
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Master Thesis Computer Science

Optimizing a motor cortex model by evolution

of connectivity patterns

Maximus Mutschler

October 27st, 2017

Reviewers

Prof. Dr. Wolfgang Rosenstiel
Wilhelm-Schickard-Institute

Department of Computer Engineering

University of Tübingen

Prof. Dr. Andreas Zell
Wilhelm-Schickard-Institute

Department of Cognitive Systems

University of Tübingen

Supervisors

Dr. Martin Spüler
Wilhelm-Schickard-Institute

Department of Computer Engineering

University of Tübingen

Sebastian Nagel
Wilhelm-Schickard-Institute

Department of Computer Engineering

University of Tübingen

Mutschler, Maximus:
Optimizing a motor cortex model by evolution of connectivity
patterns
Master Thesis Computer Science
Eberhard Karls University of Tübingen
Thesis period: May 1st, 2017 - October 27st, 2017

i

Abstract

Multiple areas of the brain show reoccurring and regular neuronal connectivity
patterns. Exemplary are the neuronal connections of line-orientation detect-
ors in the primary visual cortex as well as the layer-like structure of the motor
cortex. Nagel created a biological realistic motor cortex model [23]. How-
ever, he used random connection probabilities to link his neurons. This is not
biologically realistic. Therefore, this work introduces the idea of biological
plausible neuronal connectivity pattern to Nagel’s model. In order to create
those connectivity patterns the HyperNEAT and ES-HyperNEAT algorithms
were used.

Multiple stunning results have been achieved. The performance of Nagel’s
model could be improved considerably. In addition, due to regular and simple
connectivity patterns, the needed space to encode the model could be decreased
by 99.84%. It was shown, that on the basis of regularities in the connectivity
patterns, the amount of neurons used in the model is scalable. Scaling the
amount of neurons resulted in better and more efficient models. The most
interesting result was, that the working principle of Nagel’s model could be
understood. The latter means that this work was able to deduce how the model
works by analyzing the connectivity patterns. The results of this work indicate
that using artificial neuronal networks with connectivity patterns might be
beneficial for further machine learning problems. This derives from the fact
that using artificial neuronal networks with connectivity patterns can lead to
improved, scalable, efficiently encoded and understandable artificial neuronal
networks.

ii

Zusammenfassung

Zahlreiche Bereiche des Gehirns zeigen sich wiederholende und regelmäßige
neuronale Verknüpfungsmuster auf. Beispielhaft hierfür sind die neuronalen
Verknüpfungen von Orientierungsdetektoren für Linien im primären visuellen
Cortex als auch die schichtartige Struktur des Motorcortex. Nagel erstellte ein
biologisch realistisches Modell des Motorcortex [23]. Allerdings verwendete er
zufällige Verknüpfungswahrscheinlichkeiten um seine Neurone zu verknüpfen.
Dies ist nicht biologisch realistisch. Deshalb ergänzt diese Arbeit Nagels Modell
um biologisch plausible Verknüpfungsmuster. Der HyperNEAT Algorithmus
und der ES-HyperNEAT Algorithmus wurden verwendet um Verknüpfungs-
muster zu erstellen.

Zahlreiche beeindruckende Ergebnisse wurden erzielt. Die Performanz von
Nagels Modell wurde verbessert. Zusätzlich wurde der benötigte Platz um
das Modell zu codieren um 99.84% verringert. Des weiteren wurde gezeigt,
dass, auf Grundlage von Regelmäßigkeiten in den Verknüpfungsmustern, die
Anzahl der Neurone, die von Nagels Modell verwendet werden, skalierbar ist.
Das Skalieren von Neuronenanzahlen resultierte in besseren und effizienteren
Modellen. Das allerdings interessanteste Ergebnis war, dass das Funktion-
sprinzip von Nagels Modell verstanden werden konnte. Letzteres bedeutet,
dass diese Arbeit in der Lage war, Rückschlüsse von den Verknüpfungsmustern
auf die Funktionsweise des Modells zu führen. Die Ergebnisse dieser Arbeit
deuten an, dass künstliche neuronale Netze mit Verknüpfungsmustern auch für
weitere Probleme des Maschinellen Lernens Erfolg versprechend sein könnten.
Dies beruht darauf, dass künstliche neuronale Netzwerke mit Verknüpfungs-
mustern zu verbesserten, skalierbaren, effizient codierten und verständlichen
künstlichen neuronalen Netzwerken führen könnten.

iii

Acknowledgements

In the first place, I would like to thank my family for supporting me during
my studies. Due to your help I was able to concentrate fully on my studies
over the last years.

Special thanks go to my supervisors Martin Spüler and Sebastian Nagel
for their comprehensive help. They always supported me with constructive
criticism and advices and answered all my questions. In addition, I want to
thank them for providing me an open research environment where I was able
to follow my own ideas. Also, I would like to thank Andreas Zell and Wolfgang
Rosenstiel for being my reviewers.

Finally, big thanks go to Jens Berneck and Jula Boettcher for linguistic
proofreading.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 2

2 Fundamentals 4

2.1 Artificial Neural Networks . 4

2.2 Evolutionary Algorithms . 5

2.3 NEAT . 6

2.4 HyperNEAT . 11

2.4.1 Substrate Scaling . 17

2.4.2 CPPN configuration variations 18

2.4.3 Placement of neurons without geometric relationships . . 18

2.5 ES-HyperNEAT . 20

3 The motor cortex model 25

3.1 Biological fundamentals . 25

3.2 Chadderdon’s model . 26

3.3 Nagel’s model . 31

4 Methodology 34

4.1 Technical realization . 34

4.2 General parameters and definitions 36

4.3 General definitions for experiments using Nagel’s model 37

5 Experiments 39

v

vi CONTENTS

5.1 Exp. 1: Optimizing Chadderdon’s model 40

5.1.1 Setup . 40

5.1.2 Results . 41

5.1.3 Discussion . 44

5.2 Exp. 2: Optimizing the D-ES connectivity 45

5.2.1 Setup . 45

5.2.2 Results . 46

5.2.3 Discussion . 50

5.3 Exp 3: Evolution of all connections 51

5.3.1 Setup . 51

5.3.2 Results . 52

5.3.3 Discussion . 65

5.4 Exp 4: Evolution of all connections and neurons 66

5.4.1 Setup . 66

5.4.2 Results . 68

5.4.3 Discussion . 75

5.5 Further Experiments . 76

6 Discussion and Outlook 77

Bibliography 80

A Further tables, figures and algorithms 84

B Relations to Nagel’s experiments 91

C Further discussions 92

C.1 Discussion of Nagel’s model . 92

C.2 Discussion of ES-HyperNEAT 93

List of Figures

2.1 NEAT genome . 7

2.2 NEAT mutations . 8

2.3 NEAT crossover . 9

2.4 Exemplary connectivity pattern function and initial CPPN . . . 13

2.5 Exemplary substrate configurations 14

2.6 ANN creation with HyperNEAT 15

2.7 Exemplary substrate scaling . 17

2.8 HyperNEAT without geometric relationships 19

2.9 ES-HyperNeat phases . 22

2.10 ES-HyperNeat band pruning . 23

2.11 ES-HyperNEAT algorithm scenario 24

3.1 Motor cortex and sensory cortex 26

3.2 Chadderdon’s model: design . 27

3.3 Chadderdon’s model: structure of the actor 28

3.4 Spiking patterns of Izhikevich’s simple model 29

3.5 Population Coding . 31

3.6 Nagel’s model: structure of the actor 32

3.7 Exemplar Training and Learning Phase of Nagel’s model 33

4.1 General experiment setup . 35

5.1 Experiment 1: substrate configuration 41

5.2 Experiment 1: performance measurements 42

5.3 Experiment 1: comparison movements best and initial model . . 43

5.4 Experiment 1: RMSDs comparison for each angle 44

vii

viii LIST OF FIGURES

5.5 Experiment 2: substrate configuration 46

5.6 Experiment 2: comparison movements initial and best model . . 47

5.7 Experiment 2: best and inital CPPN 48

5.8 Experiment 2: connectivity pattern of the best model 49

5.9 Experiment 2: general connection principle 50

5.10 Experiment 3: substrate configuration and initial CPPN 52

5.11 Experiment 3: statistics . 53

5.12 Experiment 3: comparison of the movements of the best models 54

5.13 Experiment 3: train time comparison with Nagel’s results 55

5.14 Experiment 3: connection ratios 56

5.14 Experiment 3: connectivity patterns of the seventh best model . 59

5.15 Experiment 3: analysis of connectivity patterns of the seventh

best model . 61

5.16 Experiment 3: firing pattern of the seventh best model 62

5.17 Experiment 3: exemplary substrate scaling 64

5.18 Experiment 3: results substrate scaling 65

5.19 Experiment 4: quadtree positioning and initial CPPN 67

5.20 Experiment 4: statistics . 69

5.21 Experiment 4: comparison of movements of experiment 3 and 4 69

5.22 Experiment 4: best CPPN comparison between experiment 3

and experiment 4 . 70

5.23 Experiment 4: amount of neurons 71

5.24 Experiment 4: simple firing pattern 72

5.25 Experiment 4: simple connectivity pattern 73

5.25 Experiment 4: D neuron slices of the best connectivity pattern . 75

A.1 Experiment 3: RMSDs comparison with Nagel’s resutls 85

A.1 Experiment 3: connectivity patterns of the best individual . . . 89

A.2 Experiment 4: exemplary ES neuron slices of the connectivity

pattern . 90

List of Tables

3.1 Parameters of Izhikevich’s model 29

3.2 Connection ratios of Nagel’s model 30

A.1 ES-HyperNEAT parameter overview 87

ix

List of Abbreviations

ANN Artificial Neural Network
CPPN Compositional Pattern Producing Network
EA Evolutionary Algorithm
ID identification number
IQR interquartile range
NEAT Neuroevolution Of Augmenting Toplogies
HyperNEAT Hypercube-based Neuroevolution Of Augmenting Topologies
ES-HyperNEAT Evolvable Substrate Hypercube-based Neuroevolution Of

Augmenting Topologies
ES neuron excitatory sensory neuron
IS neuron inhibitory sensory neuron
EM neuron excitatory motory neuron
IM neuron inhibitory motory neuron
P neuron proprioceptive neuron
D neuron distance neuron
RMSD root-mean-square deviation
SNN Spiking Artificial Neural Network
SSP Structural Synaptic Plasticity
1D one-dimensional
2D two-dimensional
3D three-dimensional
4D four-dimensional

1

Chapter 1

Introduction

One of the most challenging research fields in present science is understanding
the structure and functionalities of the human brain. By knowing how the
human brain works, might lead to great advances in the field of artificial intel-
ligence. This will give humanity the ability to outsource increasingly complex
tasks to machines. In addition, deeper knowledge about the human brain can
lead to further progress in the fight against nervous diseases like Alzheimer’s
disease, Parkinson’s disease or multiple sclerosis.

Multiple fields of brain science are covered by the Human Brain Project
[11]. One of its major branches of research is to build a map of all interneuronal
connections in the human brain. However, also interneuronal signal processing
and learning have to be considered to build a biologically and physically real-
istic as well as an efficient model of the brain. Chadderdon et al. [4] took
a step in this direction by implementing a simplified neuronal model of the
motor cortex. The motor cortex is the part of the brain that is responsible
for planning and execution of conscious movements. Chadderdon’s models
simulate synaptic currents with a simplified Hodgkin Huxley equation [18],
introduced by Izhikevich [20]. For reinforcement learning, a biologically real-
istic time-dependent implementation of Hebb’s rule is used [2]. Chadderdon’s
model moves a forearm with one joint. With continuous learning the model is
able to reach every possible target angle. However, having a continuous learn-
ing process for simple movements does not appear to be biologically realistic.
Therefore, Nagel [23] altered the functionality of Chadderdon’s model in order
to initially learn one static mapping that allows to reach every possible angle
without further learning. The interneuronal connectivity in those models is
described by random connection probabilities for different neuron types. But,
using random connectivity patterns is not plausible in biological terms. In
fact, multiple areas of the brain develop recurring and regular connectivity
patterns such as line-orientation detectors in the primary visual cortex [6], or
the layer-like structure of the motor cortex [16].

The existence of those regular connectivity patterns, speaks strongly

2

3

against a random connectivity. In addition, there have to be some regular-
ities in the brain since a human genome of 30,000 genes encodes a human
brain with approximately 7 billion neurons 100 trillion connections [10]. Thus,
it is impossible that every single connection of the brain is encoded.

As a consequence, this work introduces the idea of biologically plausible
connectivity patterns to Chadderdon’s and Nagel’s motor cortex models. As
a result, the models will get more biologically plausible. The primary aim of
this work is to analyze whether connectivity patterns improve the performance
of the models. Further on, an observation will be made on how far connectiv-
ity patterns make the working principle of those models easier to understand.
In other words, this paper tries to prove, if it is possible to deduce resulting
movements by analyzing the connectivity pattern. Besides, it will be interest-
ing to see, to what extend the learning mechanisms of the used evolutionary
algorithm and the motor control model cooperate. On the basis of regularit-
ies in the evolved connectivity patterns, it is assumed that the motor cortex
models can be scaled to various sizes without a significant loss in function-
ality. And finally, since the human brain is encoded very efficiently, it is of
interest, whether regularities in the connectivity pattern lead to more efficient
encodings of the motor cortex models. In addition, it is argued, whether the
connection ratios and amount of neurons of different types are defined optim-
ally by Nagel’s model.

In order to find connectivity patterns within a fixed amount of neurons
the evolutionary algorithm HyperNEAT, developed by Stanley et al. [31], is
used. HyperNEAT evolves an internal network of minimal complexity which
describes a connectivity pattern in hyperspace. However, not only the con-
nectivity pattern itself is crucial, but also the amount of neurons it is encoded
for. Therefore, ES-HyperNEAT [25], an extension of HyperNEAT, is used to
find connectivity patterns as well as the amount of neurons used in Nagel’s
motor cortex model.

The following chapters of this work are organized as follows: Chapter 2
describes the NEAT, HyperNEAT and ES-HyperNEAT algorithms in detail.
In addition, it gives a short introduction into Artificial Neuronal Networks
(ANNs) and Evolutionary Algorithms (EAs). Chapter 3 deals with the most
important parts of Nagel’s motor cortex model, which are necessary to under-
stand the experiments undertaken. Chapter 4 defines parameters and further
important details concerning the experimental setup. Several experiments,
including their setups, results and discussions are described in Chapter 4. Fi-
nally, a discussion and an outlook that are worth reading are provided in
chapter 5.

Chapter 2

Fundamentals

This chapter provides necessary basics needed to understand the methodo-
logy and results of this work. A short but sufficient introduction to artificial
neural networks and evolutionary algorithms is given in section 2.1 and 2.2.
The NEAT algorithm, on which the algorithms HyperNEAT and ES-Hyper
NEAT are based on, is described comprehensively in section 2.3. The fol-
lowing sections 2.4 and 2.5 contain a full description of the HyperNEAT and
ES-HyperNEAT algorithm, respectively. Since the used motor cortex model is
very specific and not widely known in science, it is described in its own chapter
(see chapter 3).

2.1 Artificial Neural Networks

An artificial neural network (ANN) (see generally [37]) is a weighted direc-
ted graph. Each vertex represents a model of a biological neuron. Each edge
represents a biological synapse. Simplified, a synapse is an information, trans-
mitting connection of two neurons. An ANN usually distinguishes three types
of neurons: input, hidden and output neurons. Input information is provided
to input neurons. Hidden neurons have the purpose to process the input. Final
results are presented by output neurons. The output of each neuron is usually
identical to the activation of each neuron. The activation aj of a neuron j is
dependent on the weighted sum of activations of neurons i connected to neuron
j. This sum is called the net input netj. netj and aj are calculated as follows:

netj =
∑
i

ai · wij

aj = fj(netj)

Where fj is the activation function of neuron j. Commonly used activation
functions are step or sigmoid functions. wij is the weight of the connection
between neuron i and j. A weight is the abstraction of the strength of a

4

2.2. EVOLUTIONARY ALGORITHMS 5

biological synapse; i.e. its ability to activate a following neuron. In an ANN
learning happens through adaptation of weights with the aim to map a given
input to a desired output.

It is important to note that this is a simplified and not complete introduc-
tion to the field of ANNs. However, the provided information is sufficient to
understand the working principle of ANNs created by the NEAT algorithm
(chapter 2.3).

2.2 Evolutionary Algorithms

Since NEAT (section 2.3), HyperNEAT (section 2.4) and ES-HyperNEAT (sec-
tion 2.5) are Evolutionary Algorithms, a general description of them is given
in the following.

Evolutionary Algorithms (EAs) (see generally [36]) are algorithms that
mimic the natural evolutionary process. Simplified, this means that only the
fittest organisms of a generation will survive and are able to create offspring.
Thus, only the genetic information of the fittest organisms is transferred to the
next generation. An EA maintains a group of solutions called a population.
One solution in a population is called an individual. Each individual has a
numerical fitness value that determines how well this solution is. The func-
tion determining this fitness value is named objective function. An individual
is represented by a code, also called genome. A genome consists of multiple
genes. Genes are responsible for expressing specific features. Genes that ex-
press the same features with different characteristics are called alleles. With
the creation of offspring the genome of an individual undergoes several vari-
ation operations to get transformed into the genome of a new individual. One
typical field of operations is mutations. Mutations change parts of the genome
randomly. Crossovers, as another typical field of operations, exchange parts
of the genomes of two individuals. Usually, those variation operations are ap-
plied to all genomes of the current population and only the fittest children are
taken over into a new generation. EAs are mainly used to find good local max-
ima of objective functions whose analytical forms are unknown. Furthermore,
they are used for objective functions that are known, but whose extreme value
problems cannot be solved by analytical or numerical methods; e.g. derivation
or gradient descend. A typical EA solution process is illustrated in algorithm
2.1:

6 CHAPTER 2. FUNDAMENTALS

Algorithm 2.1: Standard Evolutionary Algorithm

choose strategy parameters;
create initial population P(0);
t← 0;
evaluate fitness of the initial population;
while termination condition not reached do

t← t+ 1;
apply variation operations; // e.g. mutation, crossover
evaluate fitness of new individuals;
create new population P(t) with fittest individuals;

end
output best performing individual of P(t);

2.3 NEAT

The NEAT algorithm is introduced since it is an essential part of the Hyper-
NEAT (section 2.4) and ES-HyperNEAT (section 2.5) algorithms.

