(agb) = f1 ... B3y with 3; € {0,1}, B(a'bg’) = B ... B3, with 3; € {0,1}.
This case can be handled completely analogously to Case 1 (only replac-

ing coded binary subwords of length 3v instead of 2vy). Therefore, we refer

the technical construction to the reader. In this way, we get rules labelled by

(sim-2,7,b,7,7), with 1 <i<3yand 1 <j <09.

Case 3: a=+#r,bel'\{#.}and X =R.

Let 3(gb) = B ... B2y with §; € {0,1} and B(bq") = By - .. B3, with 3} € {0,1}.
Again, this case is simulated quite similarly to Case 1. But since we do not

want to write a codification of #p, in this place (see the remarks accompanying

the initialization rule), we merely test for the occurrence of #p. Since we assume

B(#1) = 07711, this check can be performed quite easily. Unfortunately, the

11

check must be done inbetween the checking phase (for 3(¢b)) and the generating
phase (for 3(bq')). Therefore, we give a complete formal description of this case
below which, with exception of the checking phase, is exactly as in Case 1 before,
thus yielding rules (sim-3,7,b,i,j) with 1 <¢<2yand 1< j <6.

Next, we test for the presence of # at the left-hand side of the simulated
Turing tape:

((sim-3,7,b,i,7): A—C, {(sim-3,r,b,i,8)}, 0)
((sim-3,7,b,i,8): A— A, 0, {(sim-3,r,b,%,9)})
((sim-3,7,b,i,9): C — A, {(sim-3,7,b,4,10)}, 0)

Moreover, we take the following rules in the generating phase:

((sim-3,7,b,i,10): B — C%, {(sim-3,7,b,i,10)}, {(sim-3,7,b,i,11)})
((sim-3,7,b,i,11): C — B, {(sim-3,r,b,4,11)}, f!(3))

((sim-3,7,b,i,12) : B — B?, exit-sim-3(i), 0)
Here,

£1(b) = exit-sim-3(¢), if b = 0;

AT {(sim-3,7,b,0,12)}, if b= 1;

and exit-sim-3(¢) equals {(sim-3,¢,7 + 1,10)} if ¢ < 2y and {(return,q’,1)},
otherwise.
In any case, we have 1 < i< 2yand 1 <j <12

Case 4: a=+#prand X =L.
Let ﬁ(#Rq) = ﬁl---ﬁ?y with ﬁz S {0,1} and ﬁ(q’a’#R) = ﬁiﬁé'y with
Bi €{0,1}.

Such a Turing machine step mainly serves for extending the work tape.
Therefore, the sentential form of the simulating grammar has to grow.

Therefore, we merely have to adapt the checking rules of Case 1, as well as
the generating rules of Case 1, except for the fact that the “generating loop”
has to be executed now 3 instead of 2 times.

In this way, we get rules labelled with (sim-4,r,4,7), with 1 <4 < 2y and
1 < j < 6 for the checking phase, as well as with 1 < ¢ <3y and 7<j <9 for
the generating phase.

4.2.4 Returning to standard presentation

The corresponding rules are simply obtained by interchanging the roles of A
and B in the skipping construction. For ¢ € @) and 1 < j < 10, we take the

12

following rules:

((return,q,1): B — C, {(return,q,2)}, 0)
((return,q,2): B — B, {(return,q,3)}, {(return,q,10)})
((return,q,3): C — B, {(return,q,4)}, 0)
((return,q,4) : A — C?, {(return,q,4)}, {(return,q,5)})
((return,q,5): C — A, {(return,q,5)}, {(return,q,6)})
((return,q,6) : B — A, {(return,q,7)}, {(return,q,9)})
((return,q,7): B — C, {(return,q,6)}, {(return,q,8)})
((return,q,8): A — A%, {(return,q,9)}, 0)
((return,q,9): C — B, {(return,q,9)}, {(return,q,1)})
((return,q,10) : C — B, simstart(q), 0)
Here,
simstart(q) = {(skip,q,1,1)}
U {(sim-1 7',1,1) | r € §,m(r) =q,m3(r) = L}
U {(sim-2,7,b,1,1) | 7 € §, m1(r) = q,73(r) = bGF\{#L}}
U {(sim-3,7,b,1,1) | r € §,m1(r) = ¢, m2(r) = m3(r) = R,b € T'\ {#r}}
U {(sim-4,7,1,1) | 7 € §, m1(r) = q,m2(r) = #R:ﬂ'3() =1L}
) {(terma #R70 0) | q= qf}

Observe that only in the case when the final state has been reached, the first
termination rule may be selected as the next rule to be applied after finishing a
simulation loop.

