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ABSTRACT

Ooids are coated grains composed of a tangential or radial cortex growing

around a nucleus. They are common in carbonate deposits of almost any

geological age and provide insights into environmental conditions. However,

abiotic or biotic factors influencing their formation remain unclear. This

study aims to advance current understanding of ooid formation with a

multi-analytical approach (for example, field emission scanning electron

microscopy, Raman spectroscopy and micro X-ray fluorescence) to classic

examples from Great Salt Lake, USA, and the Lower Triassic Germanic Bunt-

sandstein Basin, Germany. Both of these deposits represent hypersaline

shallow-water environments where ooids are closely associated with micro-

bial mats. Great Salt Lake ooids are dominantly 0.2 to 1.0 mm in size, ellip-

soidal to subspherical in shape, composed of aragonite and contain organic

matter. Germanic Buntsandstein Basin ooids are mainly ≤4 mm in size,

spherical to subspherical in shape, composed of calcite and currently con-

tain little organic matter. Despite the differences, both ooids have the same

cortex structures, likely reflecting similar formation processes. Some Great

Salt Lake ooids formed around detrital grains while others exhibit micritic

particles in their nuclei. In Germanic Basin ooids, detrital nuclei are rare,

despite the abundance of siliciclastic particles of various sizes in the host

rocks. Germanic Basin deposits also include ‘compound ooids’, i.e. adjacent

ooids that coalesced with one another during growth, suggesting static in
situ development, which is supported by the lack of detrital grains as nuclei.

Germanic Basin ooids also grew into laminated microbial crusts with identi-

cal microstructures, further indicating a static formation. Such microbial

crusts typically form through mineral precipitation associated with organic

matter (for example, extracellular polymeric substances), suggesting a similar

formation pathway for ooids. The inferred key-role of organic matter is fur-

ther supported by features in radial ooids from the Great Salt Lake, which

commonly exhibit, from their nuclei towards their surface, increasing

organic matter contents and decreasing calcification.
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INTRODUCTION

Ooids are significant particles of carbonate
deposits from many different sedimentary envi-
ronments since the Archaean (e.g. Kalkowsky,
1908; Davies et al., 1978; Simone, 1981; Krum-
bein, 1983; Summons et al., 2013; O’Reilly et al.,
2017; Siahi et al., 2017; Mariotti et al., 2018;
Diaz & Eberli, 2019; Flannery et al., 2019). They
are typically characterized by tangential and/or
radial cortices and have sizes of <2 mm (Rich-
ter, 1983; Fl€ugel, 2010). In addition to the Pre-
cambrian, ooids are relatively common in
critical junctures in the Phanerozoic, for exam-
ple, after the Permian–Triassic catastrophe.
Ooids, especially giant ooids (>2 mm), are rela-
tively common during these periods (e.g. Sum-
ner & Grotzinger, 1993; Li et al., 2015, 2021).
Ooids have caught the attention of humans since
prehistoric times (Binsteiner et al., 2008; Weber
et al., 2022) and were already mentioned by
Roman naturalists (Burne et al., 2012). However,
their first scientific description was provided in
a treatise devoted entirely to the ooids of the
Lower Buntsandstein (Lower Triassic) from
northern and central Germany by Br€uckmann
(1721), who followed Volkmann (1720) in using
the Greek word ‘oolithos’ (literally ‘egg-rock’,
due to their similarity to fish roe), a translation
of the German ‘Rogenstein’ or ‘Eierstein’ (Burne
et al., 2012). In the landmark book on the micro-
facies of carbonate rocks, Fl€ugel (2010) defined
ooids as: “spherical and egg-shaped carbonate or
non-carbonate coated grains exhibiting a nucleus
surrounded by an external cortex, the outer part
of which is concentrically smoothly laminated”.
Despite this long history of research, the for-

