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Abstract

We show how appropriately chosen functions f which we call dis-
tinguishing can be used to make deterministic finite automata back-
ward deterministic. These ideas have been exploited to design regular
language classes called f-distinguishable which are identifiable in the
limit from positive samples. Special cases of this approach are the
k-reversible and terminal distinguishable languages as discussed in
[1, 4, 6, 21, 22]. Here, we give new characterizations of these language
classes. Moreover, we show that all regular languages can be approxi-
mated in the setting introduced by Kobayashi and Yokomori [15]. Fi-
nally, we prove that the class of all function-distinguishable languages
is equal to the class of regular languages.

1 Introduction

Identification in the limit from positive samples, also known as exact learning
from text as proposed by Gold [11], is one of the oldest yet most important
models of grammatical inference. Since not all regular languages can be
learned exactly from text, the characterization of ¢dentifiable subclasses of



regular languages is a useful line of research, because the regular languages
are a very basic language family.

One possible idea to overcome this weakness is to use the idea of ap-
proximate learning. In this area, various approaches were considered, e.g.,
metric space approaches [25], allowing absolute or relative errors [2, 23], or
lattice-theoretic approaches [14, 15] (based on [26, 17, 18, 19]). We will focus
on the last approach in the following.

In [7], we introduced the so-called function-distinguishable languages as a
rich source of examples of identifiable language families. Among the language
families which turn out to be special cases of our approach are the k-re-
versible languages [1] and the terminal-distinguishable languages [21, 22],
which belong, according to Gregor [13], to the most popular identifiable
regular language classes. Moreover, we have shown [7] how to transfer the
ideas underlying the well-known identifiable language classes of k-testable
languages, k-piecewise testable languages and threshold testable languages
to our setting. In a nutshell, an identification algorithm for f-distinguishable
languages assigns to every finite set of samples I, C T* the smallest! f-
distinguishable language containing I, by subsequently merging states which
cause conflicts to the definition of f-distinguishable automata, starting with
the simple prefix tree automaton accepting I, .

In this paper, we firstly give a further useful characterization of function-
distinguishable languages which has been also employed in other papers [5, 8,
9]. This also allows us to define a possible merging-state inference strategy in
a concise manner. Then, we focus on questions of approximability of regular
languages by function-distinguishable languages in the setting introduced by
Kobayashi and Yokomori [15].

The paper is organized as follows: In Section 2, we provide the neces-
sary background from formal language theory and in sections 3 and 4, we
introduce the central concepts of the paper, namely the so-called distinguish-
ing functions and the function distinguishable automata and languages. In
Section 5, we discuss an alternative definition of the function canonical au-
tomata which we used as compact presentation in other papers. In Section 6,
we show how to approximate arbitrary regular languages by using function-
distinguishable languages, based on the notion of upper-best approximation
in the limit introduced by Kobayashi and Yokomori in [14, 15]. Section 7

1 This is well-defined, since each class of f-distinguishable languages is closed under
intersection, see Theorem 5.



concludes the paper, indicating practical applications of our method and
extensions to non-regular language families. Moreover, there we list some
(open) complexity problems related to our work.

An extended abstract of this report will appear in the Proceedings of
SOFSEM’01.

2 General definitions

¥* is the set of words over the alphabet ¥. XF (X<*) collects the words whose
lengths are equal to (less than) k. A\ denotes the empty word. Pref(L) is the
set of prefixes of L and u=!L = {v € ¥*|uv € L} is the quotient of L C ¥*
by wu.

We assume that the reader knows that regular languages can be charac-
terized by (deterministic) finite automata A = (Q, 7,9, qo, @r), where @Q is
the state set, § C @@ x T x @ is the transition relation, ¢y € @ is the initial
state and Qr C @ is the set of final states. As usual, 0* denotes the exten-
sion of the transition relation to arbitrarily long input words. The language
defined by an automaton A is written L(A). An automaton is called stripped
iff all states are accessible from the initial state and all states lead to some
final state. Observe that the transition function of a stripped deterministic
finite automaton is not total in general.