4.2.5 Termination rules

Firstly, we check in some preparatory steps whether there is at least one A and
exactly one B in the string. Then, we continue checking for the occurrence of
#nr at the rightmost position of the simulated Turing tape.

((
((
((
((

term, #g,0,0) :
term, #g,0,1) :
term, #g,0,2) :
term, #g,0,3) :

A— A7 {(term7 #R707 1)}7 @)
B — C) {(term,#R,O,Q)}, 0)
B — B7 ®7 {(term) #R7073)})
C — B, {(term,#g,1,1)}, 0)

Now, let £ = S U {#1,#Rr,#,4qr} be the set of symbols admissible in a
configuration whose tape contains a terminal string. In addition, for a € ¥\

{#} with 3(a)

—B...

By, Bi € {0,1}, and for 1 < i < 7, we have:

((term, a,i,1) :
((term, a,1,2) :
((term, a,,3) :

A—)‘7 {(term7 a, 7’.7 2)}7 fO,i(ﬂ’y—i-l—l))
A= 07 {(termvaaia 1)}7 fl,z'(ﬂ’y—i-i-l))
C— A, {(term,a,i,3)}, {(term,a,i+1,1)})

13

Here,
[0, if j # b
fi,i(b) = { {(term, a,i,3)}, if j=0b.

Similarly, the first bit is finally checked:

A= X, {(term,a,7,2)}, fo.i(B1))
A= C, {(term,a,7,1)}, f1.:(B1))

Then, different things may happen, depending on which tape symbol has been

((term, a,7,1) :
((term, a,7,2) :

currently read:

((term #Ra’YJ) i O A, {(term #R;77)}7 {(terma ar, 1, 1)})
((term,qf,7,3): C— A, {(term,qs,7,3)}, T({#r}))
((term, #,7,3): C— A, {(term,#,v,3)}, T({#r}))
((term, a,~,3) : C— A, {(term,a,v,3)}, {(term, a,~,4)})
((term a777) . B — aBa ({# #R}) @)

where @ € ¥ and T(X) = {(term,a,1,1) |a € £\ X} for X C .
Finally, we check the codification of the leftmost tape symbol, i.e., #r, and
yield the terminal string if everything was alright up to now.

((term7 #La]-a 1) :
((term7 #La]-a 2) :
((term7 #La]-a 3) :

A= {(term, #1,1,2)}, 0)
A=A 0,
B — A, {(term,#r,1,1)}, 0)

{(terma #La]-5 3)})

4.3 The correctness of the construction

In principle, a configuration ¢ of the simulated Turing machine (which is in
state q) is codified by AP B at any time before the simulation enters a rule
from simstart(q). By induction, it can be shown that

1. a complete loop entering (skip,q,1,1) and heading for some rule from
simstart(q) \ {(skip, ¢, 1,1)} (which does not enter a rule from simstart(q)

inbetween) converts a string® of the form Af(we) B1B)®
45(w) BL(B(ua)) R

into a string
, where w,u € T'*, a € T', unless a = #1 and w = A;

2. the rules whose labels start with sim-i correctly simulate an application
of a rule of type ¢ of the Turing machine;

3. a string of the form AP BLBW)™ ig correctly converted into a string
AP(wu) B by repeated applications of rules whose labels start with return;

4. (only) a codified tape of the form ¢ € #rw#*qr#r for some w € I, i.e.,
AB() B can be correctly transformed into the terminal string w;

3Here, B!® for some z € {0,1}* is the string of B’s obtained by interpreting the binary
string 1z as a binary number.