mation process of ooids still remains disputed
and unresolved, and both inorganic and organic
hypotheses have been proposed. The inorganic
hypothesis involves a direct precipitation of ara-
gonite or calcite from fluids supersaturated with
respect to CaCO3 (e.g. Illing, 1954; Sumner &
Grotzinger, 1993; Duguid et al., 2010; Paul
et al., 2011; Trower et al., 2017, 2018). In this
model, larger ooids are predicted to result from
faster precipitation rates promoted by a higher
calcium carbonate saturation state, combined

with increased agitation to allow larger grains to
be transported for active growth (Trower et al.,
2017; Li et al., 2021). In the organic hypothesis,
aragonite or calcite precipitation is closely asso-
ciated with microbial extracellular polymeric
substances (EPS), which consist of complex mix-
tures of various organic compounds such as
polysaccharides, proteins, nucleic acids and
lipids (Flemming & Wingender, 2010; Flemming,
2016; Decho & Gutierrez, 2017). EPS are wide-
spread in biofilms (Wingender et al., 1999;
Flemming et al., 2007; Neu & Lawrence, 2010),
implying the presence of a rich and diverse
community of microorganisms during ooid for-
mation (Friedmann et al., 1973; Gerdes et al.,
1994; Brehm et al., 2006; Pl�ee et al., 2008; Sum-
mons et al., 2013; Woods, 2013; Diaz et al.,
2015, 2017; O’Reilly et al., 2017; Hubert et al.,
2018). Microorganisms are put forward to induce
carbonate precipitation by their metabolic activ-
ity. However, living microorganisms must not
necessarily be directly involved, because carbon-
ate precipitation can also be linked to degraded
organic matter (OM) (‘Organomineralization’: Mit-
terer, 1968; Suess & F€utterer, 1972; Ferguson
et al., 1978; Trichet & D�efarge, 1995; Reitner
et al., 1995a,b, 1997; Reitner, 2004).
Herein, Lower Triassic ooids from the Ger-

manic Basin, Germany, and modern counter-
parts from the Great Salt Lake, USA, were
studied and compared. Ooids from both locali-
ties have been continuously studied since the
XIX century until now (e.g. Rothpletz, 1892;
Kalkowsky, 1908; K€asbohrer & Kuss, 2019, 2021;
Ingalls et al., 2020, Trower et al., 2020) and have
been central for the development of early
hypotheses about the organic influence on ooid
formation (e.g. Kalkowsky, 1908, for Germanic
Buntsandstein Basin ooids; Rothpletz, 1892, for
Great Salt Lake ooids). Although more than a
century has passed since those early hypotheses,
much remains unknown about the exact role of
OM in forming ooids. This work aims at advanc-
ing that direction by analysing the similarities
and differences between ooids from the very
same classic localities that originated the idea of
organic influence on ooids, and by discussing
their possible formation processes.
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MATERIALS AND METHODS

Geological setting and sample material

The Early Triassic Buntsandstein Group was
deposited in the Germanic Buntsandstein Basin,
which extended from England to Belarus and
from Denmark to Germany (Fig. 1A and B). It
was mainly a continental basin but occasionally
connected to the western Tethys Ocean (Meliata
Ocean), and characterized by subtropical to arid
climates (Ziegler, 1990; Stampfli, 2000; Weidlich,
2007; Scholze et al., 2017; Scotese, 2021). This

study focuses on the Lower Buntsandstein Sub-
group in Germany (Fig. 1B). The subgroup can be
up to ca 450 m thick, consisting of siliciclastic
rocks intercalated with carbonates (Ziegler, 1990).
It is further subdivided into the Calv€orde and
Bernburg formations. The studied ooids and stro-
matolites occur in the Bernburg Formation. They
may have formed in a lacustrine environment
characterized by elevated salinities (Paul & Peryt,
2000; K€asbohrer & Kuss, 2019), although some
studies favour a marine environment due to a
transgression (Weidlich, 2007). In addition to
materials sampled during various field campaigns