We denote the minimal deterministic automaton of the regular language
L by A(L). Recall that A(L) = (Q,T,9,q0,Qr) can be described as fol-
lows: @ = {u™'Lju € Pref(L)}, g0 = \'L = L; Qr = {u™'Lju € L};
and §(u"'L,a) = (ua) 'L with u,ua € Pref(L), a € T. According to our
definition, any minimal deterministic automaton is stripped.

Furthermore, we need two automata constructions in the following:

The product automaton A = Ay x A, of two automata A; = (Qs, T, 6i, go,i, Qri)
for i = 1,2 is defined as A = (Q,T,0,q0,Qr) with Q = Q1 X Q2, g =
(90,1, %0,2), Rr = Qra X Qra2, ((¢1,¢),a,(d},¢)) € 0 iff (¢1,a,q¢]) € 6 and
(92, @, q3) € 02

A partition of a set S is a collection of pairwise disjoint nonempty subsets
of S whose union is S. If 7 is a partition of S, then, for any element s € S,
there is a unique element of 7 containing s, which we denote B(s, ) and call
the block of w containing s. A partition 7 is said to refine another partition 7’
iff every block of 7’ is a union of blocks of 7. If 7 is any partition of the state
set @ of the automaton A = (Q,T, 9, qo, Qr), then the quotient automaton



7 'A=(n'Q,T,d, Blq,7), 7 'Qr) is given by 7 'Q={B(¢,7)|qeQ}
(for @ C Q) and (By,a, By) € ¢ iff g1 € Bidg, € By : (1,0, ¢2) € 0.

3 Distinguishing functions

In order to avoid cumbersome case discussions, let us fix now 7" as the input
alphabet of the finite automata we are going to discuss.

Definition 1 Let F' be some finite set. A mapping f : 7% — F is called
a distinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all
u,w,z € T*.

In the literature, we can find the terminal function [22]
Ter(z) ={ae€T|Ju,veT" :uav =1}
and, more generally, the k-terminal function [6]

Terg(a) = (my(e), pele),oule)),  where
() = {a €T | JuveT* uaw =2}

and 7 () [ox ()] is the prefix [suffix] of length k of z if x ¢ T<*, and m(z) =
op(z) = z if z € T<F. The example f(x) = ox(z) leads to the k-reversible
languages, confer [1, 6]. In particular, the trivial distinguishing function,
whose range is a singleton set, characterizes the O-reversible languages. Other
examples of distinguishing functions in the context of even linear languages
can be found in [5, 21].

Observe that every regular language R induces, via its Nerode equivalence
classes, a distinguishing function fg, where fr(w) maps w to the equivalence
class containing w. Especially, 7™ leads to a trivial distinguishing function
fr« : T* = {q}, and the class of fr«-distinguishable languages coincides with
the class of O-reversible languages [1] over the alphabet 7.

In some sense, these are the only distinguishing functions, since one
can associate to every distinguishing function f a finite automaton A; =
(F,T, &, f(N), F) by setting d¢(q,a) = f(wa), where w € f !(g) can be
chosen arbitrarily, since f is a distinguishing function.



4 Function distinguishable languages

Here, we will formally introduce function distinguishable languages and dis-
cuss some formal language properties.

Definition 2 Let A = (Q, T, J, qo, @r) be a finite automaton. Let f : T*—F
be a distinguishing function. A is called f-distinguishable if:

1. A is deterministic.

2. For all states ¢ € @ and all z,y € T* with §*(go, ) = 0*(q0,y) = ¢, we
have f(z) = f(y).

(In other words, for ¢ € @, f(q) := f(z) for some x with §*(gy,z) = ¢
is well-defined.)