14

5. all sentential forms generatable by the programmed grammar are of the
form AF(BUC)T U(AUC)*E*BT U X*.

Basically from these considerations, the correctness of the proposed con-
struction may be inferred.

We are going to illuminate a typical run of a simulation by a simple example.

Assume that

#LQHRE #LH#RW - #Lqra# R F #L00s#R

is a terminating run of a given Turing machine. Assume further a three-bit-

codification:
B(#) =000 B(#r) =001 B(#r) =100
Bla) =010 flgo) =011 PB(gs) = 101

Taking binary numbers as exponents, the simulating programmed grammar de-
rives (assuming always to describe the situation when a first labelled rule of the
corresponding “subroutine” is entered):

A = Al0nioop (since B(#rgo#r) = 001011100)
5 Auoooup (using sim-3)
A AN0L01010B (using sim-4)
é A1101010 1001 (usmg Sklp)
A A1010101 B1001 (uging sim-3)
S A1010101100 B (ysing return)
5 Alowoopg (using term for #g)
= Al0p (using term for gy)
= A'aB (using term for a)
= a (using term for #r.)

5 Further consequences

In this section, we are going to discuss some consequences of our main re-
sult for other grammar mechanisms. More precisely, we will consider context-
free programmed grammars (with appearance checking working under leftmost
derivations of type 3 and without appearance checking working under leftmost
derivations of type 2)* and matrix grammars with appearance checking (working
under free derivations and working under leftmost derivations of type 3).

5.1 Leftmost derivations

A natural variant of context-free programmed grammars with appearance check-
ing is to consider them working under leftmost derivations of type 3, as was

4Since we mainly deal with economical characterizations of RE in this paper, we omit
discussing leftmost derivations of type 1 here, because they characterize the context-free lan-
guages.

15

already done in the very first paper on programmed grammars [20]. Since the
construction in our main theorem can also be viewed in a leftmost fashion, we
can conclude:

Corollary 17 ’PR§73 =RE.

Meduna and Horvéth [17, Theorem 5] previously considered the nonterminal
complexity of context-free programmed grammars without appearance checking
working under leftmost derivations of type 2 (within Kasai’s formalism of state
grammars [13]). They claimed that, for these grammars, three nonterminals
are enough to generate every language from RE. Unfortunately, the coding
trick used in [17, Theorem 5] does not work properly,® so that we consider the
problem of the nonterminal complexity for context-free programmed grammars
without appearance checking working under leftmost derivations of type 2 to be
still open.

Nevertheless, we can conclude an upperbound of four for the nonterminal
complexity of these grammars with the help of our main Theorem 16 with the
help of the following remark:

Remark 1 If any possible set of rule choices of a given programmed grammar
G contains only rules with the same left-hand side, then the language generated
by G using leftmost derivations of type 3 equals the language generated by G
using leftmost derivations of type 2.

Actually, we did not define leftmost derivations of type 2 for programmed
grammars with non-empty failure fields. Since the notion of “set of rule choices”
can be extended straightforwardly, the interested reader is referred to [6] for a
precise definition. Due to the preceding remark, we can immediately derive:

Corollary 18 FEvery recursively enumerable language can be generated by a
context-free programmed grammar with appearance checking which has only three
nonterminals, using leftmost derivations of type 2.

Next, we consider programmed grammars without appearance checking work-
ing under leftmost derivations of type 2.

Theorem 19 PR ™2 = RE.

Proof. Due to the preceding remark, we only need to modify the construction
of Theorem 16 slightly, because the premise of the remark is satisfied. The
fourth nonterminal will be denoted as Y and will be used in complete analogy
to Example 13.

o We take A — AP#Lw#R) BY a5 new initialization rule.

5The reader who wishes to study the proof of Meduna and Horvéth should consider the
possibility that a two-letter sentential form AB codified as 01001 in the simulation will yield
00101 after simulating the rule B — B (if no other applicable rule is in the present “state”).