Fig. 1. (A) Palaeogeographical map of Permian–Triassic boundary (ca 250 Ma ago, Scotese, 2021). (B) Palaeogeo-
graphy of the Lower Buntsandstein Subgroup (Early Triassic) in Germany (modified from Scholze et al., 2017)
with main modern cities marked in black and the two sampling localities in red. LBM, London – Brabant – Mas-
sif; RM, Rhenish Massif; VBM, Vindelician – Bohemian – Massif. (C) Geographic map of Present-day (Sco-
tese, 2021). (D) Geographic position of the sampling locality in red at the north-western coast of Antelope Island
in the Great Salt Lake (Google Earth Pro image).
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between 2018 and 2020 at the Heeseberg and sur-
roundings, and in Beesenlaubingen (Fig. 1B),
existing samples that are archived in the
G€ottingen Geoscience Collections at the Univer-
sity of G€ottingen were studied.
The Great Salt Lake, USA, is an endorheic

lake (Fig. 1C) and a remnant of the Pleistocene
Lake Bonneville (Oviatt et al., 1999; Shroder
et al., 2016). Its salinity varies from approxi-
mately 12 to 26%, with Na+ and Cl� being the
major ions. The studied modern ooids were
sampled at the north-western coast of Antelope
Island in 1994 and 1996 (Fig. 1D), where the
salinity is 12 to 14% (Chidsey et al., 2015).
The samples are now stored in the G€ottingen Geo-
science Collections at the University of G€ottingen.

Sample preparation

Petrographic thin sections were prepared from
the Triassic samples of the Germanic Basin.
Modern ooid samples from Great Salt Lake were
processed directly after sampling in the field.
Some samples were fixed in buffered formalin,
dehydrated and stored in 70% ethanol, while
others were fixed in buffered glutardialdehyde
(cooled on ice for 24 h) and postfixed with 2%
osmium tetroxide (for details see Reitner, 1993).
All Great Salt Lake samples were then stained
with Ca2+-chelating fluorescent dye (for exam-
ple, calcein) and non-fluorescent dye (for
example, alcian blue). Subsequently, thin sec-
tions were prepared from LR White-embedded
specimens with a Leica SP 1600 saw microtome
(Leica Microsystems, Wetzlar, Germany).

Petrography and analytical imaging

Thin sections were analysed using a Zeiss
SteREO Discovery.V12 stereomicroscope and a
Zeiss AXIO Imager.Z1 microscope (Carl Zeiss
AG, Oberkochen, Germany). Photographs were
taken with an AxioCamMRc 5 MB camera.
For epifluorescence microscopy, a Zeiss AXIO

Imager.Z1 microscope was utilized. It is
equipped with a high-pressure mercury arc lamp
(HBO 50, Zeiss; controlled by an EBX 75 ISO-
LATED electronic transformer) and a 10 AF488
filter (excitation wavelength = BP 450–490 nm,
emission wavelength = BP 515–565 nm). Thin
sections with Ca2+-chelating fluorescent dye
were studied with a ZEISS Axioplan using a
high performance wide-band pass filter (blue,
BP 450–490, LP 520; no. 487709) (for details see
Hicks & Matthaei, 1958; Reitner, 1993).

For field emission scanning electron micro-
scopy (FE-SEM), a Carl Zeiss LEO 1530 Gemini
system was used. Some thin sections of the
modern samples were etched by submerging
them in a 5% ethylenediaminetetraacetic acid
(EDTA) solution for 10 to 30 s.
A Bruker M4 Tornado instrument (Bruker, Bil-

lerica, MA, USA) equipped with an XFlash 430
Silicon Drift Detector was used for micro X-ray
fluorescence (l-XRF) to obtain element distribu-
tion images of thin sections. Measurements (spa-
tial resolution = 25 lm, pixel time = 8 ms) were
conducted at 50 kV and 400 lA with a chamber
pressure of 20 mbar.
A WITec alpha300 R fibre-coupled ultra-high

throughput spectrometer (Oxford Instruments,
Abingdon, UK) was employed to collect Raman
single spectra and spectral images to analyse
mineral compositions of thin sections. Before
analysis, the system was calibrated employing
an integrated light source. For both single spec-
tra and spectral images, the experimental setup
includes a 532 nm excitation laser, an automati-
cally controlled laser power of 20 mW, a
100 9 long working distance objective with
a numerical aperture of 0.75 and a 300 g mm�1