3. For all ¢1,¢ € Q, q1 # qo, with either (a) ¢1,¢2 € Qp or (b) there exist
g3 € Q and a € T with §(q1,a) = (g, a) = g3, we have f(q1) # f(g2).

A language is called f-distinguishable iff it can be accepted by an f-distin-
guishable automaton. The family of f-distinguishable languages is denoted
by f-DL.

We need a suitable notion of a canonical automaton in the following.

Definition 3 Let f : 7" — F' be a distinguishing function and let L C T*
be a regular set. Let A(L, f) be the stripped subautomaton of the product
automaton A(L) x Ay, i.e., delete all states that are not accessible from the
initial state or do not lead into a final state of A(L) x A;. A(L, f) is called
f-canonical automaton of L.

Observe that the class f-DL formally fixes the alphabet of the languages
by the range of f. As we have already seen by the examples for distinguish-
ing functions listed above, f can oftenly defined for all alphabets. Taking
this generic point of view, for example, Ter-DL is just the class of (rever-
sals of) terminal distinguishable languages [5, 22|, where the alphabet is left
unspecified.

For example, for each distinguishing function f, the associated automaton
Ay is f-distinguishable. This simple observation leads us to:

Theorem 4 A language is function-distinguishable iff it is reqular.



Proof. Let L be a regular language. Consider the canonical automaton Ay,
for L. It is quite easy to see that Ay is fr-distinguishable. O

In other words, { f-DL | f is a distinguishing function } gives a finer clas-
sification of all regular languages. This finer classification is necessary, since
it is well known that the class of all regular languages is not identifiable in
the limit from positive data [11].

The following theorem generalizes the corresponding assertion for k-re-
versible languages as stated by Angluin [1].

Theorem 5 For each distinguishing function f, f-DL is closed under inter-
section.

Proof. The standard product automaton construction is applicable. O

To the contrary, f-DL is not closed under union nor complement in gen-
eral, see [1]. According to Pin [20], the union closure of the O-reversible lan-
guages is characterized by another class of regular languages which he calls
reversible. He calls a language L reversible iff there is a finite automaton A
accepting L such that A is deterministic and codeterministic but has possibly
several initial and several accepting states. Sometimes, such automata are
also called injective automata or permutation automata.

5 An alternative presentation

In [7], we developed a generic merging state algorithm for f-DL which par-
alleled the approach of Angluin for O-reversible languages. More precisely,
the algorithm, when given an input sample I, starts with the prefix tree
acceptor PTA(I;) (as defined below). If Af(I;) (Lg(L+), resp.) denotes
the output automaton (output language, resp.) of the merging state infer-
ence algorithm when given I, then (disregarding automaton ismorphism)
A(Ls(14), f) = Af(Iy), see [7]. In their works, Radhakrishnan and Na-
garaja [22] do not start with the PTA of the given input data set I, but
rather with a so-called “skeletal grammar” for the given input data set I,
which corresponds to the “maximal canonical automaton” MCA(I,) in the
framework of Dupont and Miclet [3]. Here, we describe a related algorithm
for learning f-DL-languages. This way, we also yield an alternative charac-
terization of f-DL.



Consider an input sample set I, = {wi,...,wy} C TT.2 Let w; =
;1 - - - Qip;, Where a;; € T, 1 <1 < M, 1 < j < n;. The skeletal automaton
for the sample set is defined as

As(ly) = (Qs,T,6s,Q0,Qf), where
Qs = {g|1<i<M1<j<m+1},
0s = {(gij,0ij,qij11) |1 <i<M,1<j<m},
Qo {gn|1<i<M} and
Qr = {dinn|1<i< M}

Observe that we allow a set of initial states. The frontier string of g;; is
defined by FS(gi;) = aij...ain,. The head string of ¢;; is defined by the
equation HS(g;;)FS(g;j) = w;, ie,, HS(¢ij) = ai1-..a;;j—1. In other words,
HS(g;;) is the unique string leading from an initial state into ¢;;, and FS(g;;)
is the unique string leading from g;; into a final state.> Therefore, the skeletal
automaton of a sample set simply spells all words of the sample set in a trivial
fashion. Two things can be easily observed.