16

e With the exception of the last three rules of the grammar constructed
in Theorem 16, i.e., except for the rules with labels (term,#p,1,7) with
i=1,2,3, every rule (r : @ = 8,0(r), ¢(r)) is simulated by two rules:

L ((r,+) :a—B,0(r) x {+,-},0) and
2. ((T, _) Y = Y7¢(T) X {+7 _}7 0)
Since Y stands at the right-hand side of the sentential form, Y — Y is only

applicable if the left-hand side of rule r is not contained in the sentential
form.

e The mentioned three last rules are replaced by:

((term) #La 17 15 +) : A—)‘7 {(terma #La]-a 27 i)}: 0)
((term, #1,1,1,=): A=A, 0, 0)
((term, #1,1,2,4+): A=A, 0, 0)
((term, #L; 1725 _) D Yo)‘7 {(terma #L7 153)}7 0)
((term, #r,1,3) : B —)\, {(term,#r,1,1)}, 0)

Details of the construction are tedious but straightforward and, hence, omitted.
O

By interpreting the simulation rules from the proof of Theorem 19 as uncon-
ditional transfer rules, we can show:

Corollary 20 Every recursively enumerable language can be generated by a
context-free programmed grammar with unconditional which has only four non-
terminals, using leftmost derivations of type 2.

5.2 Matrix grammars

Similarly, one could consider matrix languages instead of programmed lan-
guages. Due to [4, Lemma 4.1.4], matrix grammars can simulate programmed
grammars at the expense of one additional nonterminal. It can be observed
that the construction given in [4, Lemma 4.1.4] also works in the case of left-
most derivations of type 3. Therefore, we can state:

Corollary 21 MAT, = MAT 3 = RE.

This improves the previously published bound of 6 nonterminals for MAT, see
[4]. Recently, we were informed of a matching result for matrix grammars [9].

Remark 2 The same bound as in the previous corollary can be derived for sev-
eral variants of matrix grammars with appearance checking combining different
forms of leftmost and free derivation modes as elaborated in [3]. In particular,
this is true when every rule is applied in leftmost-2 style, as defined in [6].

17

Remark 3 A simple adaptation of the simulation idea underlying the proof of
Theorem 19 to matrix grammars without appearance checking working under
leftmost derivation of type 2 (either as defined in [4] or as defined in [6]) yields

MATE 2 =RE.

Here, MAT*? is the class of languages generated by matrix grammars working
under leftmost derivation of type 2 (according to one of the definitions in the
literature).

6 Unconditional transfer

We are now going to bound the nonterminal complexity of context-free pro-
grammed grammars with unconditional transfer working under leftmost deriva-
tions of type 3, which were shown to be computationally complete in [8] by an
intrinsically non-constructive argument. The corresponding language class (for
languages over the alphabet X) is denoted by PRUT 3(Z).

To this end, recall the notion of division ordering: For w,v € ¥*, u =
Uy ... Up, u; € X, we say that u divides v, written u|v, if v € T*u, X% . .. T*u,, T*.
u is also called a sparse subword of v in this case. The famous Theorem of
Higman states that every L C ¥* has a finite subset L' such that every word in
L has a sparse subword in L'. If I(u) = {v € £* | u|v} denotes the ideal of w,
then Higman’s Theorem gives the following presentation of L:

L= J@nIw).

uelL’

Let us call L' a Higman basis of L. This presentation has been one of the ideas
for showing the computational completeness of PRUT 2. More precisely, it is
clear from our quoted construction that the nonterminal complexity of the con-
structed grammar basically depends on three parameters: (1) the nonterminal
complexity of the simulated grammar, (2) the size of the alphabet of the lan-
guage and (3) the maximal length of a word in a Higman basis of the language.
This is still true when thinking about a simulation of PR* ® grammars instead
of starting from type-0-grammars in Kuroda normal form, as we did in [8]. We
will give details of such a construction below. This means that we can consider
parameter (1) as a constant due to our main theorem. Since we keep (2) fixed
by definition in the following, we only need to worry about (3).