grating. The spectrometer was centred at
2220 cm�1, covering a spectral range from 68 to
3914 cm�1. This setup has a spectral resolution
of 2.2 cm�1. For single spectra, each was col-
lected by two accumulations, with an acquisi-
tion time of 2 s. For spectral images, spectra
were collected at a step size of 1 lm in horizon-
tal and vertical directions by an acquisition time
of 0.25 s for each spectrum. Automated cosmic
ray correction, background subtraction and fit-
ting using a Lorentz function were performed
using the WITec Project software. Raman images
were additionally processed with spectral avera-
ging/smoothing and component analysis.

RESULTS

Lower Triassic ooids from the
Germanic Basin

In the working area, the Bernburg Formation
consists of siliciclastic and carbonate rocks (for
example, floatstone after Lokier & Al Junaibi,
2016) which show abundant sedimentary struc-
tures (for example, cross-bedding, climbing rip-
ples and wave ripples). A prominent feature of
the formation are stromatolites with columnar
growth forms and thicknesses of 10 to 50 cm
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(rarely up to 1.2 m) (Fig. 2A and B). Ooids in
the Bernburg Formation are typically large with
diameters exceeding 2 mm (Fig. 2C and D; see
below for details). In many oolitic beds, ooids
are overgrown by thin, 5 to 50 cm wide micro-
bial crusts. Notably, these crusts show a lamina-
tion equivalent to that of the ooids. They either
develop into a thicker stromatolite bed or are
overlaid by another oolitic bed (Fig. 2C and D).

Morphology and composition
The Germanic Buntsandstein Basin ooids are up
to 4 mm in diameter and spherical to subspheri-
cal in shape. Their nuclei are most commonly
dark micritic particles (for example, Fig. 3A)
even though detrital (for example, quartz) grains
of various sizes are abundant in the sediment
(for example, Figs 4A, 5 and 6). Four types
of ooids are distinguished, according to the

structure of their cortices. Type A ooids show
co-occurring radial and tangential structures
across their cortices (Fig. 3A). Type B ooids
exhibit alternating radial and tangential features
(Fig. 3B). Type C ooids are radial showing indis-
tinct laminae (Fig. 3C). Type D ooids are tangen-
tial exhibiting indistinct radial features
(Fig. 3D). Among the four types, Type A ooids
are the most prominent. Type C ooids are typi-
cally smaller in size (<0.5 mm) and can occur as
the initial stage of other types of ooids. In some
cases, adjacent ooids have coalesced during
growth, forming ‘compound ooids’, which are
very common in some samples (Fig. 3E and F).
Both radial and tangential cortices exhibit a

relatively strong green fluorescence, which is
typically brighter in the darker radial segments
and darker laminae (Fig. 3G and H). Raman
spectroscopy shows that the ooids are mainly

Fig. 2. Field pictures of the Early Triassic, the Germanic Basin. (A) and (B) Oolitic deposits alternate with colum-
nar stromatolites. (C) and (D) The giant ooids, diameter >2 mm, are overlaid by microbial crusts.
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Fig. 3. Thin section images of the Early Triassic ooids from Germanic Basin. (A) Type A, characterized by co-
occurring radial and tangential structures across their cortices. (B) Type B, with alternating radial and tangential
features. (C) Type C, radial ooids showing indistinct laminae. (D) Type D, tangential ooids exhibiting indistinct
radial features. (E) and (F) Compound ooids, formed by several ooids that have coalesced with one another during
growth. (G) and (H) Same image under transmitted light (G) and fluorescence (H). Note that both radial and tan-
gential cortices exhibit a strong green fluorescence, which is typically brighter in the darker radial segments and
darker laminae.
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composed of calcite (Fig. 4). The dark and light
radial segments display different contents of ele-
ments, for example, calcium (Ca) (Fig. 5A and
B), iron (Fe) (Fig. 5A and C) and silicon (Si)
(Fig. 5A and D), as indicated by l-XRF. The
matrix between ooids is typically enriched in Si,
which is due to the presence of abundant quartz
grains. At the same time, there is no petro-
graphic or l-XRF evidence for the presence of
quartz grains in the centre of ooids.