1. The state partition 7 of Qs induced by g = ¢' iff HS(¢) = HS(¢’) yields
the prefix tree acceptor, i.e., PTA(I,) = 7~ Ag(L).

2. Since there is only one word leading to any ¢, namely HS(q), f(q) =
f(HS(g)) can be uniquely defined.

Now, for ¢i;, gre € Qs, define g;; = qre iff (1) HS(g;;) = HS(qke) or (2)

FS(gij) = FS(qke), as well as f(q;;) = f(qre)-
The following assertion is easily verified:

Lemma 6 For each distinguishing function f and each finite language 1.,
=7 is a reflexive symmetric relation on the set Qs of states of Ag(1;).

In general, = is not an equivalence relation on the state set of Ag, as
the following example shows:

2The inclusion of the empty word would introduce some unnecessary technalities.

3In order to overcome unnecessary technical complications, we underline here that we
are dealing with a sample set, i.e., we do not consider repitions of sample words which are
allowed in Gold’s model in general.



Example 7 Consider the trivial distinguishing function o¢ and I, = {a, aa}.
The skeletal automaton has state transitions (¢i1,a,¢12), (¢21,@,¢e2) and
(g22, @, go3). Since HS(g11) = HS(¢a1) = A and HS(¢12) = HS(¢22) = a, as
well as FS(g12) = FS(g23) = A, FS(q11) = FS(¢22) = @ and FS(gz1) = aa, all
states in Qg are op-equivalent, but g11 74, g12-

Therefore, we define =;p:= (=/)", denoting in this way the transitive
closure of the original relation. The following lemmma is again an easy
exercise left to the reader.

Lemma 8 For each distinguishing function f and each finite language I,
=/ is an equivalence relation on the state set of Ag(I,).

We consider now the automaton WJTIAS(I+), where 7y is the partition
induced by the equivalence relation =;. We like to show that A;(I;) =
7rJ71A5(I+). As a preparatory stage, we prove:

Lemma 9 For each distinguishing function f and each finite language I,
71']71145([_1_) is an f-distinguishable automaton.

Proof. We have to verify the three conditions posed upon f-distinguishable
automata for WJTIAS(LL). Let 6 denote the transition relation of WJIIAS(LL)
and o its initial state. (We use barred state notations for states of 7r;1A5(I+)
and non-barred notations for states of Ag(l;).)

ad 1.: Consider an input word w with ¢1,¢q2 € §*(go, w). Then, there are
some ¢;; € ¢ and gg¢ € @2 (recall that g, ¢» are both sets of states of Ag(1;))
with HS(¢;;) = w and HS(gx,) = w. Hence, ¢;; = grs, Which means that
G1 = o, since q; and ¢, are equivalence classes of states of Ag(I,).

ad 2.: Observe that f(g) is well-defined for every state g of Ag(Iy). It is
easy to check that if ¢ = ¢/, then f(¢) = f(¢'). Since ¢,¢' € ¢ iff ¢ =; ¢ iff
q ;‘}L ¢, f(q) = f(¢') immediately follows by the transitivity of equality.

ad 3.: It can be shown similar to point 1 (formally by induction). O

Theorem 10 For each distinguishing function f and each sample set 1.,
Ap(ly) = 7T;1A5(I_|_) (up to isomorphism).

Proof. According to [3], we can consider WJTIAS(LL) as being obtained by a
sequence of merging state steps, merging only two states at a time. Without
loss of generality, such a sequence of mergings might start with “repairing”
violations of the determinism requirement, so that we obtain PT A(I,) as an

8



intermediate automaton. Similar to the reasoning in the previous lemma, the
reader may verify that each of these merging steps can be justified also by the
existence of conflicts in the merged states according to inference algorithm
sketched in the introduction. Since we have shown the correctness of that
inference algorithm in [7], the assertion of this theorem follows, as well. O

This argument justifies the presentation of certain subcases of function
distinguishable languages as done in [5, 8].