Lemma 22 Let X be an alphabet. Then, there is a constant n|x| such that every

recursively enumerable language L C X* possesses a Higman basis L such that
every word w € L obeys |w| < ny.

Proof. Consider a recursively enumerable universal Turing machine language

Luniv(2) = {e(T)$w | w € L(T) C 7} C BF$%7, (1)

18

where ¢ is some chosen fixed codification function for Turing machines generating
languages over X. Let L' C Lyniv(X) be a Higman basis for Lyniy(X). By
definition of Lyn;y(X), L' C ¥*$X*. Choose some L € RE with codification cy,.
Then,

cLSL = Lyniv(T) Ner$T* = | (Luniy(Z) N 1(u)) Nep$T*.
ueL’

Modify each u = 28y € L' with I(u)NcL$L # § according to the rule u — cL8$y.
In this way, L' is modified into

L'"={ct8y |z e X" 128y € L' ANI(u)Ner8L #0} C e $L.

Moreover,

cr$L = U (Luniv(2) N I(w)) Ner 8T = U (Luniv(2) N I(u)).
u€L"” u€L"

Now, cut off the common prefix ¢;$ from every word in L", thereby getting a
set L. We find that

L=J@nI(w) and LCL.
ueﬁ

Therefore, L is a Higman basis for L. If n|y| is an upperbound on the length of
words in the Higman basis L' of Lypiy, then, for every w € L, |w| < njg. |

Now, we can conclude:

Theorem 23 VX3c > 0: PRUTE3(D) = RE.

Proof. Consider a language L € RE. Let L’ be a Higman basis for L. If A € L,
then L' = {A} can be assumed, and the main difficulties in the construction in
[8] can be circumvented. By introducing a success witness (as it will be done by
the more involved case detailed below, see also Example 12 above) and using
Theorem 16, we can show that every L € RE with A € L is in PRUT{3. Let
us assume \ ¢ L in the following.

For each u € L', consider L[u] = L N I(u). Obviously, L[u] is recursively
enumerable. Therefore, there is a context-free programmed grammar with ap-
pearance checking Gu] = (N, %, P,S) working under leftmost derivations of
type 3 which generates L[u]. Due to Corollary 17, |N| = 3 may be assumed.

We will present a sequence of modifications of G[u] into different but equiva-
lent context-free programmed grammars with appearance checking G'[u], G"[u],
G"'[u] and G™[u] in order to give a comparatively simple transformation of
G™[u] into an equivalent context-free programmed grammar with unconditional
transfer.

19

The modified grammar G’'[u]. It is easy to modify G[u] into another context-
free programmed grammar with appearance checking G'[u] = (N', X, P’,S)
which generates L[u] and obeys, in addition, that (1) N' = NU{[a] | a € £}, (2)
only rules of the form (a : [a] = a, X, }) have terminal letters at their right-hand
sides and (3) |P'| = || + 3.

The modified grammar G"[u]. Now, consider u = a;...a,. Every word
w € L[u] may be decomposed as w = woaiwy . .. a,wy. In other words, there are
2n+1 easily identifiable parts in each word w € L[u]. We say that a nonterminal
A of a grammar for L[u] contributes to parts i through j of w if (a) i = j and it
generates a factor of part ¢ or if (b) 4 < j and it generates a suffix of part ¢ of w,
all parts i+1 through j—1 and a prefix of part j of w. Modify G'[u] into G"[u] =
(N", %, P (S,1,2n+1)) with N = N' x {1,...,2n+1} x {1,...,2n+1}. P"
contains the following rules:

o If (r: A— X o(r),é(r)) € P', then put
((ryi,7) : (A,4,5) = A o(r) x IUT, ¢(r) x I)
into P".
o If (r: A— B,o(r),¢(r)) € P', then put
((ryi,4) : (A,1,5) = (B,i,5),0(r) x IUT, ¢(r) x I)
into P".
o If (r: A— BC,o(r),¢(r)) € P', then put
((ryi,7) : (A,4,5) = (B,i,k)(C,k,j),o(r) x IUT, ¢(r) x I)
into P" for every i < k < j. If i < k < j, take, in addition,
((r,i,5) : (A,4,5) = (B,i,k)(C.k+1,5),0(r) x IUT, ¢(r) x I)
into P".