Relationship between ooids and microbial
crusts/stromatolites
The studied Germanic Basin ooids are often
overlaid by laterally-continuous microbial crusts
equivalent to the initial stage of stromatolites
(Fig. 2C and D). Ooids and microbial crusts also
alternate on a millimetre-scale (Fig. 6A). In other
cases, microbial crusts completely envelop clusters
of ooids (Fig. 6B), which was already described by
Kalkowsky (1908) as ‘ooid bags’ (Ooid Beutel) and
also observed by other researchers (Paul & Peryt,
2000; Paul et al., 2011).
Furthermore, the microfabric of both ooid lam-

inae and stromatolite laminae is almost identi-
cal, with laminae showing a characteristic
internal palisade structure composed by thin
crystals growing perpendicular to lamination
(Fig. 6C and D). In addition, the microbial crusts
also show structures equivalent to the radial and
tangential structures of ooid cortices (Fig. 6E
and F). Locally, truncation is observed between
the ooid cortices and the overlying microbial
crusts, but the microfabric of laminae remains
equivalent (Fig. 6A).

Modern ooids from the Great Salt Lake

Morphology and composition
Great Salt Lake deposits contain abundant ooids
and associated microbial crusts (Chidsey et al.,
2015; Vennin et al., 2019) (Fig. 7A). The studied
Great Salt Lake ooids range from 0.2 to 1.0 mm
in diameter and are ellipsoidal to subspherical
in shape (Figs 7 to 9). The nuclei of ooids are
either micritic particles or detrital (quartz or
feldspar) grains (Figs 7, 8C and 9A). Ooid corti-
ces are aragonitic, as indicated by Raman spec-
troscopy (Fig. 8D to F).
Great Salt Lake ooids can be classified based

on their cortex structures and include the same
types as the Triassic deposits from the Germanic
Basin (Fig. 7A to C, E to G). Type A ooids show
co-occurring radial and tangential structures
across their cortices (Fig. 7C). Type B ooids
exhibit alternating radial and tangential features
(Fig. 7A, B and E to G). Type C ooids are radial
showing indistinct laminae (Fig. 7E). Type D
ooids are tangential exhibiting indistinct radial
features (Fig. 7E). Raman spectroscopy indicates
different preferred orientations of aragonite crys-
tals in radial and tangential parts of the cortices
(Fig. 8D to F). FE-SEM shows that radial parts of
the cortices consist of >50 lm long fan-shaped
crystals. Tangential parts are formed by alternat-
ing laminae of radial crystals and smaller

Fig. 4. Raman spectroscopy (single spectra) images of
the Triassic ooids from Germanic Basin, showing that
they are mainly composed of calcite. The unmarked peaks
in (B) and (C) are attributed to fluorescence interference.
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(<5 lm) needles with irregular arrangement
(Fig. 9). ‘Compound ooids’ are rarely observed.

Organic matter (OM) in ooids
Great Salt Lake ooids show significant internal
differences in the intensity of green fluorescence
(Fig. 7E to H). Tangential cortices have a
brighter green fluorescence than those with
radial structures and, in the radial ones, the
dark radial segments show a brighter green fluo-
rescence than the lighter segments (Fig. 7E to
H). Occasionally, a very bright green rim is
observed at the outer edge (Fig. 7E and F).

Alcian blue staining, which indicates the pres-
ence of carboxylic groups in acidic polysaccha-
rides, is stronger in tangential cortices than in
radial ones (Fig. 7B).
Fluorescent dye calcein detects free Ca2+ in

acidic OM, and the concentrations of free Ca2+

are reflected by fluorescence intensities with dif-
ferent colours (Reitner et al., 1997). In Great Salt
Lake ooids, from their outer edge to their inside,
orange, yellow and green colours are observed
(Fig. 7C and D), suggesting declining abundance
of free Ca2+ and acidic OM, corresponding with
a gradual increase in mineralization.