Neuroevolution Of Augmenting Toplogies (NEAT) ([32]) is an EA of the
field of Neuroevolution. Neuroevolution methods genetically encode and evolve
weights and topologies of ANNs. NEAT stands out from other neuroevolution
algorithms by having meaningful crossovers between disparate ANN topologies
as well as the ability to protect topological innovations. Further on, it provides
an efficient search by using a stepwise increasing search space. Moreover,
NEAT is well suited for reinforcement learning (see chapter 3.2) problems.

The genetic basis of NEAT is a direct encoded genome, which contains
connection and node genes. Each node gene evolves a neuron. Each connec-
tion gene represents a weighted and directed connection between two neurons.
A node gene has an identification number (ID) and a type. Possible types
are Input, Output and Hidden. A connection gene encodes its connection by
referring to two node gene IDs. In addition, a connection gene contains its
weight, an expression flag and an innovation number. The expression flag
indicates whether the connection gets created or not. The innovation number
is a fixed ID of a connection gene. Alleles of a connection gene share the
same node genes and innovation number but can have different weight and
expression flag values. Every time a new connection gene is created a global
counter variable is increased by one. Then, the value of this variable is used
as the innovation number of the new generated connection gene. In the case
that same connections get created in different offspring of a generation they
get identical innovation number assigned. This only applies, if it happens
in the same generation. Thus, one gene can only evolve in one particular
generation. As a result, the innovation number assures that connection
genes with the same innovation number connect same nodes. However,not

2.3. NEAT 7

Figure 2.1 NEAT genome: NEAT genomes consist of two types of genes:
node genes, as displayed in the first row, and connection genes, as displayed
in the second row. Each node gene has an ID and one of the following three
types: Sensor (Input), Output and Hidden. A connection gene contains an
input and output node, a weight, an expression flag and an innovation number.
Underneath the genome the resulting ANN is displayed. The node numbers
are identical to the node gene IDs. Enabled connections are displayed as black.
Disabled connections are drawn in gray. [32, p. 106]

all connection genes that connect identical nodes have the same connection
numbers. The latter represents the biological fact, that the same feature can
be expressed by different genes. An exemplary NEAT genome ,to provide an
intuition of how a NEAT genome is related to an ANN, is displayed in Fig. 2.1.

Three types of mutation are realized in NEAT. The weight mutation re-
assigns the weight of every connection gene with the same probability. The
reassigned weight is either randomly chosen or a shift of the former weight.
New connections are added by the add connection mutation. Thereby, two
unconnected neurons are randomly chosen and connected by a new connection
gene with a random weight. A new cell mutation splits an existing connection
by placing a new neuron in-between the two former connected neurons. Those
neurons are called neuron a and neuron b in the following. The placing of the
new neuron c is realized by disabling the old connection gene and the creation
of two new connection genes and one new node gene. The first connection
gene connects neuron a with the new neuron c. The second connection gene
connects neuron c with neuron b. The weight of the first connection is set to
the value of the former connection. The weight of the second connection is
set to one. This expression of weights leads to a minimized initial effect of a
mutation. Two exemplary mutations are shown in Fig. 2.2.
NEAT always applies crossovers to pairs of two individuals to create offspring

8 CHAPTER 2. FUNDAMENTALS

Figure 2.2 NEAT mutations: At the top a add connection mutation is dis-
played. The unconnected nodes 3 and 5 are chosen randomly. Then a connection
gene in-between those nodes is created. A global innovation counter variable is
increased by one (from 6 to 7) and assigned to the new connection gene. At the
bottom an add node mutation is displayed. Connection 3 is randomly chosen
and gets disabled. Next a new node gene with ID 6 is created. Then a new
connection gene connecting neuron 3 and 6 with innovation number 8 is cre-
ated. In addition, a neuron connecting node 6 and 4 with innovation number 9
is created. Note that only connection genes are displayed. The top number in
each gene is its innovation number followed by the neurons it connects and the
expression flag. Node genes are not depicted. [32, p. 107]

sexually. Before a crossover can be performed a synapsis has to be done. This
means that all connection genes of two individuals get lined up. Genes, that
have the same innovation number are called matching genes. Genes of one
individual whose innovation numbers are in the range of innovation numbers
of matching genes of the other individual are called disjoint genes. Innovation
numbers outside the range of innovation numbers of matching genes of the
other individual are called excess genes. The genome of the child is created by
randomly selecting one gene out of each tuple of matching genes. In addition,
all disjoint and access genes from the more fit parent are taken over. With a
predefined probability a disabled gene can be enabled again, if it is disabled in
both parents. By crossing over only connections and no whole substructures of
the network, as for example, Genetic Programming [22] does, it is ensured that
a new proper artificial neural network with similar functionality is created. An
exemplary crossover of two individuals with the same fitness is shown in Fig.
2.3.

2.3. NEAT 9

Figure 2.3 NEAT crossover: The connection genes of two individuals and their
corresponding networks are displayed at the top. Underneath two genomes got
aligned. All connection genes with same innovation numbers are displayed op-
posite each other. Those are matching genomes. All connection genes inside
the range of innovation numbers of matching genes of the other individual are
marked as disjoint. Connection genes that are outside the range of innovation
numbers of matching genes of the other individual are marked as excess. The
offspring’s connection genes consists of one randomly chosen connection gene out
of each matching gene tuple. Further, all excess and disjoint genes are taken
over. This applies in the example given because the fitness of both parent indi-
viduals is equal. If the fitnesses would differ the excess and disjoint connection
of the more fit parent would be taken over. [32, p. 109]

10 CHAPTER 2. FUNDAMENTALS

Based on empirical evidence, insertion of new structures into a network
leads first of all to a decrease in fitness. Thus, it is unlikely that an individual
with a new node or a new connection can compete against other individuals
of this generation. As a result, it will be distinct. An individual with a
new structure needs some generations to adapt its weights in a way that this
structure becomes beneficial. Therefore specitation, also known as niching, is
implemented in NEAT to protect new structures. Specitation is implemented
by putting similar individuals in their own species. Members of a species are
primarily competing against each other. Two individuals count as similar if
their structure is related. The following distance measurement δ between two
aligned individuals is used as a structural similarity indicator:

δ =
c1E

N
+
c2D

N
+ c3 ∗W.

where E is the number of excess genes and D the number of disjoint genes.
W is the average of weight differences of all matching genes. The normaliza-
tion factor N is the number of genes in the larger genome. c1,c2,c3 represent
scaling factors. To determine the species of each child, NEAT chooses one rep-
resentative individual randomly out of each species of the parent generation.
Each child is compared consecutively to these representatives. If the distance
measurement δ is smaller than a fixed threshold δt, the child is put into the
species of the representative. If a child is not compatible to any representat-
ive, a new species with this child as its representative is created. This process
assures disjunct species. In order to prevent that one species takes over the
entire population explicit fitness sharing [15] is used. For each individual i its
adjusted fitness f

′
i is calculated by its own fitness fi divided by the amount of

individuals in its species:

f
′

i =
fi

n∑
j=1

sh(δ(i, j))

sh(i, j) =

{
1 if δ(i, j) < δt

0 if δ(i, j) ≥ δt

where δ(i, j) is the distance between individual i and j. sh is a sharing function
that determines whether i and j are in the same species. As a result, under
the assumption that the fitness function has no plateaus at local maxima, the
shared fitness of species members is decreased if the species gets larger. Every
species s produces a number of offspring NO(s) proportional to the sum of
adjusted fitnesses f

′
i of its members. The total amount of offspring is limited

by the maximum population size P and a number of individuals L which are

2.4. HYPERNEAT 11

taken over directly from the last generation:

NO(s) =

(P − L)

∑
∀i∈s

f
′

i∑
∀i

f
′

i


It has to be noted that this mathematical description was not provided by the
authors of [32] and was derived from their literal descriptions.

NEAT starts with a minimal structure. That is, each input neuron and one
optional bias neuron is connected to each output neuron so that there are no
hidden neurons. Starting with a minimal structure leads to an efficient search.
Since add node mutations and add connection mutations are rare compared to
weight mutations the search space is increased slowly. The total search space
consists of one separate dimension for each weight value and one dimension
representing the amount of neurons. For example, when the minimal struc-
ture has three connections the search space is 4D. Because NEAT increases
the amount of connections during a search, the search space is increased con-
tinuously. How fast NEAT increases the search space can be regulated by the
probability values of the add node mutation and add connection mutation.

2.4 HyperNEAT

The following section describes the HyperNEAT algorithm, which is based on
the NEAT (section 2.3) algorithm. The HyperNEAT algorithm is needed for
the following work, since it is able to create connectivity patterns between a
defined amount of neurons.

NEAT (see 2.3) works well on considerably small networks its performance
decreases for large networks greater than several hundred neurons [31][1]. This
is due to the fact that with an increasing amount of connections the search
space of NEAT increases. Due to an increased search space, finding a solution
with NEAT gets computationally more expensive.

Hypercube-based Neuroevolution Of Augmenting Topologies (Hyper-
NEAT) [31] addresses this problem by searching in a space of spatial con-
nectivity patterns with increasing complexity. This differs from NEAT in a
way that, NEAT searches in a space in which every single connection is con-
sidered. On the basis of evolved connectivity patterns, connections of large
ANNs can be indirectly encoded by a single multidimensional function. The
indirect encoding of HyperNEAT is inspired by the biological fact that 30, 000
genes encode the human brain with approximately 100·109 neuron connections
[10].

Another feature of HyperNEAT, shown by [35] and [31], is that on the
basis of such a multidimensional function, it is possible to scale the amount of

12 CHAPTER 2. FUNDAMENTALS

neurons of a found network. It is assumed that scaling the amount of neurons
will lead only to minor changes in functionality [31] [35].

A fundamental principle of HyperNEAT lies on the fact that the positions
of neurons in space are included into the search space [31][13]. Relationships
between neurons are described by their distance. Therefore, functionally sim-
ilar neurons are placed close to each other.

The multidimensional connectivity pattern function f describing the spa-
tial connectivity pattern is based on the idea, that a connection between two
neurons can be defined in hyperspace by the coordinates of those neurons.
Therefore, the position of two neurons is provided as input to f . The resulting
value describes the connection between these neurons. From this value a func-
tion w derives whether the connection is established, and if the connection got
established w defines what weight value it gets assigned. f and w are defined
as follows:

f : R2n → [l, u], p11 , . . . , p1n , p21 , . . . , p2n 7→ f(p11 , . . . , p1n , p21 , . . . , p2n)

w : R2n → [0, wmax] with:

w(p11 , . . . , p2n) =


f(p11 , . . . , p2n)− θc

u− θc
· wmax if f(p11 , . . . , p2n) ≥ θc

0 if f(p11 , . . . , p2n) < θc

with l ≤ θc ≤ u and l, u, θc ∈ R
(2.1)

Where Rn is the spatial space of a neuron. In the following, this space is
called the neuron space. p1 and p2 describe the neuron coordinates of two
neurons in neuron space. Since n is the dimension of the neuron space, 2n is
the dimension of the connection space. The connection space is a hypercube,
in which one point describes the connection between two neurons. l and u are
the lower and upper boundaries of the 1D output space. w encapsulates f and
maps its output to a weight interval between 0 and the maximal weigh wmax.
If the output of f is lower than a connection threshold θc no connection is
established. If the output of f is larger than θc the resulting weight is scaled
between 0 and wmax based on the distance of the output of f and θc. Note
that this mathematical definition has been created on the verbal description
of Stanley et al. [31]. Usually HyperNEAT is applied to a 1D or 2D neuron
space. But as shown in equation 2.1 neuron spaces of higher dimensions can
be used as well. An exemplar connectivity pattern function is plotted in Fig.
2.4(a).

2.4. HYPERNEAT 13

(a) Output of a connectivity pattern
function

(b) exemplary CPPN

Figure 2.4 Exemplary connectivity pattern function (a) and initial
CPPN (b)(a) Exemplary plot of the output of a connectivity pattern function.
The neuron space is 1D. Therefore the connection space is 2D. Since the connec-
tion threshold θc is 0.75 all values higher than θc are marked green for realized
connections. Note that, the borderline between the green and blue area is ori-
ginally straight. The jagged edges result from a underlying mesh grid. (b) The
internal structure of a connectivity pattern function based on a Compositional
Pattern Producing Network (CPPN) is shown. The output is a composition of
the weighted outputs of different basis functions. The connections of the CPPN
are weighted so that the output of a function is multiplied by the weight of its
outgoing connection. Note that, the connectivity pattern function in (a) is not
created by the shown CPPN (b) but by an other CPPN. [31, p. 5]

The reason why HyperNEAT needs NEAT is that the connectivity pat-
tern function has to be determined in some way. In order to determine the
connectivity pattern, HyperNEAT uses Compositional Pattern Producing Net-
works (CPPNs) which get evolved by NEAT. A CPPN is an ANN in which
the activation functions are chosen out of the pool of basis functions. Typical
used basis functions are sinusoids, lines and Gaussians. The original purpose
of CPPNs was to create spatial patterns, which are now used by HyperNEAT
to define connectivity patterns. An exemplary CPPN is given in Fig. 2.4(b).
To make the relation ship of HyperNEAT an NEAT clear, the following has
to be considered: A NEAT genome, defines a considerably small CPPN whose
output is a connectivity pattern. This connectivity pattern defines a consider-
ably large ANN. Thus, HyperNEAT uses NEAT to find a NEAT genome that
defines the best ANN.

Since CPPNs get evolved by NEAT, it is ensured that the search of Hyper-
NEAT starts initially with simple connection patterns, whose complexity gets

14 CHAPTER 2. FUNDAMENTALS

Figure 2.5 Exemplary substrate configurations: Examples of how to
define a substrate configuration. That is how to arrange the position of neurons.
Substrate configuration can be of different dimensions and described by differ-
ent coordinate systems. (a),(b) and (c) are in Cartesian coordinates while (d)
is represented in polar coordinates. (a) and (d) are 1D while (b) is 3D. (c) is an
implicit 3D case, wherein the third dimension is ignored. In this case all input
and output neurons are placed on a different layer in 3D space, respectively.
Note that, it is not possible for neurons to connect themselves in this scenario.
Substrate configurations describe the geometric relationship of neurons, so dif-
ferent substrate configurations are suited for problems with different geometric
properties. [31, p. 11]

increased during the search. This is founded on the feature of NEAT to search
for networks with increasing complexities.

In oder to prevent confusion in the following parts of this work it has to
be noted that the output of the connectivity pattern function and the output
of the CPPN are identical. This is because the connectivity pattern func-
tion is defined by a CPPN. Neurons of the resulting ANN will further on
be called neurons, whereas neurons of the CPPN will further on be called
nodes. Identical to NEAT, in HyperNEAT the network defining the CPPN
is named the genome. As mentioned before, a genome consists of node and
connection genes. The resulting ANN is called the substrate. The placement
of neurons of the substrate in the neuron space is called the substrate configur-
ation. The substrate configuration has to be defined by the user. Functionally
similar neurons should be placed next to each other since they will get sim-
ilar connection patterns then. Exemplary substrates are shown in Fig. 2.5.
In the experiments chapter (chapter 5) of this work the sandwich structure
(Fig)2.5(c)) will be important. [7] proves empirically that giving geometric
information about the problem improves the search. However, choosing a ran-
dom geometric representation works worse, but still leads to good solutions.
Thus, problems in which the geometric relations of neurons are unknown are
solvable by HyperNEAT as well.

To put all pieces together of how HyperNEAT creates a resulting ANN,
at first a substrate configuration has to be chosen. Then, to determine the

2.4. HYPERNEAT 15

Figure 2.6 ANN creation with HyperNEAT: This figure shows how an
ANN is created by HyperNEAT. The coordinates of each pair of neurons (po-
tential connection) are applied to the input neurons of the CPPN. A pair of
nodes is depicted by a black arrow. If the CPPN’s output is higher as a defined
threshold a weighted connection between those two nodes is created (not dis-
played). In this example a 2D grid substrate configuration is used. Therefore,
the CPPN has 4 input nodes. [31, p. 9]

weight of the connection of two neurons, their positions are applied as input
parameters to the CPPN. As described in equation 2.1 the weight value is
determined. For clarity this process is depicted and explained in Fig. 2.6. To
sum up the full HyperNEAT algorithm is presented below (algorithm 2.2):

16 CHAPTER 2. FUNDAMENTALS

Algorithm 2.2: HyperNEAT

choose strategy parameters;
define a substrate configuration C;
Create an initial population P(0) with minimal CPPNs and random
weights;
t← 0;
evaluate fitness of the initial population;
while termination condition not reached do

t← t+ 1;
forall genomes in P(t) do // genome = CPPN

forall pairs of nodes p in C do
apply node positions to CPPN and determine the connection
weight of the connection between p;

end
determine fitness of created ANN;

end
create new population P(t) with NEAT;

end
output CPPN of best performing ANN;

2.4. HYPERNEAT 17

2.4.1 Substrate Scaling

[31] and [35] argue that a spatial connectivity pattern produced by a CPPN
encodes a general connectivity concept. Based on this statement they modi-
fied the resolution of various substrate configurations to vary the size of the
resulting ANNs. As a result, they proved empirically that substrate scaling
leads mostly to only minor influences on the behavior of resulting ANNs. For
example, instead of an 5× 5 grid substrate configuration the substrate config-
uration can be scaled to a 7× 7 grid substrate applied to the same space (e.g.
[0, 1]). This approach is further on referred to as substrate scaling. The crucial
benefit of substrate scaling is that the amount of used neurons and connections
can be adapted without further evolution. Thus, substrate scaling can lead
to more efficient and more effective resulting ANNs. Exemplary solutions of
scaled substrate configurations are shown in Fig. 2.7.

Figure 2.7 Exemplary substrate scaling: The spatial pattern produced the
CPPN on the right (c) can be queried by different substrates. (a) shows the
resulting network of a 5 × 5 grid substrate configuration and (b) the resulting
network of a 7× 7 grid substrate configuration in the same space. From (a) to
(b) the substrate was evenly scaled by a factor of 1.4. The CPPN activation
functions are denoted by G for Gaussian and S for sigmoidal. [31, p. 14]

18 CHAPTER 2. FUNDAMENTALS

2.4.2 CPPN configuration variations

[35], [33],[26] and [24] varied the number of inputs and outputs of the CPPN to
encode more information than the neuron position. [33] decouples the weight
and the expression of a connection. Thereby, the output value of a second
output node defines whether the connection is created or not. Further on, [33]
states that HyperNEAT tends to generate fully connected networks and shows
that less connected modular networks can be evolved by separation of weight
encoding and connectivity expression. One other variation of [35] is to use a
three layered sandwich substrate configuration in which a first CPPN output
node defines the connections between the first and the second layer. Whereas
a second CPPN output defines the connections between the second and the
third layer. For clarification a two layered sandwich structure can be seen in
Fig. 2.5(c). [31] adds an extra input node which, in addition to the position of
two neurons, decodes the geometric distance between those neurons. Further
on, an additional bias neuron with a constant output has been empirically
proven to be efficient by [26].