Here, I ={(i,j) |1 <i<j<n}, T=¥x{(1,1)} and 4,B,C € N'. Observe
that longer right-hand sides of core rules do not appear in the simulation of
Theorem 16 we are referring to. Furthermore, we have terminating rules

((a,i,9) : ([a],4,4) = a, 2 x {(4,4), (i + 1,0 +1),(i + 1,5+ 2)},0)
foralae ¥ andi=1,...,2n+ 1 is odd and
((ar,2r,2r) : (([ar], 27, 27) = ar, = % {(2r + 1,2r + 1)},0),

((ar,2r,2r + 1) : (([ar],2r,2r + 1) = ar, = x {(2r + 2,2r + 2)},0)

for 1 < r < n. Hence, it is checked that all part contributions have been
correctly guessed during the derivation. Again, L(G"[u]) = L[u] is obvious.

20

The modified grammar G"'[u]. The next grammar G"'[u] = (N, X, P, S"")
will have the start rule

s (S, 1,2n + 1)a15253a25455 e an52n52n+1.
The only modifications apply to two cases:

e Rules
((ryi,4) = (A,4,7) = (B,4,k)(C, k,j),0(r) x IUT, $(r) x I)

of G"[u] with i < k are replaced by the core rules (A4,4,5) — (B,i,k)
followed by Sy — Sk(C,k,j) or S — Sk(C,k, 7).

e Rules
((ar,2r,2r) : (([ar],2r,27) = ar, = x {(2r +1,2r + 1)},0)

are replaced by the sequence of core rules ([a,],2r,2r) — X and Sa,11 — A.
Rules

((ar,2r,2r +1) : (([ar], 2r,2r +1) > ar, T % {(2r +2,2r + 2)},0)

are replaced by the sequence of core rules ([a,], 2r,2r+1) = X and Sz, 41 —
A

The introduction of barred versions of S; is necessary in order to prevent false
partition guesses. Therefore, L(G"'[u]) = L[u] is clear. Observe that the number
of nonterminals of G' is still bounded by a polynomial in n and |X].

The modified grammar G*[u]. It is now easy to modify G'"[u] into a pro-
grammmed grammar G®[u] = (N* = N" U {F},%, P, S"") with the (addi-
tional) property that every rule has either an empty success field or an empty
failure field. Let us further assume that the right-hand side of every rule with
an empty success field is replaced by a special failure symbol F'.

Let G™[u] be a “copy” of G*[u] with nonterminal alphabet N? = {(A) |
A € N™}, start rule

<S”I) — (S, 1,2n + 1)5152 e S2nS2n+1

and terminating core rules {[a]) — X. Obviously, G*” derives at most the empty
word. Only the structure of the grammar matters in the following. For conve-
nience, we consider (-) as a morphism from sentential forms of G* into sentential
forms of G™. In particular, a core rule A — w is in P iff (4) — (w) appears
in P™.

21

The grammar G [u] with unconditional transfer. We now transform G% [u]
and G"[u] into a programmed grammar

Glu] = (N = NV U{E,E,...,E,;,S},%,P,5)

N

with unconditional transfer such that L(G[u]) = L[u].

As start rule, we take S — (S"YES™. A rule A — w (of G*) with empty
failure field is simulated by the sequence (4) — E, E — (w) and A — w. Here,
FE has the role of a success witness in the sense that E will disappear if and only
if, in the simulation, rule A — w has been applied to a sentential form which
does not contain A, which obviously means that the simulation was incorrect
at this place. Observe that the simulation is correct, since we are dealing with
leftmost derivations of type 3.

The termination phase is started by £ — Ej ...E,, where ¢ = |X|. More
precisely, let ¥ = {a1,...,a4}. The termination phase proceeds by looping
through [a;] — Ej, E; — A for each symbol a; € X. In this way, either u is
derived if an error occurred in the derivation simulation (testified by the absence
of E and hence of E;) or some word of L[u] is derived by a correct simulation
of G and G through G. X

As the reader may verify, the number of nonterminals of G is bounded by a
polynomial in n and |X|. Of course, n is bounded by the constant nx derived
in the previous Lemma, 22.