Fig. 5. Micro X-ray fluorescence (l-XRF) images of the Triassic ooids from Germanic Basin. (A) Scan image (trans-
mitted light). (B) Calcium (Ca) distribution. (C) Iron (Fe) distribution. (D) Silicon (Si) distribution.
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Fig. 6. Thin section images of the ooids and microbial crusts/stromatolites of the Early Triassic from Germanic
Basin. (A) Ooids and microbial crusts alternate on a millimetre-scale. Truncation is observed between the ooid
cortices and the overlying microbial crusts. (B) Microbial crusts completely envelop clusters of ooids. (C) and (D)
The microfabric of both ooid laminae and stromatolite laminae is almost identical, with laminae showing a char-
acteristic internal palisade structure composed by thin crystals growing perpendicular to lamination. (E) and (F)
The microbial crusts also show structures equivalent to the radial and tangential structures of ooid cortices. The
rectangle in (E) is magnified as (F).
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Fig. 7. Thin section images of the ooids and/or microbial crusts from Great Salt Lake. Note that their cortex struc-
tures are similar to those of the Triassic specimens. (A) Ooids, with cortices showing alternating radial and tan-
gential features (Type B), which are overlaid by thin microbial crusts (basic fuchsin stain). (B) Type B ooid, with
alternating radial and tangential features. Note that alcian blue staining is stronger in tangential cortices than that
in radial ones. (C) Type A ooid, characterized by co-occurring radial and tangential structures across their corti-
ces. (D) Same image as (C), under fluorescence. Note that, from the outer edge to the inside, orange, yellow and
green colours are observed, suggesting declining abundance of free Ca2+ and acidic OM, corresponding with a
gradual increase in mineralization. (E) and (G) Ooids corresponding to Type B (alternating radial and tangential
features in the cortex), Type C (radial ooids showing indistinct laminae) and Type D (tangential ooids exhibiting
indistinct radial features). (F) and (H) Same images as (E) and (G), under fluorescence. Significant internal differ-
ences in the intensity of fluorescence are shown. Tangential cortices have a brighter green fluorescence than those
with radial structures. In the radial ones, the dark radial segments show a brighter green fluorescence than the
lighter segments. Occasionally, a very bright green rim is observed at the outer edge.
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DISCUSSION

Comparison of the Germanic Basin and Great
Salt Lake ooids

The Germanic Basin and Great Salt Lake
ooids have some obvious differences, mainly
size (Germanic Basin ooids are typically much
larger than Great Salt Lake ooids), shape (Ger-
manic Basin ooids are mainly spherical while
Great Salt Lake ooids are predominantly ellip-
soidal) and composition (Germanic Basin ooids
are mainly composed of calcite while Great Salt
Lake ooids are predominantly aragonite) (Figs 3,
4, 7 and 8). The size of Germanic Basin ooids is
generally larger than that of Great Salt Lake
ooids, perhaps attributed to the water geochem-
istry during the Permian–Triassic critical junc-
ture (Li et al., 2021). Because the environment is
very dynamic in the Germanic Basin, transporta-
tion after formation of the Germanic Basin ooids
also supports their high sphericity. Meanwhile,
the formation of Great Salt Lake ooids is perhaps
still an active process (Anderson et al., 2013).
At the same time, Germanic Basin and Great

Salt Lake ooids share remarkable similarities,
which is why they have been compared previ-
ously (K€asbohrer & Kuss, 2019; Pei, 2022). For
instance, Germanic Basin and Great Salt Lake
ooids display the same types of cortices, that is,
cortices with radial structure (Type C), cortices
with tangential structure (Type D) and
cortices with either a mixture or an alternation
of both structures (Type A and B, respectively)
(Figs 3 and 7). Besides, ooids from both settings
have micritic particles as nuclei and are rich in
radial features (Figs 3 and 7). Fluorescence
microscopy indicates the presence of OM in
ooids from the Germanic Basin (Fig. 3G and H)
and the Great Salt Lake (Fig. 7). However, OM
contents seem to be much lower in the case of
Germanic Basin ooids, which is likely due to
degradation through geological time.
Ooid types similar to those from the Germanic