2.4.3 Placement of neurons without geometric relation-
ships

[24] deals with the problem that it is hard to place neurons into a neuron space
if there is no clear geometric relationship between them. One introduced ap-
proach represents each logical group as a line in a 2D space. This approach
encounters the problem that HyperNEAT has to detect a complex function
to distinguish between those logical groups. Therefore, [24] suggests to min-
imize the geometrical dependencies by grouping logically related neurons in
own spaces. In addition to various spaces a multi level sandwich structure is
created. For each two connected spaces an additional CPPN output is created.
This output defines the connectivity pattern between those two spaces. The
introduced CPPN structure provides HyperNEAT a structural hint that logical
groups exist. Further on, no complex function describing the connectivity of
all logical groups has to be found. Due to multiple outputs simple connectivity
patterns between each logical group can be evolved. In addition, relationships
between them can be encoded by the CPPN. The main difference between the
two approaches is that the first one has to distinguish logical groups with its
output values, whereas the second approach distinguishes logical groups by the
structure of the CPPN. An example of this approach is given in Fig 2.8.

2.4. HYPERNEAT 19

Figure 2.8 HyperNEAT without geometric relationships:. The shown
output, hidden and input neurons have only logical dependencies, but no geo-
metric ones. Substrate configuration (a) with CPPN (b) shows an approach
that forces HyperNEAT to find a complicated function to distinguish the lo-
gical groups. This can be prevented by creation of a separate space for each
logical group. The later leads to a sandwich structure (c). Further on, addi-
tional CPPN outputs (b), describing the spatial pattern between two spaces,
are created. With the help of this approach simple connectivity patterns can be
found. Note that in approach (c,d) a 1D neuron space would be sufficient. Fig.
adapted from [24, p. 4].

20 CHAPTER 2. FUNDAMENTALS

2.5 ES-HyperNEAT

Since connectivity patterns are dependent on the amount of neurons they
are applied to, the ES-HyperNEAT algorithm is used. It is able to create
connectivity patterns as well as to define the amount of used neurons.

HyperNEAT (see section 2.4) is able to optimize the connections of
an ANN but it lacks the ability to vary the amount of neurons of an
evolved ANN. Evolvable Substrate HyperNEAT (ES-Hyperneat) (see generally
[27][25]) provides a method based on HyperNEAT with the ability to evolve the
whole topology of a network, including neurons, their location in the neuron
space, connections and weights. The basic idea behind ES-HyperNEAT is that
spatial connectivity patterns provide information about connections as well as
about the position of new neurons. As already described in chapter 2.4 the
connectivity pattern is given by a connectivity pattern function. This con-
nectivity pattern function is defined by a CPPN. Each point in a connectivity
pattern represents a connection between two neurons. Those connections are
selected by ES-HyperNEAT from thin bands of equal function values. This
procedure rests on the fact, that information is defined by variance. In re-
gions with high variance many bands are found and thus many connections
are evolved. Equally, at regions with a low variance less bands are found and
thus less connections are evolved. Since a connection is represented by a point
in connection space, which has double the dimension of the neuron space, a
connection defines the coordinates of two neurons. Each neuron of a found
connection that does not exist yet gets created by ES-HyperNEAT. As by Hy-
perNEAT (section 2.4) the connections weight is derived from the value of the
spatial pattern at the coordinates of a connection.

The connection space used in ES-HyperNEAT is 4D. However, the search
for variances in the 4D space is expensive. Therefore, ES-HyperNEAT searches
on 2D cross sections of the connection space. ES-HyperNEAT searches outgo-
ing connections from each neuron starting with predefined input neurons. To
do this, the coordinates of a neuron are fixed in the 4D connection space. As a
result, a 2D cross section of the hypercube is considered. The spatial pattern
in this cross section describes outgoing connections from the existing neuron.
The coordinates of the neuron, for which new connections are searched, are
referred to as (a, b) further on. Bands in the spatial pattern can be determined
by applying a quadtree based division and initialization phase to a detect area
of high variances. This phase is followed by a pruning and extraction phase,
which determines the position of new connections.

The aim of the division and initialization phase is to detect areas of high
variance. In order to achieve this, a quadtree is applied over the cross section
of the connection space. Each node describes a disjunct subsquare of the
connection space. Further, each node has four children as long as it is not a
leaf node. The parent node represents a square with center (0, 0) and width 2.

2.5. ES-HYPERNEAT 21

It has four children describing four equal spaced subsquares inside the parent
square. The squared value of the initial resolution r defines the amount of
squares considered. It is related to the minimal depth d of the quadtree with
d = log4(r

2) + 1 . For example, an initial resolution of 4 leads to 4× 4 squares
and a tree depth of 3. Note, that this unusual definition of a resolution was
defined that way by the authors of the ES-HyperNEAT paper [25]. The center
point (x, y) of each square describes a potential connection. Its weight is
determined by querying the CPPN with arguments (a, b, x, y). For each node
of the quadtree the variance of the connection pattern in its square is estimated.
As an indicator for the variance the weight variance σ2

p of a tree node p is used.
It is calculated as follows:

σ2
p =

1

k

k∑
i=1

(w − wi)
2 (2.2)

Where k is the amount of leaf nodes of the subtree of p. w describes the
median weight over the weights of all leaf nodes of the subtree. Note that the
variance of a leaf node is 0. If the weight variance of the parent of a leaf node
is higher as a given division threshold dt children are added to the former leaf
nodes. This gives the quadtree the possibility to create more nodes in areas
with higher variance. However, the total depth of the quadtree is bounded by
a maximum resolution level rm.

In the following pruning and extraction phase connections are created at
area of high variance. Afterwards all connections get deleted that are not
located in the center of a band. Potential connections are described by the
centers of the squares of the quadtree. Firstly, a depth first search is applied
to the quadtree. If the variance of the parent of a node is smaller than a
defined variance threshold σ2

t , a connection (a, b, x, y) is created. x, y are the
coordinates of the output neuron of the connection. After defining a connection
the depth first search moves upward ignoring the remaining subtree. The ES-
HyperNEAT functionality described so far is demonstrated in Fig. 2.9.

Till now connections in areas of high variance were found. In a second step,
the connections at the edges of the bands are deleted because only the connec-
tions inside a band are of interest for ES-HyperNEAT. In order to achieve this,
only squares are kept whose center points (=neurons) have a big slope to the
left and right or the top and bottom. As an indicator for the slope a weight
difference β, which is also called band level, is used. β is defined as follows:

β = max(min(dtop, dbottom),min(dleft, dright))

dtop = |CPPN(a, b, x, y)− CPPN(a, b, x, y +m)|
(2.3)

dbottom,dleft,dright are calculated accordingly to dtop. x, y are the coordinates of
the center point of the current square and m the width of the current square.
Thus, the already known values of the center points of neighboring squares

22 CHAPTER 2. FUNDAMENTALS

Figure 2.9 ES-HyperNeat Phases: This figure shows the division and ini-
tialization phase as well as parts of the pruning and extraction phase. Note
that band pruning is not shown. Gray squares indicate a weight variance higher
than the variance threshold, but lower than the division threshold. Black and
white squares have weight variances of 0. The initial resolution is 4. At first
a quadtree with the minimal resolution is created (1a), then the CPPN values
at the center of the square of each leaf node is queried (1b). Based on these
values, the variance of each non leaf node is estimated (1c). Since no node has a
higher weight variance than the division threshold, no further and deeper nodes
are created. In a second phase a depth first search is applied. It only extracts
children of nodes whose variance is higher than the variance threshold (2a). In
this case the children of node 1,2 and 4 are not expressed because their variance
is 0. For each leaf node of the remaining tree a connection is created (2b). [27,
p. 14]

are considered. To keep a connection its weight difference β has to be higher
than a given band threshold βt. In easy words a neuron is in a band when at
least dbottom and dtop or dleft and dright are higher than βt. An exemplary band
pruning phase is explained in Fig. 2.10.

The frame of the whole ES-HyperNEAT algorithm does not change much
compared to the HyperNEAT algorithm. The whole evolution process stays
identical. It differs only in the way, the ANN is built out of the CPPN. The
positions of input and output neurons must be given. Now starting with input
neurons for each neuron the division and initialization phase and pruning and
extraction phase are applied. For every found connection the corresponding
hidden neuron is created if it does not already exist. Now this concept is
applied again on all new found neurons. This gets repeated until a given

2.5. ES-HYPERNEAT 23

Figure 2.10 ES-HyperNeat band pruning: The background of both images
shows a 2D slice of a 4D hypercube. The slice is created by querying a CPPN
with fixed input neuron positions (0,-1). Different gray scale values represent
different CPPN output values. (a) shows the intermediate result of the pruning
and extraction phase before band pruning is applied. All found points (=neur-
ons) indicate the variance of the CPPN output. In band pruning phase (b) only
points are kept that are inside a band. A point p is in a band if the center points
of squares of the same resolution have different CPPN values than p (e.g point
P). As a result, only points inside a band and not at the edges are kept. [27, p.
15]

maximum iteration level imax is reached. Connections between the output
neurons and all other neurons are found by again creating and analyzing cross
sections of the Hypercube. But this time with fixed output coordinates. That
is w = CPPN(x, y, a, b). After all neurons and connections have been found,
all neurons and connections that are not on a path from an input to an output
neuron are deleted. An exemplary representation of this mechanism is shown
in Fig. 2.11.

For further information, a full ES-HyperNEAT algorithm is given in the
appendix (algorithm A.1). In addition, an overview over all ES-HyperNEAT
parameters is provided in (table A.1).

24 CHAPTER 2. FUNDAMENTALS

Figure 2.11 ES-HyperNEAT algorithm scenario. In this scenario the ES-
HyperNeat algorithm starts with querying the slice of the hyperspace created
by fixing the coordinates of the input neuron (CPPN(0,−1, x, y))(a). Note
that each found neuron (red points) lies inside a band. Now, slices for each
hidden node position are queried and new connections and nodes are created
(b). To determine the connections to the output neuron the coordinates of the
output neuron (CPPN(x, y, 0, 1)) get fixed. In this case no new nodes, but
only connections are created. In order to construct a sense full ANN only those
neurons and connections are kept which are part of a path from the input to
the output neuron (d). [27, p. 17]

Chapter 3

The motor cortex model

This chapter gives an overview of Chadderdon’s motor cortex model [4] as well
as of Nagel’s motor cortex model [23]. It is important to understand those
models since the primary aim of this work is to extend Chadderdon’s as well
as Nagel’s motor cortex model with the idea of connectivity patterns. Nagel’s
model is an extension of Chadderdon’s model. Therefore, at first Chadderdon’s
model is explained in section 3.2. Afterwards the differences to Nagel’s model
are pointed out in section 3.3. A short biological introduction of the motor
cortex is given in section 3.1.

3.1 Biological fundamentals

The motor cortex [16] [19] is a part of the human brain that is responsible
for the planning, control and execution of conscious movements. Movement
encoding Betz cells of the motor cortex communicate over α-motor neurons dir-
ectly with muscle fibers to encode movements. Information about the current
location of limbs is provided to the motor cortex by the sensory cortex. The
sensory cortex receives this information from proprioceptive cells in skeletal
muscles, joints and tendons. Both the sensory and the motor cortex underlie
a somatotopic arrangement, which means that neighbored regions of the body
are also neighbored in the cortex [23]. The somatotopic arrangement shows
that that regularities in the placement and connectivity of neurons in the hu-
man brain do exist. The motor and sensory cortex as well as their somatotopic
arrangement are shown in Fig. 3.1. The provided information is simplified fur-
ther and more detailed information about the motor cortex can be found in
[19] and [16].

25

26 CHAPTER 3. THE MOTOR CORTEX MODEL

Figure 3.1 Motor cortex and sensory cortex and their somatotopic
arrangement: neighbored regions of the body are also neighbored in the motor
cortex. The sensory cortex has a similar structure as the motor cortex and lies
in front of it.[30]

.

3.2 Chadderdon’s model

Chadderdon’s model represents a biologically realistic and simplified model of
the motor cortex. That means that Chadderdon’s model does not represent
the whole functionality of the human motor cortex, but only one forearm joint
angle is simulated. Chadderdon uses reinforcement learning to reach a target
angel with a simulated forearm. Moreover, the model uses continuous learning
to reach an arbitrary angle. The model is biologically realistic in the way that it
simulates a biological plausible potential signal inside each neuron. Further on,
Chadderdon’s model uses neuron types that are also found in the human motor
cortex. It has to be noted that the introduced model is a reimplementation of
Chadderdon’s model, done by Nagel [23].

As a standard reinforcement learning model [21][4] Chadderdon’s model
consists of an actor, an environment and a critic. The actor maps percep-
tions to actions. The environment reacts to the actions. The critic provides
reward or punishment feedback to the actor. Chadderdon implemented the
environment as a forearm model with a one degree of freedom joint. Thus, the
forearm could be moved up and down. The joint angle is limited by 0◦ and
135◦. Whereby 0◦ means fully straightened and 135◦ means fully flexed. The
actor, i.e. the motor cortex model, got implemented as a Spiking Artificial
Neural Network (SNN). Fig. 3.2 gives an overview over all components of the

3.2. CHADDERDON’S MODEL 27

Figure 3.2 Chadderdon’s model design: This figure gives a whole over-
view over the components of Chadderdon’s model and its reinforcement learning
circle. The critic and actor are parts of the brain (i.e. the learning system). The
forearm is part of the environment. A detailed representation of the structure
of the actor can be found in Fig. 3.3. [4, p. 3].

model as well as of the reinforcement learning process.
In detail the actor is divided into five logical groups of neurons: proprio-

ceptive (P), excitatory sensory (ES), inhibitory sensory (IS), excitatory motory
(EM) and inhibitory motory (IM) neurons. There are 48 P, 96 ES, 32 IS, 48
EM and 32 IM cells. P cells define the current position of the arm. ES and IS
cells represent a simplified sensory cortex. They are responsible for processing
the signal from P cells. Finally, the EM and IM neurons represent a simpli-
fied motor cortex. EM and IM neurons are responsible for encoding new arm
movements. An inhibitory neuron inhibits connected cells. This means that
outgoing connections have negative connection weights. Whereas an excitat-
ory neuron excites connected neurons. This means that outgoing connections
have positive connection weights. The described structure is shown in Fig.
3.3.

As mentioned before, the actor got realized as a Spiking Artificial Neural
Networks (SNN). SNNs are a subclass of ANNs which work with time as a
second dimension. This means that not only the activation of a neuron mat-
ter, but also the point of time when the activation happens. In the case of
Chadderdon’s model the physical potential signal inside a neuron is simulated
over time. This signal is implemented in a way that it is as biologically plaus-
ible as possible and computable in real-time. The simulated as well as real

28 CHAPTER 3. THE MOTOR CORTEX MODEL

Figure 3.3 Chadderdon’s model: structure of the actor: Each circle rep-
resents a cell type. Each arrow represents the connection weight of connections
between two types. The double lined arrow represents inter cell connections
where learning is applied. [23, p. 25,41]

biological neurons follow the all or nothing principle. That means, if a poten-
tial exceeds a specific threshold it fires. This is, the potential increases rapidly
and then decrease rapidly. Finally the potential returns back to an initial
level. This signal curve is commonly known in biology as action potential or
firing. In detail, the membrane potential Vm(t) of a neuron is modeled by a
differential equation introduced by Izhikevich [20]. The equation of Izhikevich
is a good and efficient approximation of the Hodgkin-Huxley model [18]. The
model of Izhikevich was slightly adapted with noise. It is described as follows
(variable names changed):

Vm(t)′ = 0.04Vm(t)2 + 5Vm(t) + 140− u+ I(t) + Vn(t)

u(t)′ = a(b · Vm(t)− u(t))

reset after spike:

if v ≥ Vt, then

{
Vm(t) ← Vr

u ← u+ d

(3.1)

where u represents a membrane recovery variable. I defines the synaptic input
currents. That is the sum of weighted inputs to a neuron (see chapter 2.1).
a describes the decay rate of the membrane recovery variable u. As long as
the values of u are high no action potential is possible. b describes how fast
u increases in dependence to Vr. d describes the jump height of u when the
threshold of an action potential is exceeded. Vr is the resting potential of the
neuron. Vt the spiking threshold. Vn is a 300Hz noise input that leads to
motor babbling. This means that the network sends output signals, although
no input signal is given. This behavior is important for reinforcement learning,
since, if the actor does not produce any actions, the critic is not able to give
feedback [4]. The firing pattern of a simulated neuron depends on the choice of

3.2. CHADDERDON’S MODEL 29

Figure 3.4 Spiking patterns of Izhikevich’s simple model [20]: Different
resulting spiking patterns created by variation of a, b, c, d(= Vr) are plotted. The
here visualized patterns correspond to known biological neuron types. RS, IB
and CH are cortical excitatory neurons. FS and LTS are cortical inhibitory
neurons. The time resolution is 0.1ms. Each pattern is initialized by a dc-
current (I) step from 0 to 10. [20]

parameters a, b, d, Vr and Vt. Different resulting spiking patterns can be seen
in Fig. 3.4. Chadderdon chose the parameters a, b, d and Vr as shown in table
3.1.

Table 3.1 Parameters of Izhikevich’s model used by Nagel and Chadderdon

Parameter Excitatory Inhibitory
a 0.02 0.02 + 0.08ri
b 0.2 0.25− 0.05ri
d 8− 6 · r2i 2
Vr −65 −63

The firing patterns are altered by a random variable ri. ri is uniformly
distributed in [0, 1]. For excitatory neurons moving ri from 0 to 1 leads to a
transition from regular over intrinsically bursting to chattering spiking patterns
(see Fig. 3.4). For inhibitory neurons moving ri from 0 to 1 leads to a transition
from fast to low-threshold spiking patterns (see Fig. 3.4). The described firing
patterns of excitatory and inhibitory neurons are strongly correlated to the
firing patterns found in real cortical excitatory and cortical inhibitory neurons.

Each logical group of neurons is connected with a specific connection ratio.
The connection ratio is the ratio of the used amount of connections between
two neuron types to the maximal possible amount of connections between two
neuron types. The used connection ratios are given in table 3.2.