Concluding the construction. Finally, since L = |J ./ L[u] for a suit-
able Higman basis L' of L and since there are no more than |X|™® elements
in this union, the usual construction for proving closure under union yields a
programmed grammar with unconditional transfer generating L, whose number
of nonterminals is bounded by a function in |X|. i

Admittedly, the dependence on the size of the terminal alphabet in the
previous theorem appears to be somewhat peculiar and seems to be special to
programmed languages with unconditional transfer. Note that the construction
used in [8] entails a dependence on the minimal size of a Higman basis of a
language. As the example

Ln = L_Jl{af |j>1} (2)

(with minimal Higman basis {a1,...,a,}) shows, the size of minimal Higman
bases will grow arbitrarily large with growing terminal alphabet size.

It is still an open question whether a bound on the nonterminal complexity of
context-free programmed grammars with unconditional transfer working under
leftmost derivation of type 3 can be derived without limiting the size of the
terminal alphabet.

Since by the results of [6, Theorem 5.8] (relying on [5, Lemma 4.3]) and
[8], context-free matrix grammars with unconditional transfer are also compu-
tationally complete and since the proof transforming programmed grammars

22

with unconditional transfer into matrix grammars with unconditional transfer
can be carried out such that the number of nonterminals is only increased by
a constant (namely, by using the techniques of [4, Lemma 4.1.4] and and the
success witness technique employed in [8] as well as in Theorem 23), we may
conclude for the corresponding language class MATUT:

Corollary 24 VX3¢ > 0: MATUT. 3(2) = RE.

We finally remark that, by Example 4.1.1(iv) (which coincides with the lan-
guages defined in Eq. (2)), Dassow and Paun [4] showed that the nonterminal
complexity of so-called random context grammars (with appearance checking)
is not bounded by a constant. It is an interesting open question whether

VS3e > 0: RC(Z) = RE

is true, where RC denotes the family of languages generatable with context-free
random context grammars with appearance checking.

7 Concluding discussions

In this subsection, we like to discuss whether our main Theorem 16 can be
further improved.

Programmed grammars

Remark 4 It is easily seen that each language from PR is letter-equivalent to
some language accepted by a finite automaton with one partially blind counter,
see [10].

Alternatively and in order to keep within the notions of this paper, one can
observe that the appearance checking feature is of no use if there is only one
nonterminal symbol. This observation leads us to:

Lemma 25 {a®" |n >0} € (PR, \ PR1) U (PRE3\ PRET?).6

Proof. Due to the famous result of Hauschildt and Jantzen [11], L = {a®" |
n > 0} cannot be generated by a context-free programmed grammar without
appearance checking. Our above reasoning teaches us that L ¢ PR; U PR{*.
Due to Example 11, L € PR, N PR 2. i

Therefore, it remains as an open question whether the inclusion PRy C RE
is strict or not.

Lemma 26 {a®" |n >0} € PRS2\ PRI 2

6In [4, Theorem 4.2.2], it is claimed that there exists a regular language in PR \ PR1,
without hinting at a proof.

23

Proof. It is clear that PR{ > = PR*2. Hence, L = {a*" | n > 0} ¢ PR} 2.
Example 13 shows that L € PR |

We conjecture that {a®" |n > 0} ¢ PRS2
Similarly, we can show:
Lemma 27 {a*" | n >0} € PRUTS >\ PRUT{ 3.
We conjecture that {a®" | n > 0} ¢ PRUTS®.

Matrix grammars

The proof we gave for Lemma 25 also applies to matrix languages’. Therefore,
we may state:

Lemma 28 {a®" | n >0} € MAT3\ MAT;. O

The question which of the three C relations in the chain
MAT1 CMAT2 C MAT3 C MAT 4 =RE

is proper remains open. At least one of the first two inclusions must be strict
due to the previous lemma. This already follows from [4, Theorem 4.2.4] in the
case of free derivations.