Basin and Great Salt Lake have been observed in
modern hypersaline environments (Friedmann
et al., 1973, 1985; Loreau & Purser, 1973; Krumbein
& Cohen, 1974; Krumbein, 1983; Strasser, 1986;
Gerdes et al., 1994, 2000; Hubert et al., 2018;
Suarez-Gonzalez & Reitner, 2021). In agreement
with the geological settings and water chemistry,
ooids from both deposits investigated herein are
supposed to have formed under hypersaline condi-
tions as well (Paul & Peryt, 2000; Chidsey et al.,
2015; K€asbohrer & Kuss, 2019).

Formation of ooids statically versus
dynamically

Modern ooids from the Bahamas demonstrate
that ooids from agitated environments are
trapped and fused together as one of the main
sources of sedimentary grains in stromatolites
(Macintyre et al., 2000; Reid et al., 2000). The
presence of abundant sedimentary structures
(for example, cross-bedding, climbing ripples
and wave ripples) and abundant detrital (mainly
quartz) grains in the Germanic Basin and Great
Salt Lake deposits indicate reworking and trans-
portation processes (e.g. Reitner et al., 1997;
Paul & Peryt, 2000; K€asbohrer & Kuss, 2019)
(Figs 4 and 6). Yet, various lines of evidence
suggest that ooids from both deposits were not
formed dynamically during transportation. For
instance, quartz grains are abundant constituents
of the deposits, but almost never or partially
form the nuclei of the ooids (Figs 3 to 9).
Instead, the nuclei of ooids typically consist of
small micritic particles, which are themselves
rare constituents of the oolitic deposits. Further-
more, the Germanic Basin deposits contain
abundant ‘compound ooids’ consisting of ooids
that coalesced with one another during growth,
which is inconsistent with growth through con-
stant motion as bed-load or in suspension.
These features (micritic nuclei in detrital matrix
and cortex coalescence) have recently been
shown as characteristic of modern ooids grow-
ing in situ within microbial mats (Suarez-
Gonzalez & Reitner, 2021). At the same time,
ooids and microbial crusts are closely related,
and their microstructures are commonly identi-
cal, indicating that similar processes were
involved in their formation (for example,
Figs 6C to F and 7A). Taken together, the
observed features suggest that these ooids devel-
oped statically (perhaps even within microbial
mats) (e.g. O’Reilly et al., 2017; Mariotti et al.,
2018; Anderson et al., 2020), rather than formed
around transported grains in agitated environ-
ments (e.g. Duguid et al., 2010; Trower et al.,
2018).

Organic influence on ooid formation

Abundant OM within Great Salt Lake ooids
(Fig. 7B and E to H), as well as increasing OM
contents associated with decreasing mineraliza-
tion degrees from the nuclei towards to the outer
edge of ooids (Fig. 7C and D), may indicate a rela-
tionship between OM and carbonate formation.
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Fig. 8. Raman spectral images of modern ooids from Great Salt Lake. (A) Thin section image (transmitted light).
(B) Combined image. (C) Quartz as the core. (D) to (F) Different preferred orientations of aragonite crystals. The
rectangle in (A) is magnified as (B).
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In the case of Germanic Basin ooids, the possible
relationship between OM and carbonate minerals
is less obvious, likely because OM has been
degraded. However, as argued before, microbial
crusts in the Germanic Basin deposits typically
represent a continuation of the microfabric of the
ooid cortices (for example, Fig. 6C to F), suggest-
ing similar formation processes. Notably, Kalk-
owsky (1908), in the same ground-breaking study
where he coined the term ‘stromatolite’, already
used this to argue for an organic influence on
the origin of ooids in the Germanic Basin, stating
that: “if somebody insists on the inorganic
genesis of ooids, he will, however, never find a
good explanation for [the fact that] (. . .) ooids
often form the initiating stage of stromatolites”
(translated by Krumbein, 1983; Paul et al.,
2011), which underlines the great value and con-
tinuing impact of this observation-based research.