30 CHAPTER 3. THE MOTOR CORTEX MODEL

Table 3.2 Connection ratios of different neuron types of Nagel’s model

P EM IM ES IS
P 0 0 0 0,1 0

EM 0 0 0,43 0 0
IM 0 0,44 0,62 0 0
ES 0 0,08 0 0 0,43
IS 0 0 0 0,44 0,62

As one can see multiple neuron types are not connected. The resulting
network with all connection ratios that are not 0 was introduced above in Fig.
3.3.

The whole system works with a frequency of 0.02kHz. That means the
EM neurons encode a new angle every 50ms. To encode the direction of a
movement into two equal sized groups of 24 neurons. Each firing of a cell
in the first group leads to an 1◦ downward motion of the arm; in the second
group it leads to an 1◦ upward motion. The firings are summed up over a
time window of 50ms for each group. The resulting movement angle is the
difference of those sums.

Whether a reward or a punishment is sent by the critic is decided on the
distance ∆θt of the current angle θt to the target angle θtarget. If θtarget got
smaller (higher) compared to the mean of the last two distances ∆θprev, a
reward (punishment) is send to adaptive connections. This is defined more
clearly in the following formula:

∆θt = |θt − θtarget|
∆θprev = |θt−1 − θtarget|

critic response =


reward if ∆θt < ∆θprev

punishment if ∆θt > ∆θprev

no response if ∆θt = ∆θprev

(3.2)

Note that neither reward nor punishment does influence every connection.
According to the Hebbian Theory [17], connections are only able to learn
if the ingoing neuron of a connection fires before the outgoing neuron of the
same connection inside of a 50ms time window. Those 50ms are the same time
window in which the current movement got encoded. In Chadderdon’s model
only connections from ES to EM neurons are adaptive. There is no reason
given by the authors why just those neurons are able to learn. If reward
or punishment is send to a connection, a weight scale factor is increased or
decreased. All weights lie in the interval [0, 5]. Every connection that links
neurons of the same two types have the same weight.

The encoding of the current forearm angle θ is done with a population
coding of P neurons. This means, that each activation of a specific set of P

3.3. NAGEL’S MODEL 31

Figure 3.5 Exemplar population coding encoded by D cells. Here the
normal distributions of activation probabilities for neurons at positions 2 (blue),
2.5 (red) and 3 (orange) are shown. The dashed green line marks the position
of an angle to encode. Note that every cell will fire with a different probability.
(P (blue) = 0.8204, P (red) = 0.4566, P (orange) = 0.1720)

cells defines one specific fore arm angle. In detail, each P cell has a normal
distributed fire probability relative to the angle interval [0◦, 135◦]. This means
that for each forearm angle a cell fires with a specific probability. The normal
distribution is chosen in a way that approximately five P cells will fire for each
forearm angle. An example of this population encoding is shown in Fig 3.5.

Further details about Chadderdon’s model are provided in the works of
Chadderdon et al. [4], Nagel [23] and Spüler et al. [29]. Those works provide
deeper insights to the way noise is produced and weight scale factors are ad-
apted in learning. In addition, they show the functional capability of Chad-
derdon’s model in multiple experiments.

3.3 Nagel’s model

Nagel’s model is an extension of Chadderdon’s model. Nagel modified Chad-
derdon’s model in a way that the model can abstract every movement to an
arbitrary angle without continuous learning. In order to do so, Nagel’s model
learns a general movement concept by movements to a few angles. The 48
proprioceptive (P) neurons were replaced by 96 distance (D) neurons. D neur-
ons define the current distance to the target angle. In addition, learning is
not applied to ES-EM connections, but to D-ES connections. The resulting
structure is shown in Fig. 3.6. The population coding of D neurons is imple-
mented similar to the population coding of P neurons. In this case, each D cell
has a normal distributed fire probability relative to the angle distance interval
[−135◦, 135◦]. Additionally, Nagel’s model uses a mechanism called Structural
Synaptic Plasticity (SSP) [3]. That is, if a connection is rarely used between

32 CHAPTER 3. THE MOTOR CORTEX MODEL

Figure 3.6 Nagels’s model: structure of the actor: The upper figure
shows the structure of Nagel’s model. Each circle represents a cell type. Each
arrow represents the connection weight of connections between two types. The
double lined arrow represents inter cell connections where learning is applied.
[23, p. 25,41]

two neurons, it connects to a new neuron. This is implemented in the way,
that, if a weight scale factor of a D-ES connection drops below 0.2, the connec-
tion will be randomly reconnected to a not yet connected ES neuron. Further
on, Nagel’s model has an initial Learning Phase to learn a general movement
concept. If the learning phase is successful, the model is likely to be able to
reach any angle. In detail, the Learning Phase consists of starting at maximum
angle and then consecutively reaching the minimal and then the maximal angle
again. During that movement most distances of the interval −135 to 135 will
occur. As a result, in an optimal case, every distance will be encoded by D
cells at least one time. A model learns until it is moving into the right direc-
tion for each distance value. Nagel states that this procedure is sufficient to
learn a general mapping from any distance to the desired movement. After
learning, the model’s success is measured by letting the model move again to
the maximum and minimum angle but this time without learning. If it is able
to reach those angles, learning is successful. After the Learning Phase, a Sim-
ulation phase is undertaken, which is used to check how the model behaves
while reaching various target angles. An exemplary learning and simulation
behavior is shown in Fig. 3.7.

Further details about Nagel’s model are provided in the works of Spüler
et al. [29] and Nagel [23]. Spüler et al. as well as Nagel give deeper insights
into the mechanism of how the distance is encoded by D neurons. Further on,
they explain how noise is produced and how weight scale factors are adapted
in learning.

3.3. NAGEL’S MODEL 33

(a)

(b)

Figure 3.7 Exemplar Training Phase (a) and Learning Phase (b) of Na-
gel’s model: The blue line represents the current forearm position. Green lines
indicate the current target angle. (a) Starting from the angle 135◦, the angles 0◦

and 135◦ have to be reached. This example needs approximately 50 seconds to
achieve this. During this 50 seconds learning is enabled. Afterwards it is checked
whether the model is able to reach the minimal an maximal angle without learn-
ing. Both angles are applied as target angles for 30 seconds. Note that time is
referred to as simulation time not as actual time. [23, p. 47]. (b) After learning
the model gets tested in a Simulation Phase in which several angles have to be
reached. Starting with 135◦, consecutively 30◦, 90◦, 0◦, 60◦, 135◦ and 120◦ have
to be reached. Each target angle is presented for 30 seconds. This model is the
best performing model found by Nagel [23, p. 52].

Chapter 4

Methodology

This chapter provides general and essential information about the setup of
the experiments introduced in chapter 5. One purpose of this chapter is to
avoid repetitions in the explanations of the specific experimental setups. The
information provided are essential to understand the following experiments.
At first, the technical realization of the experiments is given in section 4.1.
Definitions and parameters valid for each experiment get explained in section
4.2. Lastly, specific informations for experiments using Nagel’s model are given
in section 4.3.

4.1 Technical realization

This section gives an overview over the technical implementation of the per-
formed experiments. All HyperNEAT experiments were built upon the Hy-
perSharpNEAT HyperNEAT framework implemented by David D’Ambrosio
in C# (web link: [8]). For ES-HyperNeat experiments the ES-HyperNEAT
framework by Sebastian Risi, which is an extension of the HyperSharpNEAT
framework, was used (web link: [28]). Note that a probable faster C++ Hy-
perneat implementation (web link: [5]) is available. However, this implementa-
tion does not support ES-HyperNEAT. The code of Chadderdon’s and Nagel’s
model was given in MATLAB Programming Language. The models’ code was
extended for the experiments of this work by using MATLAB 9.2.0.556344
(R2017a). In addition, the HyperNEAT frameworks got extended to satisfy
the requirements of the experiments described in chapter 5.

Based on the HyperSharpNEAT framework the evolution process got imple-
mented as follows: The C# process evaluated multiple genomes concurrently
by communicating with several MATLAB instances at once. This communic-
ation was based on several files for each MATLAB instance. Each MATLAB
instance waited until an evaluation command arrives. Thereupon, it simulated
the model with provided parameters, wrote the fitness to a result file and then

34

4.1. TECHNICAL REALIZATION 35

Figure 4.1 General experiment setup: One HyperNEAT process commu-
nicates over communication and data files with several concurrently running
motor cortex models to evaluate multiple genomes at the same time. Each mo-
tor control model runs in its own MATLAB instance. The gray dots point out
the existence of multiply more MATLAB instances.

waited again for a new evaluation command. In that way, MATLAB instances
had to be started only once and waere able to simulate multiple models. To
write MATLAB files with C# the CSMatIO library from David Zier (source
code: [38]) was used. The parameters of NEAT, HyperNEAT, ES-HyperNEAT
and the motor cortex models could be set by specific configuration text files.
All experiments were run on a Linux server with 64 cores. Each processor was
clocked with 2.3GHz and has a 64 bit architecture. The available RAM was
251.9GB. 50 single core MATLAB instances were run concurrently. To run the
C# code on a Linux server the MONO Project environment (web link: [12])
was used. It took approximately 60 hours to run a typical experiment with
450 generations and a population of 90 individuals. Thereby 40500 individu-
als were evaluated. Fig. 4.1 provides an overview of the described software
architecture.

36 CHAPTER 4. METHODOLOGY

4.2 General parameters and definitions valid

for each experiment

Many parameters, definitions and methods were the same with all experiments.
Therefore, reoccurring ones are explained in this section.

The 30 best models of the last generations were selected to compare results
of searches done by HyperNEAT. More models could not be selected because
of specitation the last generations contained lots of non optimal performing
models.

In order to determine the complexity of a CPPN, the total amount of its
nodes and connections was added up. The complexity of a CPPN is also a
strong indicator of the complexity of the connectivity pattern function. The
average complexity of a generation was calculated by the total sum of the
complexity of each individual in this generation divided by the population
size.

The activation functions of CPPN nodes were chosen as follows: The input
nodes used the identity function (f(x) = x). The activation function of output
nodes was set to a bipolar sigmoid function (f(x) = 2

1+exp(−4.9x) − 1) with

a value domain of [−1, 1]. Four different types of activation functions were
assigned to newly created hidden nodes with equal probability: bipolar sigmoid
(f(x) = 2

1+exp(−4.9x)−1), Gaussian (f(x) = 2 exp(−(2.5x)2)−1), absolute value

(f(x) = |x|) and sine (f(x) = sin(2x)). The chosen activation functions were
empirically proven to be successful in creating optimal connectivity patterns
by [9].

The initial weight of each connection was defined by Chadderdon’s model.
Therefore, weight determination, as it is usually done in HyperNEAT, was not
applied. Consequently, HyperNEAT’s connection threshold θc was only used
to define whether a connection is expressed or not.

In order to ensure that HyperNEAT got the same fitness result when a
model was evaluated twice, the random number generation function was al-
ways initialized with the same seed. As a result, HyperNEAT could now overfit
during training because noise values were identical in each evaluation. How-
ever, it is fairly unlikely that HyperNEAT was able predict a complex random
number generation function. Thus, no benefit for the models was gained. As
a result, this simplification of Chadderdon’s and Nagel’s model did no harm.

The root-mean-square deviation (RMSD) was used as the unit of measure
for the performance of a model. The RMSD was calculated as follows:

RMSD =

√√√√ 1

tmax

tmax∑
t=0

(θt − θtarget) (4.1)

where tmax is the maximal simulation time. θt is the current angle of the
forearm. θtarget is the target angle at time t.

4.3. GENERAL DEFINITIONS FOR EXPERIMENTS USING NAGEL’S MODEL37

Lastly, it has to be noted that parametrical relations of the used models to
Nagel’s experiments are given in appendix B.

4.3 General definitions for experiments using

Nagel’s model

This section introduces the realization of the Training phase and the Simula-
tion phases. Further on, the fitness function as well as units of performance
measures get explained.

As described in chapter 3, Nagel’s models were undertaken a Training Phase
and a Simulation Phase. The experiments of this work implemented those
phases as follows: In the Training Phase the models were trained to reach the
minimal (0◦) and maximal angle (135◦). Then it was tested whether they were
able reach the angles 0◦, 62◦, 135◦ without further learning. The additional
angle of 62◦ degree was introduced to inhibit over-fitting of movements to the
extreme angles. The maximal learning time, i.e. the time to initially reach
the first two angles, was set to 40 seconds. The following three angles were
presented for 20 seconds, respectively. In a Simulation Phase each of the
following target angles was presented for 30 seconds: 30◦, 90◦, 0◦, 60◦, 135◦,
120◦. The starting angle was 135◦.

For all experiments which used Nagel’s model, an identical fitness function
was used. Fitness was only measured in the Training Phase. The fitness func-
tion consisted of three partial fitnesses. The Training Fitness (FT) measured
the ratio of the amount of correct moves divided by the amount of all moves
during learning. Thus, it provided HyperNEAT a search hint of which kind of
moves were correct and which kind of moves were not. Success Fitness (FS)
determined whether learning was successful. Thus, it is only applied to the
angles that are used to check success; i.e. 0◦, 62◦, 135◦. In detail, FS is the
ratio of reached angles divided by the amount of all angles to reach (=3). The
RMSD Fitness (FR) was the normalized RMSD over all time steps for the
angles that are used to check success; i.e. 0◦, 62◦, 135◦. The value domain was
[0, 1] for all three partial fitnesses. In detail, the partial fitnesses were defined
as follows:

FT =
amount of correct moves

amount of all moves
(4.2)

FS =
amount of reached testing angles

amount of all testing angles
(4.3)

FR =

√√√√ 1
tfinal−tstart test

tfinal∑
tstart test

(θt − θtarget)

θmax − θmin

(4.4)

38 CHAPTER 4. METHODOLOGY

where θt was the forearm angle at time t. θtarget was the current target angle
which was of 0◦, 62◦ or 135◦. θmin and θmax were the minimal and maximal
forearm angles. tstart test is the point of time when the initial two angles were
reached. The value of tstart test depended on how long a model needed to
learn the movement to the maximal and minimal angle, but was limited to 40
seconds. tfinal was the time needed to finish the Training Phase. Eventually,
the composed fitness F was defined as follows:

F =

{
c1·FT+c2·FS+c3·FR

3
if FS 6= 1

c1·1+c2·1+c3·FR

3
if FS = 1

with c1 + c2 + c3 = 1

(4.5)

where c1, c2, c3 were constants describing the relation of the three partial fit-
nesses. Their sum had to be one in order that the value domain of F was
of interval [0, 1]. If all angles were successfully reached, the Training Phase
was successful, although there might had been wrong moves during learning.
Thus, the movements done wrong should had no influence on the fitness. In
order to model this, FT was set to one if FS was one. One could argue that FT

was not necessary. However FT provided HyperNEAT a search hint of which
kind of moves were correct and which kind of moves were not. In addition, FS

was necessary since a model might have reached a low RMSD without actually
reaching an angle, but only getting near to it.

As unit of the error in the Simulation Phase two units of measure were
used. The Total RMSD was defined as the RMSD between forearm position
and target angle over each time step. This unit of measure indicated the
ability of a model to reach an angle fast as well as the ability to hold an angle
with low variance. The second used unit of measure is the Part Time RMSD.
The Part Time RMSD also described an RMSD between forearm position and
target angle. However, this RMSD was measured over the last two thirds of
each presented angle; i.e. from 10 to 30 seconds for each presented angle. This
unit of measurement mainly indicated the ability of a model to hold an angle
with low variance. It was introduced to compare the results of the work with
the results of Nagel’s work [23]. It has to be noted that the Total RMSD
tended to be significantly higher than the Part Time RMSD. A reason for this
can be found in the fact that, the Part Time RMSD was not considering high
distances which occurred when the target angle changed.

Nagel’s model is used by this work without SSP (section 3.3). SSP is
responsible for random replacement of connections. This stands in contrast to
the idea of this work which aims to introduce fixed connectivity patterns.

Finally it has to be mentioned that a positive distance should led to an
upward movement of the arm. Equally, a negative distance was defined as the
distance that should led to a downward movement of the arm.

Chapter 5

Experiments

This chapter introduces four experiments. As a reminder, the primary focus
of this work is to analyze whether connectivity patterns improve the perform-
ance of the models. Therefore, the experiments tried to create connectivity
patterns which improve the models. In experiment 1 (section 5.1) this was
done for the ES-EM connections of Chadderdon’s model. Because this experi-
ment showed promising results, all further experiments were done with Nagel’s
model, which is more complex. Experiment 2 (section 5.2) tried to optimize
the D-ES connection of Nagel’s model. In a more sophisticated approach,
experiment 3 searched for connectivity patterns for all connection types of Na-
gel’s Model (section 5.3). Comprehensive analysis was done with the results of
this experiment which included an interpretation of the connectivity pattern, a
performance comparison with Nagel’s experiments, analysis of the evolved con-
nection ratios and substrate scaling. Therefore, experiment 3 was undertaken
to answer whether connectivity patterns make the working principle of those
models easier to understand. In other words, experiment 3 tried to analyze if it
is possible do deduce resulting movements by analyzing the connectivity pat-
tern. In addition, experiment 3 checked if the evolved connectivity patterns
optimize Nagel’s model in comparison to Nagel’s experiments with random
created connectivities. Finally, experiment 3 tried to examine if, on the basis
of regularities in the evolved connectivity patterns, Nagel’s model could be
scaled to various sizes without a significant loss in functionality. Lastly, exper-
iment 3 attempted to answer whether the amount of connections introduced by
the connectivity patterns correspond to the initial defined amount of Nagel’s
model. Experiment 1, 2 and 3 evolved connectivity patterns by means of Hy-
perNEAT. Because the connectivity patterns are dependent on the amount of
neurons they are applied to, experiment 4 (section 5.4) used ES-HyperNEAT
to search for connectivity patterns as well as the amount of neurons for Na-
gel’s model. Again, connectivity patterns and the model performances were
analyzed. In addition, it was checked whether the amount of neurons intro-
duced by the connectivity patterns corresponds to the initial defined amount

39

40 CHAPTER 5. EXPERIMENTS

of Nagel’s model.
Each experiment introduced contains an experimental setup section, a res-

ult section and a short discussion section. The discussion section summarizes
and analyzes the most important results. A concluding discussion off all ex-
periments is given in the Discussion chapter (see chapter 6).

5.1 Experiment 1: Optimizing Chadderdon’s

model

In this experiment HyperNEAT was used to optimize Chadderdon’s model.
The focus of analysis was, whether HyperNEAT has the general ability to
optimize such a complex motor cortex model. In order to do so, it was ana-
lyzed, whether HyperNEAT can improve the moving behavior of the forearm
by searching for an optimal ES-EM connectivity. Further on, it was of interest
to find out how the search of HyperNEAT performs in this task. Only the
ES-EM connectivity got optimized since Nagel showed empirically that this is
sufficient to achieve a good behavior [23].