Accepting grammars

We conclude this discussion by noting that it would be also of interest to discuss
the nonterminal complexity of regulated grammars as language acceptors. This
topic was initiated by [1]. Since accepting programmed grammars with appear-
ance checking can simulate generating programmed grammars with apperance
checking in a very structural way, see [2, 7], we may conclude:

Corollary 29 For every recursively enumerable language L, there exists a context-

free programmed grammar with appearance checking which accepts L.

Similar considerations lead us to:

Corollary 30 For every recursively enumerable language L, there exists a context-

free matriz grammar with appearance checking which accepts L.

Again, the question is whether these bounds can be improved.

Acknowledgements: We are grateful for immediate answers of our colleagues
H. Bordihn and Gh. P&aun concerning questions on syntactic complexity and
for some discussions with F. Stephan.

"but not the regularity argument we provided in the preceding footnote

24

References

[1]

[2]

H. Bordihn and H. Fernau. Accepting grammars with regulation. Interna-
tional Journal of Computer Mathematics, 53:1-18, 1994.

H. Bordihn, H. Fernau and M. Holzer. Accepting Pure Grammars and Sys-
tems. Otto-von-Guericke-Universitit Magdeburg, Fakultat fiir Informatik,
Preprint Nr. 1, January 1999.

J. Dassow, H. Fernau and Gh. Pdun. On the leftmost derivation in ma-
trix grammars. International Journal of Foundations of Computer Science,
10:61-80, 1999.

J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory,
volume 18 of FATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

H. Fernau. Unconditional transfer in regulated rewriting. Acta Informatica,
34:837-857, 1997.

H. Fernau. On regulated grammars under leftmost derivation. GRAM-
MARS, 3:37-62, 2000.

H. Fernau and R. Freund. Accepting array grammars with control mecha-
nisms. IN: Gh. Pdun and A. Salomaa (eds.), New Trends in Formal Lan-
guages, LNCS 1218, pages 95-118, 1997.

H. Fernau and F. Stephan. Characterizations of recursively enumerable
languages by programmed grammars with unconditional transfer. Journal
of Automata, Languages and Combinatorics, 4(2):117-142, 1999.

R. Freund and Gh. Paun. Four-nonterminal matrix grammars characterize
the family of recursively enumerable languages. Personal communication,
December 2000.

[10] S. Greibach. Remarks on blind and partially blind one-way multicounter

machines. Theoretical Computer Science, 7:311-324, 1978.

[11] D. Hauschildt and M. Jantzen. Petri net algorithms in the theory of matrix

grammars. Acta Informatica, 31:719-728, 1994.

[12] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Reading (MA): Addison-Wesley, 1979.

[13] T.Kasai. A hierarchy between context-free and context-sensitive languages.

Journal of Computer and System Sciences, 4:492-508, 1970.

[14] A. Meduna. Syntactic complexity of scattered context grammars. Acta

Informatica, 32:285-298, 1995.

25

[15] A. Meduna. Four-nonterminal scattered context grammars characterize
the family of recursively enumerable languages. International Journal of
Computer Mathematics, 63:67-83, 1997.

[16] A.Meduna. Generative power of three-nonterminal scattered context gram-
mars. Theoretical Computer Science, 246:279-284, 2000.

[17] A. Meduna and Gy. Horvéath. On state grammars. Acta Cybernetica, 8:237—
245, 1988.

[18] Gh. Paun. Six nonterminals are enough for generating each r.e. language
by a matrix grammar. International Journal of Computer Mathematics,
15:23-37, 1984.

[19] Gh. Pdun. Connections between programmed grammars and membrane
computing. Personal communication, December 2000.

[20] D. J. Rosenkrantz. Programmed grammars and classes of formal languages.
Journal of the ACM, 16(1):107-131, 19609.

[21] C. E. Shannon. A universal Turing machine with two internal states. IN:
Automata Studies, pages 157-165. Princeton University Press, 1956.

26