6 Approximation

Kobayashi and Yokomori introduced in [14, 15] the notion of upper-best ap-
proximation in the limit of a target language with respect to the hypothesis
space. They showed that regular languages can be upper-best approximated
by k-reversible languages for any fixed k. Here, we shall prove that similar
results are true for any class f-DL. In particular, this implies that, given
any enumeration of an arbitrary regular language to some identification al-
gorithm for f-DL, this algorithm will converge, yielding some well-defined
result. Especially, the terminal distinguishable languages can be used to ap-
proximate all regular languages in a precise sense. This is interesting, since
already Radhakrishnan and Nagaraja observed in [22] on an empirical basis
that their algorithm converges for regular languages, but not for context-free
languages. The approximation notion developed by Kobayashi and Yokomori
gives a mathematical explanation of this empirical observation.

Firstly, we give the necessary definitions due to Kobayashi and Yokomori.

Let £ be a language class and L be a language possibly outside £. An
upper-best approzimation LL of L with respect to L is defined to be a language
L, containing L such that for any L' € £ with L C L', L, C L' holds. If
such an L, does not exist, £L is undefined.

Remark 1 If £ is closed under intersection, then L, is uniquely defined.

Let £, and L5 be two language classes. We say that £, has the upper-best
approzimation property (u.b.a.p.) with respect to Ly iff, for every L € Lo,
L1L is defined.

Consider an inference machine I to which as input an arbitrary language
L € £ may be enumerated (possibly with repetitions) in an arbitrary order,
i.e., I receives an infinite input stream of words F(1), E(2), ..., where



E : N— L is an enumeration of L. We say that I identifies an upper-best
approzimation of L in the limit (from positive data) by L if I reacts on an
enumeration of L with an output device stream D; € D such that there is
an N(FE) so that, for all n > N(E), we have D, = Dy(g) and, moreover, the
language defined by Dy g equals LL. A language class £, is called upper-
best approzimately identifiable in the limit (from positive data) by Lo iff there
exists an inference machine I which identifies an upper-best approximation
of each L € £, in the limit (from positive data) by L,. Observe that this
notion of identifiability coincides with Gold’s classical notion of learning in
the limit in the case when £; = Ls.

Consider a language class £ and a language L from it. A finite subset
F C L is called a characteristic sample of L with respect to L iff, for any
L' e £, F C L' implies that L C L'.

Now, fix some distinguishing function f. We call a language L C T™
pseudo-f -distinguishable iff, for all uy, ug, v € T with f(u1) = f(u2), we have
uflL = U, ' whenever {u1v,ugv} C L. By the characterization theorem
derived in [7], L € f-DL iff L is pseudo- f-distinguishable and regular.

Immediately from the definition, we may conclude:

Proposition 11 Let L; C Ly, C ... be any ascending sequence of pseudo-f-
distinguishable languages. Then, |J,~, L; is pseudo-f-distinguishable. a

For brevity, we write u; =, ; up iff u7'L = u3'L and f(uy) = f(ug).

Remark 2 If . C T* is a regular language and if f : T* — F is some
distinguishing function, then the number of equivalence classes of = ; equals
the number of states of Ay (plus one) times |F'|, and this is just the number
of states of A(L, f) (plus |F|).

Let L C T* be some language. For any integer ¢, we will define R (i, L)
as follows:

1. R;(0,L) = L and

2. Ry(i,L) = Rs(i— 1, L) U{ uow | urv, uov, uqw € Rp(i — 1, L) A f(u1) =
f(ug) } for i > 1.

Furthermore, set Ry(L) = ;5o By (i, L)

10



Observe that, by definition, a language is pseudo-k-reversible [15] iff it is
pseudo-o,-distinguishable. Moreover, the operator Ry introduced in [15] is
written as R,, in our notation.