5.1.1 Setup

One randomly created model was chosen to be optimized. The initial perform-
ance of this model was moderate. This means, that the model was initially
able to learn to reach different angles. But, it needed much time to do so.
ES-EM connections were evolved by HyperNEAT to optimize the model. All
other connections staid as randomly initiated.

Since evaluating Chadderdon’s model is computational expensive, Hyper-
NEAT searched only for an optimal solution for reaching angles of 15◦ and of
115◦. Obviously, training with more angles would have been more promising.
But, it was assumed that the basic concept of reacting to the critics input
should be learned anyway. The maximal time in which a model had to reach
an angle was set to 40 seconds. The initial angle was of 65◦. The used fitness
function f was given by:

f = 135−

√√√√ 1
40

40∑
t=7

(θt − 35)2 +

√√√√ 1
40

40∑
t=7

(θt − 95)2

2
(5.1)

Where θt was the forearms angel at time t. Both square root terms calculated
the RMSD of a run from 7 to 40 seconds. Note that the time gap of 7 seconds
was not necessary. However, it presented the ability of a model to hold an
angle more clearly. 450 generations were simulated and a population size of 90
was chosen. All in all 40500 models got simulated. HyperNEAT’s connection

5.1. EXP. 1: OPTIMIZING CHADDERDON’S MODEL 41

Figure 5.1 Experiment 1: substrate configuration: 96 ES neurons were
placed with equal y distances between (−0.25,−0.5) and (−0.25, 0.5). 48 EM
Neurons were placed accordingly at x = 0.25

threshold θc was set to 0.8. The substrate configuration (= placement of
neurons) was realized as two parallel lines of ES and EM neurons. This is
biological plausible since the cells of the sensory and motor cortex of the human
brain are aligned along the approximately straight sulcus centralis [10]. The
exact configuration is shown in Fig. 5.1.

The used NEAT parameters were chosen as follows: An add connection
mutation appeared with a probability of 0.15, an add node mutation with
a probability of 0.05 and a weight mutation with a probability of 0.96 for
each individual. A weight mutation indicated whether parts of an individual’s
connection weights were varied or not. The elitism proportion was set to 0.1.
This means, that the nine best individuals of the last generation were taken
over into the following generation without change.

After the optimization with HyperNEAT, an additional test run was per-
formed with the best models found. In this phase a model’s ability to hold
multiple angles for 120 seconds was determined. The RMSD in this case was
calculated from 20 to 120 seconds.

5.1.2 Results

The mean complexity and the best fitness of each generation were chosen
as performance measurements for the search of HyperNEAT. Those measure-
ments are shown in Fig. 5.2. It can be seen that HyperNEAT increased the
mean complexity over generations. This shows that HyperNEAT increased
the search space continuously. Thus, at first, simple connectivity patterns
were considered. Over time they got more complex. In the beginning, the

42 CHAPTER 5. EXPERIMENTS

(a) (b)

Figure 5.2 Experiment 1: performance measurements: (a) The average
CPPN complexity over each generation. (b) The best fitness of the population
over each generation.

fitness of the best individual increased fast from 124.8 in generation 1 to 129.5
in generation 30. After a setback, the fitness continued to increase slowly un-
til generation 267 (fitness 131). For the following 183 generations the search
was not able to increase the best fitness. Nevertheless, the complexity still in-
creased during those generations. This shows that a higher mean complexity
did not lead to considerable better fitnesses. However, this was the case during
the first generations. The fitness of the initial unoptimized model was 115.1.
As a result, the best fitness got increased from 115 to 131 by HyperNEAT.
This demonstrated that HyperNEAT was able to improve the ability of the
initial model to reach the angles of 15◦ and 115◦.

It has to be mentioned that the setback at the values next to generation
50 (Fig. 5.2,(b)) was unexpected. Due to elitism the best individual of each
species should always survive, thus there should have been no setbacks. But,
in this case, it occurred that the whole species of the best genome got extin-
guished.

This experiment analyzed how the models performed when holding an angle
for a longer time and when reaching untrained target angles. In a first step a
comparison of the movements of the unoptimized initial model and the best
optimized model, for target angle 35◦ was performed (Fig. 5.3). The result
shows that the movement speed of the movement to the angle of 35◦ got in-
creased. The unoptimized model needed 40 seconds to reach the target angle,
whereas the best optimized model needed 18 seconds. In addition, the optim-
ized model held the angle with less variance. In Fig. 5.4(a) a detailed RMSD
comparison for all simulated angles is shown. With exception of the angles 0◦

5.1. EXP. 1: OPTIMIZING CHADDERDON’S MODEL 43

Figure 5.3 Experiment 1: comparison of movements of the best op-
timized and the unoptimized model: Movements of the unoptimized initial
model (green) and of the best optimized model (red).

and 105◦, the best model outperformed the initial model. The mean RMSD
over all angles of the initial models was of 7.453◦. Whereas the mean RMSD
of the best optimized model was of 5.457◦. This shows that HyperNEAT was
able to find an optimized model with the help of connectivity patterns.

In order to reach a more meaningful comparison the 30 best models found
as well as the initial model got simulated to reach the following target angles:
0◦, 35◦, 75◦, 105◦ and 135◦. The resulting RMSDs are shown in Fig. 5.4(b).
It can be seen that at angles of 35◦, 75◦ and 105◦ most of the best models
found performed worse than the initial model. At 0◦ none of the models found
performed better. Nevertheless, the evolved models were clearly better at
holding the angle of 135◦. The mean RMSD over the best 30 models evolved
was of 7.765◦. It was slightly worse compared to the mean RMSD of the
initial model of 7.453◦. As a result, HyperNEAT succeeded in finding a better
solution, but in average the 30 best evolved models performed not better than
the initial model.

It was tried to analyze the connectivity patterns, which was not successful
because the substrate configuration was based on a 2D neuron space. There-
fore, the connectivity pattern had to be plotted over a 4D connection space.
However, this was not possible to be done in a reasonable and understandable
way. But, an analysis of the connectivity patterns is done in detail in the
following experiments.

44 CHAPTER 5. EXPERIMENTS

(a) (b)

Figure 5.4 Experiment 1: RMSDs comparison for each angle (a) RMSD
of the best optimized (red) and the unoptimized initial model (green). The last
two columns show the mean RMSDs over all angles. (b) The RMSD distribu-
tion of the 30 best models of the last generation is shown. The RMSD of the
unoptimized initial model is indicated by a green line. The median RMSD of the
optimized models is represented by a red line. It was calculated from t = 20s
to t = 120s. The blue box represents the interquartile range (IQR) from the
first to the third quartile. The whiskers extend the quartiles by ±1.5·IQR. Red
crosses show outliers.

5.1.3 Discussion

This experiment showed that HyperNEAT is able to improve Chadderdon’s
model by optimizing the ES-EM connectivity with connectivity patterns. The
model with the best results held angles clearly better than the initial model.
Nevertheless, the 30 best models found performed slightly worse in average
compared to the initial model in holding an angle. An open question stays
whether they were faster in reaching an angle, as the analysis of the best
model indicates. Therefore, the following experiments consider the ability of
a model to reach an angle fast as well as the ability of a model to hold angles.

The search process showed the intended behavior of HyperNEAT: The com-
plexities of CPPNs and so the search space was increased continuously to find
solutions with increasing complexities.

In addition, it was found out that a connectivity pattern on basis of a 2D
neuron space is not easy and not efficient to analyze. A 2D neuron space was
used because it was commonly used by other HyperNEAT research including
[31],[35] and[14]. However, further HyperNEAT experiments in this work will

5.2. EXP. 2: OPTIMIZING THE D-ES CONNECTIVITY 45

use a 1D neuron space in order to get connectivity patterns that are easy and
efficient to analyze. Due to the promising results of the experiment described
above, all further experiments are done with Nagel’s model which is similar to
Chadderdon’s model but more complex.

5.2 Experiment 2: Optimizing the D-ES con-

nectivity of Nagel’s model

Experiment 1 (chapter 5.1) showed that HyperNEAT is able to improve the ES-
EM connectivity of Chadderdon’s model. Therefore, one focus of experiment
2 was to investigate whether HyperNEAT is able to optimize the D-ES con-
nectivity of Nagel’s model with connectivity patterns. Only D-ES connections
were optimized because Nagel stated that plasticity on the D-ES connections
is sufficient to create functional models [23]. A further aim of this experiment
was to analyze the connectivity patterns created. Therefore, this experiment
ran HyperNEAT with a 1D neuron space to get connectivity patterns that
were assumed to be easy to analyze. In addition, it was examined whether
the evolved connectivity patterns provide insights into the working principle
of the model.

5.2.1 Setup

It is important to note that much general information that concerns this exper-
iment was already explained in section 4.3. This information is not repeated in
the following. HyperNEAT and NEAT parameters described in experiment 1
(section 5.1) were kept mainly identical. Identical to experiment 1, 450 gener-
ations with a population of 90 individuals were simulated. An add connection
mutation appeared with a probability of 0.15, an add node mutation with a
probability of 0.05 and a weight mutation with a probability of 0.96 for each
individual. The elitism proportion was set to 0.1. One difference to the para-
meters of experiment 1 was a connection threshold θc of 0.75 instead of 0.8.
This lower threshold gave CPPNs of low complexity the possibility to increase
the number of found connections. Further on, Chadderdon’s model (section
3.2) was replaced by Nagel’s model (section 3.3). Therefore, the positions en-
coding P neurons were replaced by distance encoding D neurons. In detail, D
neurons encoded the distance to the target angle on the interval [−135, 135].

The Learning and Simulation Phases were applied as described in section
4.3. The fitness function for Nagel’s model (Fun. 4.5) was initialized with the
following parameters: c1 = 0.1, c2 = 0.2, c3 = 0.7. Therefore, a fitness higher
than 0.3 was necessary for a model to count as successful. As in experiment
1, a randomly created model was chosen to become optimized. This randomly
created model was able to finish the Learning Phase, but shows poor behavior

46 CHAPTER 5. EXPERIMENTS

(a) (b)

Figure 5.5 Experiment 2: substrate configuration: (a) Placement of D
neurons (red) and ES neurons (green) in two different one-dimensional spaces.
(b) The initial CPPN. D is the input node for D positions. ES is the input node
for ES positions. The bias neuron always fires with value 1.

in the Simulation Phase.
As argued for in experiment 1 (section 5.1) a 1D neuron space was used

to get analyzable connectivity patterns. The substrate configuration of exper-
iment 1 (section 5.1) placed two parallel lines in a 2D neuron space. However,
both lines could also be expressed in two distinct and 1D spaces. This was
done in this experiment and resulted in a three dimensional connectivity pat-
tern function that could be easily plotted and analyzed. Further, the chosen
1D neuron space followed the approach of unknown geometric relationships
described in section 2.4.3. This was plausible in the current scenario since the
spatial relation of D and ES neurons was unknown. The exact placement of
96 D and 96 ES neurons is shown in Fig. 5.5(a).

The resulting initial CPPN (Fig. 5.5(b)) had two input nodes; one input
node accepted the position of a D neuron and a second input accepted the
position of an ES neuron. The CPPN had one output node, whose output
value defined, whether a connection between two neurons was created or not.
In addition, a bias node that was always activated by a value of one was
initially connected to the output node.

5.2.2 Results

In a first step it was analyzed whether HyperNEAT was able to improve the
initial random connected model with the help of connectivity patterns. The

5.2. EXP. 2: OPTIMIZING THE D-ES CONNECTIVITY 47

(a)

(b)

Figure 5.6 Experiment 2: comparison of the movements of the best
and the initial model: Movements of the initial model (green) and of the
best model found (red) in the Training Phase (a) and in the Simulation Phase
(b). The dark blue lines represent the target angle of the initial model; the light
blue lines the target angle of the best model. Angles to be reached consecutively
during the Training Phase were of 0◦, 135◦, 0◦, 62.5◦, 135◦. Training was enabled
for the first two angles. Angles to be reached consecutively during the Simulation
Phase were of 30◦, 90◦, 0◦, 60◦, 135◦ and 120◦.

initial random created model had a fitness of 0.776 in the Learning Phase and
a Total RMSD of 79.3◦ in the Simulation Phase. This correlated to the fact
that it could learn successfully, but was not able to reach various angles in
the Simulation Phase. The best model found had a fitness of 0.865 and an
Total RMSD of 16.75◦. As a result, the best model outperformed the Total
RMSD of the initial one by a factor of 5.8. The initial model had an Part Time
RMSD of 80.154◦, whereas the best model had a Part Time RMSD of 9.86◦.
Thus, the best model found was 8.152 times better in holding an angle than
the initial model. For comparison, the training and simulation movements of
both models are shown in Fig. 5.6.

It is clearly seen that the optimization of the D-ES connectivity by Hyper-

48 CHAPTER 5. EXPERIMENTS

(a) (b)

Figure 5.7 Experiment 2: best and inital CPPN: (a) best CPPN. D and
ES are inputs for D and ES neuron positions, respectively. The bias neuron
is constantly firing with value 1. The following activation functions are used:
identity (black), bipolar sigmoid (white), sine (red) and absolute (blue). Due to
clarification, connection weights have not been plotted.
(b) The initial CPPN for comparison.

NEAT led to better movements. In addition, it is interesting that the initial
model needed 66.55 seconds to reach the minimum and maximum angle in
the Learning Phase (Fig. 5.6(a)). With only 10.45 seconds the best model
clearly needed less time. When taking an exact look at the movement, it can
be seen, that the best model only needed to learn the last small distances to
the minimum angle. Movements for all other neurons were already encoded in
the connectivity pattern.

In a second step the created connectivity patterns between D and ES neur-
ons were analyzed. The diversity in the evolved connectivity patterns of the
30 best models was low. All of them adjusted to the sigmoid function defined
by the initial CPPN only slightly. Since all connectivity patterns were similar,
it was the connectivity pattern of the best model that was chosen to be looked
at. The CPPN of the best model which defined the connectivity pattern,
was shown in Fig. 5.7(a). It can be clearly seen that the initial structure (Fig.
5.7(b)) was not much adapted. Only the first and third input signal underwent
some more complex calculations. The input describing the ES neuron position
and the bias neuron were still connected directly to the output neuron.

The D-ES connectivity pattern of the best model is plotted in Fig. 5.8. The
flattened representation of the pattern (Fig. 5.8(b)) made the D-ES connectiv-
ity easy to understand. For example, the D neuron at position 0 was connected
to all ES neurons from position 0 to 0.78. With increasing D neuron positions
less connections to ES neurons were realized. ES neurons at positions from
0.79 to 1 had no incoming connections from D neurons. The borderline had
a slope of approximately 0.5. Thus, a general resulting connecting principle

5.2. EXP. 2: OPTIMIZING THE D-ES CONNECTIVITY 49

(a) (b)

Figure 5.8 Experiment 2: connectivity pattern of the best model:
(a) The 3D representation of the connectivity pattern function. It is related
to a bipolar sigmoid function. The connection threshold θc is 0.75. All values
higher than θc represent created connections (green). Note that the borderline
between the green and blue area is originally straight. The edges result from
an underlying mesh grid. (b) A flattened 2D representation of the connectivity
pattern. Each square represents one potential connection. Green connections
are created, blue connections are not. For example, the D neuron at position 1
has a connection to the ES neuron at position 0.1 but no connection to the ES
neuron at position 0.5.

between D and ES neurons could be induced, where each second D neuron
connects to one less ES neuron. The translation of this general connection
principle to an ANN is exemplary shown in Fig. 5.9. Comparing the ANN to
the connectivity pattern demonstrated that it is much easier to see regularities
in a connectivity pattern than in an ANN structure

In a third step it was examined whether the evolved connectivity patterns
provided insights into the working principle of the model. If there was a high
positive distance to the target angle (D Neurons next to position 1), only a
few ES neurons got stimulated. Whereas, if there was a high negative distance
(D neurons next to position 0), about 3 times the amount of ES neurons
was stimulated. This demonstrated that it is possible to understand which
distance leads to the activation of which ES neurons. However, the connections
between all other neuron types were chosen randomly without any regularities.
Thus, it could not be examined, how stimulations of ES neurons resulted in an
activation of EM neurons and, later, in the realizations of movements. To sum
up, no complete insights in the working principle of the model were inferable.

50 CHAPTER 5. EXPERIMENTS

Figure 5.9 Experiment 2: general connection principle: The regular
connectivity pattern found by HyperNEAT demonstrated for four D and four
ES Neurons. The number under the neuron type indicates the position. To
clarify the regularity of the pattern the order of the ES neurons is reversed.
Each second D Neuron at a larger position value connects to all neurons of the
previous neuron except the one with the largest position value.

However, it could be shown that a connectivity pattern created on the basis
of a 1D neuron space can be interpreted easily.

5.2.3 Discussion

This experiment showed that HyperNEAT was able to improve Nagel’s model
by optimizing the D-ES connectivity. The best model found was better in
reaching and holding various angles. Moreover, the best model needed less
learning time. This is interesting, because out of this fact could be derived that
the connectivity pattern itself is able define an optimal model because only a
slight adjustment of weights is needed. Further on, these results strengthen the
Nagel’s assumption [23] that D-ES learning is sufficient for his model to get
appropriate results. Further on, this experiment showed that HyperNEAT,
applied with a 1D neuron space, has the ability to find non complex and
analyzable connectivity patterns. However, it was not possible to deduce a
working principle from the connectivity pattern. This was the case, because the
random created type connections could not be analyzed. It was concluded, that
connectivity patterns between all connected neuron types have to be known in
order to analyze the operating principle.

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 51

5.3 Experiment 3: Evolution of all connec-

tions of Nagel’s model

As argued in experiment 2 (section 5.2) the connectivity patterns between all
neuron types have to be known to analyze the operating principle. Therefore,
one focus of this experiment was to evolve and analyze connectivity patterns
between all connected neuron types. Further on, the models optimized by con-
nectivity patterns were compared to Nagel’s results. This was done to prove,
that connectivity patterns improve the performance of Nagel’s model. In addi-
tion, it was analyzed in how far the connection ratios evolved by HyperNEAT
correspond to the initial connection ratios of Nagel’s model. Finally, substrate
scaling (section 2.4.1) was applied. It was analyzed whether substrate scaling
is possible and, if so, whether it can improve the performance of the evolved
models.