Besides, Lincoln et al. (2022) has demonstrated
that microbial sulphur cycling likely drives the
formation of radial cortices in Great Salt Lake
ooids. Microbial processes might also have been
involved in the formation of other ancient ooids,
which are very similar to the Triassic examples
studied herein (Granier & Lapointe, 2021, 2022).
Actually, the organic origin of these crusts with
fibrous–palisade microstructure is hard to estab-
lish, and they have been previously interpreted as
mostly inorganic, although some microbial influ-
ence was not ruled out (Paul & Peryt, 2000). It is
true that, in modern environments, similar fibrous
microfabrics and crusts occur during moments of
environmental increase in CaCO3 supersaturation,
but typically within microbial communities (e.g.
Suarez-Gonzalez & Reitner, 2021), and they have
also been observed within fossil microbialites
(Camoin et al., 1997; Kirkham & Tucker, 2018).

Fig. 9. Field emission scanning electron microscopy (FE-SEM) images of modern ooids from Great Salt Lake. (A)
Type B ooids exhibit alternating radial and tangential features. (B) to (D) Radial parts of the ooid cortices consist
of >50 lm long fan-shaped crystals. Tangential parts are formed by alternating laminae of radial crystals and smal-
ler (<5 lm) needles with irregular arrangement. The rectangle in (A) is magnified as (B). The rectangle in (B) is
magnified as (C). The rectangle in (C) is magnified as (D).
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Possible ooid formation processes

Various factors have been traditionally proposed
for explaining differences in the cortex structures
of ooids, mainly dealing with different environ-
mental conditions (Strasser, 1986). The results
presented herein underline the general signifi-
cance of OM in ooid formation, raising the
intriguing possibility that the internal structure
of ooids may be controlled by the chemical nature
of the involved OM. One important function of
microbial EPS is the inhibition of mineral precip-
itation (e.g. Decho, 2010). At the same time, how-
ever, OM can function as a nucleation site for

mineralization (‘Organomineralization’: Mitterer,
1968; Suess & F€utterer, 1972; Ferguson et al.,
1978; Trichet & D�efarge, 1995; Reitner et al.,
1995a,b, 1997; Reitner, 2004). The observed dif-
ferent intensities of alcian blue staining [indica-
tive for the presence of carboxylic groups (COO�)
in acidic polysaccharides] and green fluorescence
(likely indicative for the content of OM) between
tangential and radial cortices in Great Salt Lake
ooids (Fig. 7B, F and H) suggest potential differ-
ences of OM in forming both cortices. Potentially
degraded OM is more involved in forming radial
cortices while fresher EPS is more related with
tangential cortices (Fig. 10). However, further

Fig. 10. Extracellular polymeric substances (EPS) and degraded organic matter (OM) shape four types of ooids.
Potentially degraded OM is more involved in forming radial cortices while fresher EPS is more related with tan-
gential cortices. All scale bars represent 0.1 mm.
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research on OM associated with different types of
ooids is needed.

CONCLUSIONS

This study investigated ooids in deposits from
the Great Salt Lake and Germanic Basin, two
world-famous geobiological sites. Ooids in both
localities display extreme similarities in their
internal microstructures, suggesting that they
could have been formed by similar processes.
The micritic ooid nuclei, the common presence
of ‘compound ooids’ as well as identical charac-
teristics of ooid laminae and overlaid microbial
crusts are all supportive of static growth.
Organic matter (OM) is present in interspaces
between radial and tangential ooid cortices and
becomes more abundant towards the outer edge
in the case of radial ooids. Together, these fea-
tures strongly indicate that acidic OM played a
key-role in the formation of ooids. This is addi-
tionally supported by the close association of
ooids and microbial crusts in the Germanic Basin
deposits, since the latter typically form through
mineral precipitation associated with OM.
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