Since Ry turns out to be a hull operator, the following statement is obvi-
ous.

Proposition 12 For any language L and any distinguishing function f,
Ry (L) is the smallest pseudo-f-distinguishable language containing L. O

Lemma 13 Let L C T* be any language. If uy and us are prefives of L,
then uy =r,; uy implies that u7 'Ry (L) = uy ' Ry(L).

Proof. Let u; and usy be prefixes of L with u; =, up. By definition of = ¢,
u'L = uy'L # (). Hence, there is a string v so that {u,v, upv} C L C R;(L).
Furthermore, by definition of =1, f(u1) = f(u2). Since R(L) is pseudo-f-
distinguishable due to Proposition 12, u;*R;(L) = uy ' Rs(L). 0

Lemma 14 Let L C T* be any language and let f be any distinguishing
function. Then, for any prefic wy of Rf(L), there exists a prefix we of L with
wy ' Ry(L) = wy 'Ry (L).

Proof. Since w, is a prefix of R;(L) iff w, is a prefix of R (i, L) for some
1 > 0, it suffices to show the following claim by induction:

Let ¢ > 0. Then, for any prefix w; of Ry(i, L), there exists a
prefix wy of L with wi'R;(L) = wy ' Rs(L).

Trivially, the claim is true when i = 0, since R;(0,L) = L.

As induction hypothesis, assume that the claim is shown for 7 = ¢. Hence,
we have to consider some w; € Pref(Rf(¢ + 1,L)) \ Pref(Rs(¢,L)) in the
induction step. Consider some wiz € Rp(¢ +1,L) \ Rs(¢,L). This means
that there are strings uy, v, w € T with {u,v, ugv, wyw} C Rs(¢, L), f(u1) =
f(ug) and uow = wyz. If Jug| > |wy|, wy is a prefix of upw € Ry(¢, L) in
contrast to our assumption. Therefore, we have w; = wuyv' for some v' €
T*. Since Ry(L) is pseudeo-f-distinguishable and {u;v,usv} C Ry(L) as
well as f(u1) = f(ug), ui'Rf(L) = uy'Rs(L), which yields wi'R;(L) =
(ugv") 'Ry (L) = (u1v') *Ry(L). Since v' is a prefix of w, usv’ is a prefix of
wyw € Ry(¢,L). By induction hypothesis, there is a prefix wy of L such that
w5 Ry(L) = (') “Ry(L) = wi Ry (L), 0

By a reasoning completely analogous to [15], we may conclude:

11



Theorem 15 For any distinguishing function f, the class f-DL has the
u.b.a.p. with respect to the class of reqular languages. O

Observe that the number of states of Ag,(z) is closely related to the
number of states of A(L, f), see Remark 2.

Theorem 16 For any distinguishing function f, the class of regular lan-
guages is upper-best approrimately identifiable in the limit from positive data
by f-DL. O

In the spirit of [16, Cor. 2], it is possible to obtain other, new identifiable
classes of regular languages as homomorphic images of an arbitrary class
f-DL (for each fixed distinguishing function f).

7 Discussion

We have proposed a large collection of families of languages, each of which
is identifiable in the limit from positive samples, hence extending previous
works. We feel that deterministic methods yielding characterizable regular
subclasses (such as the ones proposed in this paper) are quite important
for practical applications, since they could be understood more precisely
than mere heuristics, so that one can prove certain properties about the
algorithms. Moreover, the approach of this paper allows one to make the
bias (which each regular language identification algorithm necessarily has)
explicit and transparent to the user: The bias consists in (1) the restriction to
regular languages and (2) the choice of a particular distinguishing function f.
Detailed comments in this direction can be found in [9].