5.3.1 Setup

It is important to note that much general information that concern this exper-
iment were already explained in section 4.3. This information is not repeated
in the following. HyperNEAT and NEAT parameters described in experiment
2 (section 5.1) were slightly adapted. The add node mutation probability and
the add connection mutation probability were multiplied by five, resulting in
0.05 and 0.15. This forced HyperNEAT to search faster for more complex solu-
tions. This was necessary because first trails of this experiment were not able
to find a complex enough CPPN for a good solution. For the same reason the
amount of generations was increased from 450 to 800. The weight mutation
still appeared with probability 0.96 for each individual. The Learning Phase
and the Simulation Phases were applied as described in section 4.3. The fit-
ness function for Nagel’s model (Fun. 4.5) was initialized with the following
parameters: c1 = 0.1, c2 = 0.2, c3 = 0.7. Therefore, a fitness higher than 0.3
was necessary for a model to count as successful.

Since the connectivity patters should be easy to analyze, a 1D neuron
space was chosen. The placement of neurons of different neuron types in
their own 1D spaces is shown in Fig. 5.10(a). The initial CPPN had two
input nodes, accepting the coordinates of two neurons. Each output node
created a different connectivity pattern between two neuron types. The first
output defined D-ES connections the following consecutively ES-IS, IS-IS, IS-
ES, ES-EM, EM-IM, IM-IM and EM-EM connections. This structure allowed
HyperNEAT to indirectly define dependencies between different connectivity
patterns, because changing one CPPN connection or weight might influence
multiple outputs. This structure gave HyperNEAT the ability to create simple
connectivity patterns for each connection type. Since, if only one output node
would have been used, HyperNEAT had to define a very complex connectivity

52 CHAPTER 5. EXPERIMENTS

(a) (b)

Figure 5.10 Experiment 3: substrate configuration (a) and initial
CPPN (b)
(a) Placement of neurons of each type in their own 1D spaces. There are 96 D,
96 ES, 32 IS, 48 EM and 32 IM neurons all evenly distributed in the interval
[0, 1]. (b) Each output defines one connection type. Depending on the output
node different input spaces are chosen. For example, to check if a connection
between an ES and EM neuron exists, the coordinates of the ES neuron are
applied to X1; the coordinates of the EM neuron to X2. The output value of
the ES-EM output node defines whether a connection is created.

pattern that had to distinguish between connections of different neuron types.
The complete initial CPPN is given in Fig. 5.10(b).

5.3.2 Results

Performance of HyperNEAT

Firstly this experiment analyzed the CPPN complexity evolved and the per-
formance of the best model found.

The progress of HyperNeat is plotted in Fig. 5.11. The mean complexity
had a maximal value of 116.8. This was 7.74 times higher than the maximal
mean complexity of experiment 2 with a value of 21.6. This behavior was
expected because in this experiment multiple connectivity patterns with mul-
tiple dependencies had to be encoded in one CPPN. Therefore, it was also
no surprise that HyperNEAT needed 214 generations to find a initial func-
tional network (Fig. 5.11(b)). This showed that a high CPPN complexity was
necessary to define connectivity pattern that describes a functional model.

The best performing model of the Simulation Phase had a Total RMSD of
8.486◦ and a Part Time RMSD of 3.313◦. Although its training fitness was
only 0.919. The best model of experiment 2 had a Total RMSD of 16.75◦.
This demonstrated that optimizing the connectivity patterns of all neuron

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 53

(a) (b)

Figure 5.11 Experiment 3: statistics: The average CPPN complexity of
each generation.(b) The best fitness of the population of each generation.

type connections can increase the performance of a model. Movements of
the best model of the Simulation Phase in comparison with the best model
of experiment 2 are plotted in Fig. 5.12. Although, the best D-ES model
already had a short learning time of 10.45 seconds, it was outperformed by
this approach with a learning time of 2.61 seconds. Therefore, virtually no
individual learning was done by the best model of this experiment.

54 CHAPTER 5. EXPERIMENTS

(a)

(b)
w

Figure 5.12 Experiment 3: comparison of the movements of the best
models: Movement of the best model from experiment 2 (green) and of the best
model found of experiment 3 (red) in Training Phase (a) and the Simulation
Phase (b). The dark blue lines represent the target angles of the model of
experiment 2; the light blue lines the target angles of the model of experiment
3. Angles to be reached consecutively during the Training Phase were: 0◦, 135◦,
0◦, 62.5◦, 135◦. Training was enabled for the first two angles. Angles to be
reached consecutively during the Simulation Phase were of 30◦, 90◦, 0◦, 60◦,
135◦, 120◦.

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 55

Comparison with Nagel’s experiment

In a second step this experiment compared the performances of the models
of this experiment to the performances of the models of Nagel’s experiment
[23]. Further information about Nagel’s experiment are given in appendix B.
Nagel trained 257 models with randomly created connection. At least the
100 best models had satisfying performances with a Part Time RMSD in the
Simulation Phase lower than 13◦. Nagel did not calculate Total RMSDs for
his models. The shortest training time Nagel found was 19.6 seconds. This
was clearly surpassed by a minimum of 2.1 training seconds of this experiment.
The highest training time needed by this approach was 4.1 seconds, whereas
Nagel’s experiment had a maximum learning time of over 1200 seconds. Box
plots that show how clearly these values improved are given in Fig. 5.13.

Out of 100 best performing models of Nagel’s experiment, the average time
needed for one model to reach all angles was 3.5 seconds. This was surpassed
with a value of 1.86 seconds by this experiment. Thus, approximately only
half the time is needed to reach an angle. Nagel’s best Part Time RMSD was
3.3◦. This experiment had a Part Time RMSD of 3.254. As a result, there
is no meaningful difference in Part Time RMSDs. The Total RMSDs for the
models of Nagel’s experiments were not known. However, their Total RMSDs
had to be lower than the Total RMSD of the models found in this experiment.

(a) (b) (c)

Figure 5.13 Experiment 3: train time comparison with Nagel’s result:
(a) Time to complete training for 257 models of Nagel. (b) Time to complete
training for the representative 30 best models of experiment 3. Same scale
than (a). (c) Time to complete training for the representative 30 best models
of experiment 3. Scaled by factor 1000. The medians are represented by the
red lines. A box represents the IQR from the first to the third quartile. The
whiskers extend the quartiles by ±1.5 · IQR. Red crosses show outliers.

56 CHAPTER 5. EXPERIMENTS

This statement was based on the fact, that the models of this experiment had
a considerably lower reach time for all angles. Thus, in Nagel’s models higher
error distances must have occurred until an angle was reached. This must have
increased the Total RMSD considerably.

For the interested reader, a comparison of the Part Time RMSDs over each
angle is given in appendix A (Fig. A.1).

Analysis of connection ratios

Further on, this experiment examined, in how far the connection ratios evolved
by HyperNEAT correspond to the initial connection ratios of Nagel’s model.
The evolved and initial connection ratios are shown in Fig. 5.14. It can be
clearly seen that the evolved ratios differed in most cases from the predefined
ratios. Only the evolved ES-IS, IS-ES and EM-IM connection ratios of a few
models were similar to the initial connection ratios.

It is of high interest that D-ES and ES-EM connection ratios got increased.
D-ES and ES-EM neurons are mostly relevant for the encoding of movements.
With higher connection ratios the information on those connections could be
distributed in more detail. Therefore, the movement behavior could be in-
creased. To strengthen this statement, the best model found had even more
ES-EM and D-ES connections than most of the other models. Further on,
the low connection ratios of the IM-EM connections provided evidence that
the inhibitory EM circle (EM-IM,IM-EM,IM-IM connections) might not be as
important as suggested by Nagel’s model.

Figure 5.14 Experiment 3: connection ratios: Dashed green lines rep-
resent the defined ratios of Nagel’s model. Dashed orange lines represent the
ratios of the best performing model of experiment 3. The median RMSDs of
the simulated models are represented by the red lines. A box represents the
IQR from the first to the third quartile. The whiskers extend the quartiles by
±1.5 · IQR. Red crosses show outliers.

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 57

Analysis of connectivity patterns

In a fourth step this experiment analyzed whether the evolved connectivity
patterns are interpretable. Therefore, it was attempted to deduce resulting
movements from the connectivity patterns.

In the best 30 models of this experiment two different general manifest-
ations of connectivity patterns were evolved. The connectivity patterns of
the seventh best model got analyzed. They are representative for the first
manifestation. Those connectivity patterns are shown on the next two pages
in Fig. 5.14. The interested reader can find further connectivity patterns of
the best model in appendix Fig. A.1. They are representative for the second
manifestation.

58 CHAPTER 5. EXPERIMENTS

(a) D-ES 2D (b) ES-EM 2D

(c) D-ES 3D (d) D-ES 3D

(e) ES-IS 2D (f) IS-IS 2D (g) IS-ES 2D

(h) ES-IS 3D (i) IS-IS 3D (j) IS-ES 3D

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 59

(k) IM-EM 2D (l) IM-IM 2D (m) EM-IM 2D

(n) IM-EM 3D (o) IM-IM 3D (p) EM-IM 3D

Figure 5.14 Experiment 3: connectivity patterns of the seventh best
model: Alternating each row shows a 3D version and a 2D flattened version of
the patterns. Each square represents a possible connection between two neurons.
Each green square represents a created connection. A connection is created if
the CPPN output value is higher than 0.75. Illumination was used to clarify
the spatiality of 3D plots. The ragged appearance in the 3D plots is due to
underlying grid data. The original function would have smoother transitions.

60 CHAPTER 5. EXPERIMENTS

In Fig. 5.15 the introduced connectivity patterns got analyzed more de-
tailed. EM-IM, IM-IM and IM-EM patterns were not plotted because there
was not a single IM-EM connection (Fig. 5.14(k)(n)). Thus, the whole inhib-
itory cycle of motor neurons had no function. Connections that were not able
to be activated were examined and marked by dark underlaid areas (Fig. 5.15
). Connections were not able to be activated if there was no path from a D
neuron to them.

The D-ES connectivity pattern (Fig. 5.15(a)) was similar but inverted
to the D-ES connectivity pattern described in experiment 2 (Fig. 5.8). The
connected ES neurons for one D neuron at position d was almost exactly
given by f(d) = 0.5d. Thus, D neurons representing a large positive distance
(positions next to 1) were connected to linearly more D neurons as neurons
representing a large negative distance (positions next to 0). Activatable ES
neurons that were directly connected to EM neurons are shown by the red bar
in Fig. 5.15(b). Moreover, ES-Neurons that had inhibiting connections from
IS Neurons are marked by orange bars (Fig. 5.15(b)). .

In the following the experiment attempted to deduce movements from the
introduced connectivity patterns. For simplification the terms activated and
inhibited were used as synonyms to connected with a positive weight and con-
nected with a negative weight. This was valid, since the former is the result of
the latter. For clarity, it has to be repeated, that a positive distance should
have resulted in an upward movement. An upward movement was defined by
the lower 24 EM neurons between position 0 and 0.5. Equally, a negative dis-
tance should have resulted in a downward movement. A downward movement
was defined by the upper 24 EM neurons between position 0.5 and 1.

At first a high positive distance signal (D neuron at position 1), which
should have led to an upward motion, got analyzed. When the D neuron at
position 1 fired all ES neurons between 0.52 and 1 were activated in the next
time step. In the following step all EM cells got activated. At the same time IS
cells between 0 and 0.25 got activated. The next time step led to an inhibition
of ES neurons located mainly between 0.7 and 1. Consequently, the 324 ES-EM
connections between 0.52 and 0.7 were activated. Those connections activated
EM neurons between 0 and 0.3. Consequently, this led to an upward movement
as it was expected.

In the following, a no distance signal (D neuron at position 0.5), which
should have led to no motion, got analyzed. When the D neuron at position 0.5
fired all ES neurons between 0.75 and 1 got activated. They then activated the
lowest 3 IS neurons. This led to a low inhibition of ES neurons between 0.7 and
1. Consequently, the whole range of EM cells got activated by ES cells. There
were 174 connections to upward EM neurons and 271 connections to downward
EM neurons that were activated. In contrast to an expected unmoving forearm
this should have led to a strong downward movement. However, this did not
happen, as explained later.

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 61

(a) D-ES (b) ES-EM

(c) ES-IS (d) IS-ES

(e) IS-IS

Figure 5.15 Experiment 3: analysis of connectivity patterns of the
seventh best model: Each square represents a possible connection between
two neurons. Each green square represents a created connection. A connection
is created if the CPPN output value is higher than 0.75. The red bars represent
ES neurons with connections from D neurons. The yellow bars represent IS
neurons with connections from ES neurons. Finally, orange bars represent ES
neurons with connections from IS neurons, respectively. In the dark underlaid
areas, connections are never activated since there is no path from D neurons to
them.

62 CHAPTER 5. EXPERIMENTS

Finally a high negative distance signal (D neuron at position 0), which
should have led to a downward motion, got analyzed. When the D neuron at
position 0 fired, the 3 ES neurons with highest positions fired. No inhibiting
neurons were activated at all. 94 upward movement encoding EM neurons and
28 downward movement encoding EM neurons got activated. The difference
of 66 led to a strong upward movement as it was expected.

To prove the done analysis as valid. The predicted activations were com-
pared to actual firings during the Training Phase (Fig. 5.16). This analysis
was done after the patterns were analyzed. Therefore, there was no bias in
the interpretation. At t = 0 it can be seen that, as predicted for the maximal
negative distance (D neuron at position 0), only the last 3 ES neurons fired.
Further on the IS neurons just showed noise activation. Thus, as predicted,
they were not firing on purpose. The number of EM firings fit approximately
to the predicted 94 upward movement encoding EM neurons and 28 downward
movement encoding EM cells. This is represented by the second stripe in (Fig.
5.16).

At t = 1300 it can be seen that for a maximal negative distance (D neuron
at position 1) the lower IS cells were activated as predicted. However, their
inhibitory influence was not as high as expected and was only visible at the
first time, when the maximal positive distance was presented. Further on, the
upper half of ES neurons and all EM neurons fired, as it was predicted.

Now t ≥ 4100 was considered. It was predicted that at no distance a strong
negative movement might appear. However, as seen in the firing pattern this

Figure 5.16 Experiment 3: firing pattern of the seventh best model
Each point represents one firing of a neuron. From t = 0ms to 1300ms the
movement from the maximal to the minimal angle is encoded. From t = 1300ms
to 2800ms the movement from the minimal to the maximal angle is encoded.
From t = 2800ms to 4100ms the movement to the minimal angle is encoded
again. Afterwards, the minimal angle is held. The order of neurons in the firing
pattern and of the connectivity patterns is identical.

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 63

was not the case. The reason was that the potential equation (equation 3.1)
only needs the signal to exceed a threshold. This means that more connections
did not necessarily led to more activations. Especially in the interval from 0.6
to 0.9 more connections than needed in order to lead to an activation of an EM
neuron existed. As a result, neurons in this interval fired at every time window,
whereas neurons outside of this interval fired rarely. This led to virtually no
movement.

It has to be noted that the connectivity pattern was clearly visible in the
firing pattern. The less negative the distance was, the more ES neurons fire.
This is represented by the linear D-ES connection pattern. Further on, as seen
in the ES-EM pattern the highest ES neurons rarely fired. The larger the
interval of activated ES cells was, the more lower EM cells fired as represented
by the ES-EM pattern.

To sum up, the analysis of the connectivity patterns showed that it is
possible to understand the connectivity concept by interpreting connectivity
patterns. Also, this experiment was able to deduce robot arm movements
through an analysis of the connectivity pattern. However, in case of no motion,
deeper knowledge about the model was necessary for an interpretation.

64 CHAPTER 5. EXPERIMENTS

Substrate Scaling

Lastly this experiment (see section 2.4.1) applied substrate scaling. It was
examined, whether substrate scaling is possible and, if it is, whether it can
improve the performance of the evolved models. Generally, scaling the amount
of neurons in a neural network created by HyperNEAT should be possible as
described in section 2.4.1. Scaling in this case meant that a different number
of neurons was distributed evenly in the interval [0, 1]. An example, in which
the amount of ES and EM neurons got halved, is given in Fig. 5.17.

Multiple scales were applied to the best 30 models of this experiment. The
results are presented in Fig. 5.18. For an RMSD measurement the Total
RMSD was used. It can be seen clearly that using half the amount of neur-
ons resulted in a behavior that is clearly worse. But, using 0.75 times of all
neurons resulted only in a behavior that was slightly worse compared to the
unscaled models. This results in the fact that computational costs can be de-
creased with only a slight loss in functionality. When all neurons got scaled
by a factor of 1.5 or 2 the performance variance increased. However, the best
scaled models outperformed the best unscaled models. The minimal RMSD of
7, 723◦ was reached by doubling only the amount of EM neurons. This was an
RMSD decrease of 0.946◦ compared to the unscaled models. A very interesting
result was that, when no IM and IS neurons were used, the variance over all
models decreased clearly. In addition, the error of the best model decreased
by 0.38◦. As a result, it was concluded that IS,IM neurons are not beneficial
at all for the evolved models. In the last scale different well behaving scales
were combined: The amount of D,EM neurons got doubled and no IM and
IS neurons were used. The result was slightly worse compared to the usage

(a) (b)

Figure 5.17 Experiment 3: exemplary substrate scaling: (a) The original
evolved connectivity pattern for 96 ES neurons and 48 EM neurons. (b) The
scaled connectivity pattern with 48 ES and 24 EM neurons

5.3. EXP 3: EVOLUTION OF ALL CONNECTIONS 65

Figure 5.18 Experiment 3: results substrate scaling: Different scales were
applied: (1) unscaled models found by HyperNEAT. (2) Amount of neurons of
each neuron type got halved. (3) Amount of neurons of each neuron type got
decreased by one quarter. (4) Amount of neurons of each neuron type got
increased by one half. (5) Amount of neurons of each neuron type got doubled.
(6) No IS and IM neurons are used. The amount of the remaining neuron types
was not changed. (7) D neurons got doubled. The amount of the remaining
neuron types was not changed. (8) EM neurons got doubled. The amount of
the remaining neuron types was not changed. (9) ES neurons got doubled. The
amount of the remaining neuron types was not changed. (10) EM and D neurons
got doubled. No IS and IM neurons are used. The amount of ES neurons was
not changed. The median RMSD of the simulated models is represented by a
red line. The box represents the IQR from the first to the third quartile. The
whiskers extend the quartiles by ±1.5 · IQR. Red crosses show outliers.

of double the amount of EM neurons. Thus, the combination of good scales
did not lead to a better performance than the good scales alone did. However,
a Total RMSD improvement of 0.946◦ was unexpected good. That was, be-
cause HyperNEAT already struggled to find better solutions in the area of 0.1◦

improvement, although it simulated 72000 models. All in all, this approach
refined the statement that HyperNEAT networks are scalable. Hence, even
better performing models could be created. Further, the computational costs
could be decreased without a significant loss in performance.