We will provide a publicly accessible prototype learning algorithm for
(each of the families) f-DL in the near future. A user can then firstly look
for an appropriate f by making learning experiments with typical languages
he expects to be representative for the languages in his particular application.
If there are only few “typical languages” Ly, ..., L, in the beginning, one
could also start with fr, x --- x fr, where f x g is defined as (f x g)(z) =
(f(x), g(z)), see the proof of Theorem 4. After this “bias training phase”, the
user may then use the such-chosen learning algorithm (or better, an improved
implementation for the specific choice of f) for his actual application.

Even if the particular class f-DL chosen by the user does not completely
comprise all languages the identification machine IM will be confronted with,

12



Theorem 16 suggests that, in the case that a regular language which does not
lie in f-DL is enumerated to IM, some reasonable outcome will be produced
in a reasonable time.

If the application suggests that the languages which are to be inferred are
non-regular, methods such as those suggested in [21] can be transferred. This
is most easily done by using the concept of control languages as undertaken
in [4, 5] or [24, Section 4] or by using the related concept of permutations,
see [10].

We conclude this report with posing several complexity questions that

naturally arise when being faced with the problem of choosing an appropri-
ate bias for the learning algorithm. Let us assume that the user knows several
“typical” languages L1, ..., L,. Possibly, the choice of fr, x --- X fr, as
distinguishing function has a range which is too large for practical implemen-
tation. Recall that the identification algorithm proposed in [7] exponentially
depends on the size of the range of the distinguishing function. Therefore,
the following problem is of interest:
Problem 1(r): Given Ly, ..., L,, find a distinguishing function f with mini-
mal range such that Ly, ..., L, lie all within f-DL. Although we expect this
problem to be NP-hard, we have yet no proof. We even suspect the problem
is hard in the special case when r = 1.

What could we do if a user cannot tell a good representative set of lan-
guages L, ..., L, in advance, i.e., with complete automaton specification, or
what if the representative languages do not come as a whole but one by one
in an on-line fashion? Then, the following incremental version of a “training
phase” (which can also be incorporated into the actual “learning phase”) for
finding the suitable distinguishing function might be an alternative way of
getting a good distinguishing function:

1. Start with f = oy, i.e., the trivial distinguishing function.
2. LOOP i: Enumerate Lz = {’U)il, Wi, . . . }, let Iij = {’U)il, e ,wij}.

3. LOOP j: Consider I;;, 7 =1, ...
Let L;; be the smallest f-distinguishable language containing I;;.
IF L;; = L; THEN continue with LOOP ¢
IF L;; C L, THEN continue with LOOP j
IF L;; = L; THEN modify(f) and continue with LOOP 3

We still have to specify the function modify(f). What is the current situation

13



when calling that function? We know that

Therefore, L; ¢ f-DL. A possible modification would be to put f := fx fz,..
In order to get distinguishable functions with small range, an alternative
would be to look for the f;; with smallest range such that L;; € f x f;;-DL.
We also suspect that this optimization problem (Problem 2) is NP-hard.
Observe that in the case f = oy Problem 2 coincides with Problem 1(1).

A related problem is the following: Given L C L', find a minimal deter-
ministic finite automaton A such that L = L' N L(A) (intersection problem).
Observe that this question is known to be NP-hard due to Gold [12]. An
answer to the latter question could possibly be helpful for solving Problem 2:
Take L = L; and L' = Ry(L;). Then, a solution A to the intersection prob-
lems defines a distinguishing function f4 such that f := f x fa hopefully
yields a good solution to Problem 2.

Observe that all the above problems basically lead to some sort of modifi-
cation of the hypothesis space. More precisely, the hypothesis space used up
to a certain point may be refuted, i.e., extended in our case, if it has proven
to be unsufficient. Therefore, it may be interesting to investigate possible
connections to learning models which incorporate refutations, see [18, 19].

Acknowledgments: We gratefully acknowledge discussions with S. Koba-
yashi and K. Reinhardt.
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