5.3.3 Discussion

This experiment was able to find connectivity patterns for each neuron type
that led to optimal performing models. Analysis of the connectivity pat-
terns showed that regular and interpretable connectivity patterns got evolved.
Therefore, this experiment was able to deduce robot arm movements by exam-

66 CHAPTER 5. EXPERIMENTS

ination of connectivity patterns. Further, a high relation between connectivity
patterns and firing patterns was demonstrated.

Implementing the substrate scaling approach showed, that the models cre-
ated by HyperNEAT are scalable. Further, better performing models with
lower Total RMSD could be achieved by scaling. Moreover, it was shown that
substrate scaling can decrease computational costs without a significant loss
in model performance. Since scaling improved the performance of the evolved
models the defined amount of neurons by Nagel may not be optimal. This
issue is investigated in experiment 4 (section 5.4).

It was shown that creating the connectivity patterns between all types of
neurons of Nagel’s model improved the performance considerably. Compared
to experiment 2 (section 5.2) the performance was increased. Additionally,
the learning time got decreased. In comparison to Nagel’s experiments [23] it
was shown that this experiment was able to find more optimal solutions. This
demonstrates generally, that connectivity patterns between all neuron types
increase the performance of Nagel’s models.

Finally, it was demonstrated that the initial connection ratios defined by
the Nagel’s model were changed by HyperNEAT. It was stated that higher D-
ES and EM-ES connection ratios might lead to better models. Moreover, IM
neurons might not be important at all due to low IM-EM connection ratios.

5.4 Experiment 4: Evolution of all connec-

tions and neurons of Nagel’s model

So far, only connectivity patterns over a fixed amount of neurons were searched.
The aim of this experiment was to evolve connectivity patterns as well as
neurons. To achieve this, the ES-HyperNEAT algorithm (section 2.5) was
used. Unfortunately, ES-HyperNEAT uses a 2D neuron space. In this case, as
demonstrated in experiment 1 (section 5.1), it is not easy to analyze evolved
connectivity patterns since they are functions over 4D spaces. Anyhow, this ex-
periment attempted to plot and interpret those connectivity patterns. Further
on, it was analyzed whether ES-HyperNEAT is able to improve the perform-
ance of Nagel’s model in comparison to experiment 3 (section 5.3). Moreover,
the question was tried to answer whether the amount of neurons found by
ES-HyperNEAT correspond with the initially defined amounts of neurons of
Nagel’s model.

5.4.1 Setup

The features of ES-HyperNEAT (see section 2.5) are to evolve the amount
of neurons, the position of neurons as well as their connectivity. To under-
stand the implementation of HyperNEAT in this experiment a short repe-

5.4. EXP 4: EVOLUTION OF ALL CONNECTIONS AND NEURONS 67

(a) (b)

Figure 5.19 Experiment 4: quadtree positioning (a) and initial CPPN
(b): (a) D neurons are distributed evenly between (0, 0) and (1, 0). ES, IS, EM,
and IM neurons are placed by ES-HyperNEAT into their corresponding squares.
Each drawn square is a square defined by the root node of a corresponding
quadtree. Note that in contrast to former plots each position in the slice defines
the x and y coordinate of a neuron and not the connection between two neurons.
(b) The initial CPPN, which has two neuron positions as input. Its output
defines the connectivity pattern from which neuron positions are inferred.

tition of HyperNEAT is provided in the following. Identical to HyperNEAT
ES-HyperNEAT defines the connectivity pattern by a CPPN. ES-HyperNEAT
is defined on a 4D connection space. Thus, the neuron space is 2D. This means,
every neuron has two coordinates. To determine outgoing connections from
one neuron to another neuron, the coordinates of the first are fixed in the
connectivity pattern. In the resulting 2D slice of the connection space the
connectivity pattern is searched for areas of high variance. Inside areas of high
variance new connections are created.

Since input neuron positions have to be predefined for ES-HyperNEAT the
amount of 96 D neurons stayed fixed in this experiment. Neurons of different
types were searched in different parts of the hyperspace. In order to do so, a
quadtree for each neuron type was applied to a different quadrant of slices of
the 4D connection space. The exact configuration is illustrated in Fig. 5.19(a).
It can be seen that the root node of each quadtree defined a square with width
one. D neurons were distributed evenly between (0, 0) and (1, 0). As a result,
the initial CPPN (Fig. 5.19(b)) had four input nodes. One output node
defined the connectivity pattern from which neuron positions were inferred.
As in previous experiments a bias neuron was used.

In order to determine neuron positions and connections ES-HyperNEAT
was implemented the following way: At first all D neurons were queried by
fixing their coordinates in hyperspace and searching for new neurons in the ES
square of the resulting slice. New ES neurons and their connections from D
neurons were found at areas of high variance. The same procedure was applied

68 CHAPTER 5. EXPERIMENTS

consecutively for all possible inter neuron connections of Nagel’s model. In the
case that a found neuron already existed, only a new connection was created.
Eventually, all neurons were removed that have no path coming from a D
neuron.

It is important to note that much general information that concern this
experiment were already explained in section 4.3. This information is not
repeated in the following. NEAT parameters described in experiment 3 (sec-
tion 5.1) were identically reused. The add node mutation probability and
the add connection mutation probability were set to 0.05 and 0.15, respect-
ively. A weight mutation appeared with a probability of 0.96 for each indi-
vidual. 650 generations got simulated. The Learning Phase and the Simu-
lation Phases were applied as described in section 4.3. The fitness function
for Nagel’s model (Fun. 4.5) was initialized with the following parameters:
c1 = 0.1, c2 = 0.2, c3 = 0.7. Therefore, a fitness higher than 0.3 ws necessary
for a model to count as successful.

In the following the used ES-HyperNEAT parameters are introduced and
shortly explained. The initial resolution was set to 8 and the maximal resol-
ution was set to 16. This corresponds to a minimum of 8 × 8 squares and a
maximum of 16×16 squares. Further on these values correspond to a minimal
quadtree depth of 4 and a maximal depth of 5. This means that the maximal
amount of neurons that could be defined in a quadtree, or in other words placed
in one of the squares of a slice was 256. As a result, the amount of neurons a
evolved model could have was between 0 neurons and 4 ·256+96 = 1120 neur-
ons. The division threshold as well as the variance threshold were set to 0.03.
The banding threshold was set to 0.3. For repetition, the division threshold
defines the exact depth of the quadtree. The variance threshold is responsible
for how deep the tree is depth first searched for new neurons. The banding
threshold defines whether a neuron is in an area of high variance or not. For
further information on these parameters, see section 2.4 and table A.1.

5.4.2 Results

Performance of ES-HyperNEAT

Firstly, this experiment analyzed whether ES-HyperNEAT is able to improve
the performance of Nagel’s model in comparison to experiment 3. As seen
in Fig. 5.20(b) ES-HyperNEAT was able to find a working solution in the
first generation. Examination of the mean complexities of ES-HyperNEAT
(Fig. 5.20(a)) revealed that the solutions found by ES-HyperNEAT were of
less complexity than the models of experiment 3. After 650 generations, this
experiment reached a complexity of 53.35, whereas experiment 3 had already
a complexity of 96.44 at this generation. This is a strong indicator that the
created connectivity pattern was less complex. In addition, the maximal fitness

5.4. EXP 4: EVOLUTION OF ALL CONNECTIONS AND NEURONS 69

(a) (b)

Figure 5.20 Experiment 4: statistics: (a) The average CPPN complexity
of each generation. (b) The best fitness of each generation.

increased from 0.933 to 0.941.
However, the Part Time RMSD and Total RMSD of the best model did

not improve. The best model of this experiment had a Total RMSD of 8.819◦

and a Part Time RMSD of 5.057◦. But, the best model of experiment 3 had
a slightly better Total RMSD of 8.486◦ and a considerably better Part Time
RMSD of 3.313◦. This means that the best model of this experiment was nearly
the same good in holding and reaching an angle but worse in only holding an
angle. For comparison, the movements of both models during the Simulation
Phase are shown in Fig. 5.21.

In the Simulation Phase the model of this experiment had a mean reach

Figure 5.21 Experiment 4: comparison of movements of experiment
3 and 4: movement of the best model of experiment 3 (green) and of the best
model found of experiment 4 (red) during the Simulation Phase. The dark blue
lines represent the target angles. Angles to be reached consecutively were of
30◦, 90◦, 0◦, 60◦, 135◦, 120◦.

70 CHAPTER 5. EXPERIMENTS

time of 0.97 seconds. The best model of experiment 3 was slightly slower with a
mean reach time of 1.233 seconds. However, the model of this experiment had a
higher variance when holding an angle; especially at 120◦. Although, there was
a difference in variance the Total RMSDs of both models were nearly similar.
This is, because of the lower reaching times of the model of this experiment.
All in all, the best model of experiment 3 performed better than the best
model of this experiment. However, considering the CPPN complexity, which
is strongly related to the complexity of the connectivity pattern, revealed that
the best model of this experiment was by far less complex. In detail, it had a
complexity of 34 (12 neurons and 22 connections) whereas the best model of
experiment 3 had a complexity of 148 (36 neurons and 112 connections). Both
CPPNs can be compared in Fig 5.22.

Additionally, the low complexity of both CPPNs demonstrated a further
result. The CPPN of experiment 4 had only 12 neurons. Consequently, the
whole topology of the model, which was defined by the CPPN, was codeable
by a connectivity matrix with 12× 12 entries. Thus, a clearly better encoding
could be reached.

(a) (b)

Figure 5.22 Experiment 4: best CPPN comparison between exper-
iment 3 and experiment 4: (a) The CPPN of the best performing model
of experiment 4. (b) The CPPN of the best performing model of experiment
3. Following activation functions are used: identity (black), bipolar sigmoid
(white), sine (red), Gaussian (green) and absolute (blue). For clarity connec-
tion weights were not plotted. The last neurons in the first row is a bias neuron.
All others are input neurons. All neurons in the last row are output neurons.

5.4. EXP 4: EVOLUTION OF ALL CONNECTIONS AND NEURONS 71

Analysis of the found neuron amounts

Further on, experiment 4 examined whether the amount of neurons found by
ES-HyperNEAT correspond with the initially defined amounts of neurons of
Nagel’s model. The neuron amounts of each neuron type of the 30 best models
found by HyperNEAT in the last generation are shown Fig. 5.23. It can be
seen that ES-HyperNEAT varied the amount of neurons of Nagel’s model.
The number of D neurons was 96 as predefined. Only one model had less
since not all of its D neurons had a path to EM neurons. The amount of
ES neurons got approximately quartered. The amount of IS and EM neurons
got approximately doubled. The amount of IM neurons was still in the range
of the amount of the initial model. Interesting is that the total amount of
neurons did not change much. The neuron amount of the initial model of 304
was still inside the first quartile of all total neuron amounts. As a result, the
found amount of neurons did not correspond to the initially defined amounts
of neurons of Nagel’s model. However, the total amount of neurons did.

Figure 5.23 Experiment 4: evolved amount of neurons: The dashed
green line represents the amount of neurons defined by Nagel’s model. For the
total amount of neurons one outlier with value 642 was not plotted. The median
amount of neurons of the simulated models is represented by a red line. The
box represents the IQR from the first to the third quartile. The whiskers extend
the quartiles by ±1.5·IQR. Red crosses show outliers.

72 CHAPTER 5. EXPERIMENTS

Analysis of firing patterns

In a third step, this experiment tried to deduce the structure of the connectivity
pattern out of the firing pattern of a model. Therefore one interesting firing
pattern got examined. The firings for a movement from 90◦ to 0◦ and 60◦ to
135◦ are plotted in Fig. 5.24. It can be seen that the signal pattern of D
and ES neurons was almost identical. As a consequence, the distance signals
got copied. During movement from one angle to another there was a strong
tendency that less ES neurons fire when the distance decreased. Identically,
more ES neurons fired when the distance increased. As a result, the signals
from the ES neuron had a tendency to get inverted by the EM neurons. For
example, it can be seen in Fig. 5.24(a) that when lower ES neurons fired more
upper than lower EM neurons were activated. The same inversion of higher
ES neurons is shown in Fig. 5.24(b). This signal inversion makes sense, since
the distance encoding and the movement encoding are inverted.

The described firing pattern was not similar to, but strongly related to
a simple and functional connectivity pattern (Fig. 5.25). Therein, Each D
neuron was connected to an ES neuron at the same position. This copied the
signal exactly (Fig. 5.25) (a). The larger the distance a D neuron encoded was
the more EM neurons were connected to it on the opposing side Fig. 5.25(b).
This inverted the signal from the ES neurons to the EM neurons.

To sum up, HyperNEAT was able to find a solution that is virtually as

(a) (b)

Figure 5.24 Experiment 4: simple firing pattern: (a) The firing pattern
of a movement from 90◦ to 0◦ at t = 6 seconds. (b) The firing pattern of a
movement from 60◦ to 135◦ at t = 12 seconds. Each point represents one firing
of a neuron. The shown model has no IM neurons.

5.4. EXP 4: EVOLUTION OF ALL CONNECTIONS AND NEURONS 73

(a) (b)

Figure 5.25 Experiment 4: simple connectivity pattern: The simplest
working connectivity pattern the author could imagine. (a) D-ES connectivity
pattern. (b) ES-EM connectivity pattern. The neuron space is one-dimensional.
Green areas represent connections. Blue areas represent no connections. Since
the amount of neurons is infinite scalable no grid has been plotted.

simple as the simplest reasonable connectivity pattern the author could ima-
gine. From this connectivity pattern the working principle could be deduced.
The D neuron signal got identically taken over by ES neurons. EM neurons
inverted the signal from the ES neurons. Thus a D neuron which represents a
specific distance triggers exactly the EM neuron that moves this distance.

Analysis of the connectivity pattern

Lastly, this experiment tried to plot and interpret the evolved connectivity
patterns. However, due to four input dimensions and one output dimension,
the connectivity pattern function was hard to illustrate. Fortunately, ES-
HyperNEAT works on slices of the hypercube. Therefore, those slices were
analyzed. Further on, they were compared to the firing pattern. The slices of
the model with the already known firing pattern of the previous section (Fig.
5.24) were examined. Some meaningful slices of D neurons are plotted in Fig
5.25. As expected, the function in the presented slices was not complex since
the CPPN was of low complexity. As defined, all ES neurons were found in
the first quadrant. In addition, all neurons found by ES-HyperNEAT in the
presented slices had a connection path from a D to an EM neuron. Hence,
none of them got deleted for the creation of the final model.

As defined by Nagel’s model, 96 D neurons were used to define distances
from −135◦ to 135◦. Fig. 5.25(b) shows the slice of the first D neuron
which defined the highest negative distance of −135◦. D neuron number 24
(Fig.5.25(c)) represented a negative distance of −62.5◦. Both neurons connec-

74 CHAPTER 5. EXPERIMENTS

ted to multiple ES neurons. This corresponds with the activated neurons in
Fig. 5.24(b). D neuron 48 (Fig. 5.25(d)) defined a distance of 0◦. As seen
in Fig. 5.24(a) and (b) only a few ES neurons were activated in this case.
This corresponded with the two found neurons in the slice of D neuron 48
(Fig. 5.25(d)). Neuron number 60 (Fig. 5.25(e)) and 72 (Fig. 5.25(f)) defined
positive distances of 33.75◦ and 62.5◦. Compared to negative distances less
neurons were found. This is similar to the firing in Fig. 5.24(a). Interestingly,
all D neurons from number 83 (116.7◦) upwards had no connections to ES
neurons. In correspondence to the firing patterns positive distance D neurons
and negative distance D neurons connected to disjunct sets of ES neurons.

For the interested reader, further slices of fixed EM neurons are presented
in appendix A (Fig. A.2).

To sum up the examination of a connectivity pattern showed that it was
possible to analyze the connectivity pattern by examination of its slices. How-
ever, to deduce a working principle, it would have been necessary to analyze
one slide for each neuron of the model. Plotting and analyzing about 300
slices is not an easy way to understand Nagel’s model. Therefore, further

(a) D neuron 1 3D (b) D neuron 1

(c) D neuron 24 (d) D neuron 48

5.4. EXP 4: EVOLUTION OF ALL CONNECTIONS AND NEURONS 75

(e) D neuron 60 (f) D neuron 72

Figure 5.25 Experiment 4: D neuron slices of the best connectivity
pattern: The header of each image indicates from which D neuron new ES
neurons are searched for. Therefore, the first two inputs of the CPPN function
are fixed to the coordinates of this D neuron. The result is a 3D function (2
input and 1 output dimension)(a). From (b) to (f) the function got flattened.
Each red cross marks the position of a found neuron. Bright yellow surface
represents a value next to 1. Dark blue surface represents a value next to -1.

investigation of slices was discarded.

5.4.3 Discussion

By analyzing the firing pattern, a connectivity pattern was found, which is
related to the easiest working connectivity pattern the author was able to
imagine for Nagel’s model. This shows that ES-HyperNEAT has the ability
to find simple and working connectivity patterns. In addition, this work was
able to deduce the working principle from the simple connectivity pattern.

By examination of slices of connectivity patterns the simplicity of the con-
nectivity pattern function stood out. Additionally, this experiment showed
on spot checks that the connectivity pattern is related to the firing pattern.
However, it was not possible to deduce a working principle from the 4D con-
nectivity pattern since it would have been necessary to analyze one slide for
each neuron of the model. This is not realizable in a reasonable amount of
time.

It was shown, that ES-HyperNEAT was not able to find better performing
models compared to HyperNEAT in experiment 3. On the one hand, the
reaching time improved, but on the other hand the movements showed a higher
variance. Though, the CPPN of the best model was of far less complexity.
Further on, due to the low complexity of the CPPNs it could be shown that
Nagel’s model can be encoded more optimally by connectivity patterns.

76 CHAPTER 5. EXPERIMENTS

The found amount of neurons did not correspond to the initially defined
amounts of neurons of Nagel’s model. But, interesting is, that the total amount
of neurons of the models found varied only slightly with the total amount of
neurons of the original model. This indicates that the initial amount of 304
neurons of the original model was chosen in an optimal range. More EM
neurons and less ES neurons were found. Using more EM neurons enables the
model to move faster, but on the other hand the model fails in doing smooth
movements.

5.5 Further Experiments

Attempting to improve the movement behavior of Nagel’s model, three further
experiments have been undertaken. The experiments have not been analyzed
in detail. Thus, only tendencies of their results are provided.

The first experiment was similar to experiment 3 (section 5.3) but used
a 2D neuron space to evolve connections between each neuron type. Thus,
uninterpretable connectivity patterns were created. The performances of the
evolved models were worse than the performances of the evolved models of
experiment 3. The Total RMSD of the best model decreased from 8.486◦ to
13.15◦.

A further experiment similar to experiment 4 (section 5.4) tried to optim-
ize the performance of Nagel’s model by introducing more learning angles.
Despite, those learning angles had to be hold for a short time. Further on,
no fixed seed for the random number generator function was used in order to
counter overfitting. All mentioned steps were applied with the aim to reduce
the variance in the movements of the evolved models. The results show, that
the best evolved model had a slightly reduced variance. But, a notable in-
crease of performance could be achieved. The Total RMSD of the best model
increased from 8.819◦ to 7.18◦.

The last experiment tried to apply ES-HyperNEAT on a 1D neuron space.
In order to do so, a quadtree was laid directly over the evolved connectivity
patterns. Due to a 2D connection space, no slices were needed. In other words
ES-HyperNEAT was applied to the one only existing slice. Consequently, a
point found by ES-HyperNEAT in this slice represented a connection between
two neuron positions and did not, as before, represent the position of a neuron.
Additionally, the type of a connection got encoded by the binary output of
three additional CPPN output nodes. However, this approach was not suc-
cessful at all. Only one working model was found after 850 generations. In
addition, no regularities could be found in the connectivity pattern. Its per-
formance was moderate with a Total RMSD of 17.59◦. However, the model
needed only 46 neurons to achieve this performance.

Chapter 6

Discussion and Outlook

Before the results of the experiments of this work will be discussed, it has to
be noted, that discussions concerning Nagel’s model and the ES-HyperNEAT
algorithm in general can be found in appendix C.1 and C.2. Both are specific
and only suitable for interested and informed readers.

The following discussion will provide information about the achievement
of the aims of this work. Therefore, it will be answered whether biological
plausible connectivity patterns improved the performance of the models. In
addition, it will get shown, how far connectivity patterns make the working
principle of the models easier to understand. Besides, answers can be provided
which state, that Nagel’s model can be scaled to various sizes without a signific-
ant loss in functionality on the basis of regularities in the evolved connectivity
patterns. Further on, it is answered whether regularities in the connectiv-
ity pattern lead to more efficient encodings of Nagel’s model. Moreover, it is
demonstrated to what extend the learning mechanisms of the used evolution-
ary algorithm and the motor control model cooperate. Finally, it is attempted
to answer whether the connection ratios and amounts of neurons of different
types are defined optimally by Nagel’s model.

The primary focus of this work was to analyze whether biological plausible
connectivity patterns improve the performance of Chadderdon’s and Nagel’s
models. Firstly, in experiment 1 (section 5.1) it was shown that the search for
neuronal connectivity patterns for ES-EM connections of Chadderdon’s model
can increase the performance. Because improvement of Chadderdon’s model
was possible, further and more detailed analysis was done on Nagel’s model,
which is more sophisticated. Experiment 2 (section 5.2) showed that searching
for neuronal connectivity patterns for D-ES connections of Nagel’s model led
to a substantial increase of performance. In order to avoid randomly created
parts of a model, connectivity pattern for each connection type were searched
in experiment 3 (section 5.3). Experiment 3 pointed out that it is possible by
means of HyperNEAT to find multiple interdependent neuronal connectivity
patterns between different neuron types. In addition, the found connectivity

77

78 CHAPTER 6. DISCUSSION AND OUTLOOK

patterns led to better performances as found in experiment 1 and 2. Moreover,
it was demonstrated that the best models of experiment 3 performed better
than the models of Nagel’s experiments. This proves empirically, that the in-
troduction of biological plausible connectivity patterns increases the perform-
ance of Nagel’s model. Thus far, the amount of neurons in Nagel’s model was
fixed. However, a connectivity pattern depends on the amount of neurons it is
applied to. Therefore, neurons as well as connectivity patterns were evolved in
experiment 4 (section 5.4). This approach was able to find functional models
with connectivity patterns, which are strongly related to the simplest func-
tional connectivity pattern possible. However, the performance of the models
could not be increased in comparison to experiment 4.

A further aim of this work was to analyze to what extend connectivity pat-
terns make the working principle of Chadderdon’s and Nagel’s model easier to
understand. Fist of all, in experiment 1 (section 5.1) a 2D neuron space was
used, which led to connectivity patterns over a 4D connection space. Due to
its high dimensionality it was impossible to plot the connectivity pattern in
an understandable way. Therefore, this approach failed in finding understand-
able working principles. Experiment 2 (section 5.2) used a 1D neuron space
to find ES-EM connectivity patterns in Nagel’s model. This led to 3D con-
nectivity patterns over a 2D connection space. The found patterns were easy
to plot and to understand. But, since the ES-EM connections were the only
connections which were not chosen randomly, it was not possible to interpret
what the working principle is. Finally, in experiment 3 (section 5.3) 3D con-
nectivity patterns for each connection type were evolved. Thus, there were no
randomly created connections and the connectivity patterns could be plotted
reasonably. Due to regularities in the connectivity patterns it was possible to
derive the translation of distances into movements. As a result, the working
principle could be understood. Although experiment 4 (section 5.4) used a 2D
neuron space, an even simpler connectivity pattern could be derived which is
strongly related to the connectivity pattern that represents the easiest working
principle. Knowing the working principle is a significant advantage, because
in Nagel’s randomly connected models working principles are completely un-
known. In a wider view, being able to understand the working principle of
an ANN is even more astonishing considering that in the whole field of large
ANNs the working principles are almost always black boxes.

It was assumed that the motor cortex models can be scaled to various sizes
without a significant loss in performance on the basis of regularities in the
evolved connectivity patterns. Experiment 3 (section 5.3) proved that this is
possible with the evolved connectivity patterns. The amount of used neurons
could be decreased by 25% leading only to a minimal decrease in performance.
The decrease of neurons by 25% decreases the size of the connectivity matrix by
43.75%. Therefore, computational costs can be decreased with only a slight loss
in performance. Astonishingly, scaling the amount of neurons by a factor of 1.5

79

and 2 increased the performance of the best found model. Doubling the amount
of EM neurons led to the best performance. This scale was able to reduce the
movement error by 0.95◦. This is a considerable improve since HyperNEAT
already struggled to find better solutions in the area of 0.1◦ improvement
although it simulated 72000 models. Further on, it could be demonstrated
that IS and IM neurons have no beneficial influence on the performance of the
evolved models. Therefore, they are not necessary for the evolved models at
all. But, IS and IM neurons are important for the biological plausibility of the
model.

One further interesting insight of this work is that connectivity patterns
described by a function in hyperspace can provide a by far more sparse rep-
resentation of a neural network as a connectivity matrix does. If this function
is represented by a CPPN, only the connectivity matrix of the CPPN has
to be considered. For example Nagel’s model has a connectivity matrix with
92416 entries. But the CPPN analyzed in experiment 3 (section 5.3) had a
connectivity matrix of only 324 entries. The latter gets even outperformed by
the CPPN analyzed in experiment 4 (section 5.4) whose connectivity matrix
had 144 entries (see Fig. 5.22). This leads to an outstanding improvement of
encoding by factor 641.8. Or, to say it in other words, a decrease of 99.84%
was achieved. As a result, it was shown that regularities in the connectivity
pattern led to a considerably more efficient encoding of Nagel’s model. In a
wider view, this might indicate that the efficient encoding of the human brain
also rests on connectivity patterns.

Still, the question has to be answered in what extend the learning mech-
anisms of the used evolutionary algorithm and of Nagel’s model cooperate.
The evolved models of experiment 3 (section 5.3) had learning times between
2.1 and 4.1 seconds. As a result, they moved fast and direct to the angles to
learn without making any mistakes. Thus, to answer the question, the internal
learning mechanism was not used at all. This means that it was not necessary
to optimize connection weights to achieve optimal performing networks. The
evolved connectivity patterns with predefined connection weights were suffi-
cient. It has to be mentioned that Nagel’s randomly connected models needed
the internal learning mechanism to learn correct movements. Therefore, it can
be said, that Nagel’s randomly connected models need to learn the ability to
move, whereas the evolved models with connectivity patterns have an innate
ability to move.

Finally, it was answered whether the connection ratios and amount of neur-
ons of different types are defined optimally by Nagel’s model. In order to
achieve this, it was analyzed how far evolved connection ratios and amounts of
neurons per type correspond to the initial values of Nagel’s model. Experiment
3 (section 5.3) showed that there were no similarities in the connection ratios of
the evolved and the initial connection ratios. The same counts for the evolved
amounts of neurons per type analyzed in experiment 4 (section 5.4). However,

80 CHAPTER 6. DISCUSSION AND OUTLOOK

the total amount of neurons of the found models varied only slightly compared
to the total amount of neurons of the original model. This indicates strongly
that the initial amount of 304 neurons of the original model was chosen in an
optimal range. Since the connection ratios and amounts of neurons of different
types differed, they indicated that they have not been chosen optimally. How-
ever, it is not possible to make secure statements since these results originate
from one single HyperNEAT and ES-HyperNEAT search.

To sum up, the idea of connectivity patterns leads to several stunning
results. Not only have connectivity patterns been able to make Chadder-
don’s and Nagel’s model more biologically realistic, but were able to show that
connectivity patterns improve the performance of Chadderdon’s and Nagel’s
model. Moreover, the models got scalable due to connectivity patterns. Fur-
ther on, by means of connectivity patterns the information needed to define
the connections of Nagel’s model is decreased considerably. However, the most
important result is that the working principles of the evolved models are made
easy to understand.

In a wider sense, it would be of high value if the results here presented
would be valid for further ANNs in the field of machine learning. This would
result in improved, scalable, efficiently encoded and understandable ANNs.
Therefore it would be of high importance to have future studies that evolve
and analyze connectivity patterns for ANNs which are applied to standard
machine learning benchmark problems.

Bibliography

[1] J. Anufrienko. Evolutionäre methoden zur generierung der struktur bei
spikenden neuronalen netzen. M.s. thesis, Eberhard Karls University of
Tuebingen, Germany, 2016.

[2] N. Caporale and Y. Dan. Spike timing–dependent plasticity: a hebbian
learning rule. Annu. Rev. Neurosci., 31:25–46, 2008.

[3] P. Caroni, F. Donato, and D. Muller. Structural plasticity upon learning:
regulation and functions. Nature reviews. Neuroscience, 13(7):478, 2012.

[4] G. L. Chadderdon, S. A. Neymotin, C. C. Kerr, and W. W. Lytton.
Reinforcement learning of targeted movement in a spiking neuronal model
of motor cortex. PloS one, 7(10):e47251, 2012.

[5] P. Chervenski. Multineat c++ with python bindings. http://multineat.
com/. [Online; accessed 29/08/2017].

[6] D. B. Chklovskii and A. A. Koulakov. Maps in the brain: what can we
learn from them? Annu. Rev. Neurosci., 27:369–392, 2004.

[7] J. Clune, C. Ofria, and R. T. Pennock. The sensitivity of hyperneat to
different geometric representations of a problem. In GECCO, 2009.

[8] D. B. D’Ambrosio. Hypersharpneat 2.1. http://eplex.cs.ucf.edu/

software-list#hypersharpneat. [Online; accessed 29/08/2017].

[9] D. B. D’Ambrosio and K. O. Stanley. Generative encoding for multiagent
learning. In Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 819–826. ACM, 2008.

[10] T. J. Eric Kandel, James Schwartz. Principles Of Neural Science.
McGraw-Hill Medical, 3 edition, 1991.

[11] H. M. European Union. Human brain project. https://www.

humanbrainproject.eu/. [Online; accessed 15/09/2017].

[12] N. Foundation. Mono cross platform, open source .net framework. http:
//www.mono-project.com/. [Online; accessed 29/08/2017].

81

82 BIBLIOGRAPHY

[13] J. Gauci and K. O. Stanley. Autonomous evolution of topographic regu-
larities in artificial neural networks. Neural computation, 22(7):1860–1898,
2010.

[14] J. Gauci and K. O. Stanley. Indirect encoding of neural networks for
scalable go. In International Conference on Parallel Problem Solving from
Nature, pages 354–363. Springer, 2010.

[15] D. E. Goldberg, J. Richardson, et al. Genetic algorithms with sharing
for multimodal function optimization. In Genetic algorithms and their
applications: Proceedings of the Second International Conference on Ge-
netic Algorithms, pages 41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[16] H. Gray. Anatomy of the Human Body. Churchill Livingstone, 20th edition
edition, 2000.

[17] D. O. Hebb. The organization of behavior: A neuropsychological approach.
John Wiley & Sons, 1949.

[18] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The
Journal of physiology, 117(4):500–544, 1952.

[19] R. Huch, K. D. Jürgens, and D. Fessel. Mensch, Körper, Krankheit.
Jungjohann, 1994.

[20] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[22] J. R. Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

[23] S. Nagel. Using spiking neural networks to simulate human motor learn-
ing. M.s. thesis, Eberhard Karls University of Tuebingen, Germany, 2015.

[24] J. K. Pugh and K. O. Stanley. Evolving multimodal controllers with
hyperneat. In Proceedings of the 15th annual conference on Genetic and
evolutionary computation, pages 735–742. ACM, 2013.

[25] S. Risi, J. Lehman, and K. O. Stanley. Evolving the placement and dens-
ity of neurons in the hyperneat substrate. In Proceedings of the 12th an-
nual conference on Genetic and evolutionary computation, pages 563–570.
ACM, 2010.

BIBLIOGRAPHY 83

[26] S. Risi and K. Stanley. Indirectly encoding neural plasticity as a pattern
of local rules. From Animals to Animats 11, pages 533–543, 2010.

[27] S. Risi and K. O. Stanley. An enhanced hypercube-based encoding for
evolving the placement, density, and connectivity of neurons. Artificial
life, 18(4):331–363, 2012.

[28] D. B. D. Sebastian Risi. Es-hyperneat. http://eplex.cs.ucf.edu/

neat_software/#ES-HyperNEAT. [Online; accessed 29/08/2017].

[29] M. Spüler, S. Nagel, and W. Rosenstiel. A spiking neuronal model learn-
ing a motor control task by reinforcement learning and structural synaptic
plasticity. In Neural Networks (IJCNN), 2015 International Joint Con-
ference on, pages 1–8. IEEE, 2015.

[30] C. Stangor. Introduction to Psychology. Flat World Knowledge, 2010.

[31] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based
encoding for evolving large-scale neural networks. Artif. Life, 15(2):185–
212, Apr. 2009.

[32] R. Stanley, Kenneth O.; Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10, 06 2002.

[33] P. Verbancsics and K. O. Stanley. Constraining connectivity to encourage
modularity in hyperneat. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation, pages 1483–1490. ACM, 2011.

[34] E. von Holst and H. Mittelstaedt. Das reafferenzprinzip. Naturwis-
senschaften, 37(20):464–476, 1950.

[35] B. G. Woolley and K. O. Stanley. Evolving a single scalable controller for
an octopus arm with a variable number of segments. In International Con-
ference on Parallel Problem Solving from Nature, pages 270–279. Springer,
2010.

[36] M. G. a. Xinjie Yu. Introduction to evolutionary algorithms. Decision
Engineering 0. Springer-Verlag London, 1 edition, 2010.

[37] A. Zell. Simulation neuronaler netze, volume 1. Addison-Wesley Bonn,
1994.

[38] D. Zier. Csmatio: Mat-file i/o api for .net 2.0.
https://de.mathworks.com/matlabcentral/fileexchange/

16319-csmatio--mat-file-i-o-api-for-net-2-0. [Online; accessed
29/08/2017].

Appendix A

Further tables, figures and
algorithms

84

85

(a) (b)

Figure A.1 Experiment 3: RMSDs comparison with Nagel’s results:
(a) Part Time RMSDs for each angle of the Nagel’s experiment. (b) Part Time
RMSDs for each angle of the Experiment 3. To keep the scale identical some
outliers have been cut off. The median RMSsD of the simulated models is
represented by red lines. The boxes represent the IQRs from the first to the
third quartile. The whiskers extend the quartiles by ±1.5 · IQR. Red crosses
show outliers.

86 APPENDIX A. FURTHER TABLES, FIGURES AND ALGORITHMS

Algorithm A.1: ES-HyperNEAT

choose strategy parameters;
define input and output neuron positions create initial population P(0)
with minimal CPPNs and random weights;
t← 0;
evaluate fitness of the initial population ; // like it is done below
while termination condition not reached do

t← t+ 1;
forall genomes in P(t) do // genome = CPPN

unvisitedNeurons← inputNeurons;
allNeurons← inputNeurons;
allConnections← ∅;
for i=0 to max iteration level) do

newNeurons← ∅;
foreach node ∈ unvisitedNeurons do

// division and initialization phase
build quadtree on cross-section of the hypercube;

// pruning and extraction phase
prune and express new connections;
foreach new connection do

get coordinates of newNeuron;
if newNeuron /∈ neurons then

newNeurons← newNeurons ∪ {newNeuron}
end

end
allNeurons← allNeurons ∪ newNeurons;
allConnections← allConnections ∪ newConnections;

end
unvisitedNeurons← newNeurons;

end
express connections from outputNeurons to allNeurons
allNeurons← allNeurons ∪ outputNeurons;

Delete all neurons and connections that are not on a path
between an input and an output neuron;

Build ANN out of allNeurons and allConnections;
Determine fitness of created ANN;

end
create new population P(t) with NEAT;

end
output best CPPN;

87

Table A.1 ES-HyperNEAT parameter overview

parameter nomination description
r initial resolution square root of minimum number of leaf nodes

in the quadtree.

rm maximum resolution square root of maximum number of leaf
nodes in the quadtree.

σ2
p weight variance of node p an indicator of the real variance of the func-

tion in the square described by p.

dt division threshold if the variance of a node is higher than the
division threshold its children get created as
long as rm is not reached.

σ2
t variance threshold minimal variance a node must have that the

connections of its children are created.

βt band threshold determines upon the weight difference β (see
equation 2.3) whether a point is inside a band
or not.

imax maximum iteration level determines how many iterations are done to
find new connections.

88 APPENDIX A. FURTHER TABLES, FIGURES AND ALGORITHMS

(a) D-ES 2D (b) ES-EM 2D

(c) D-ES 3D (d) D-ES 3D

(e) ES-IS 2D (f) IS-IS 2D (g) IS-ES 2D

(h) ES-IS 3D (i) IS-IS 3D (j) IS-ES 3D

89

(k) IM-EM 2D (l) IM-IM 2D (m) EM-IM 2D

(n) IM-EM 3D (o) IM-IM 3D (p) EM-IM 3D

Figure A.1 Appendix: connectivity patterns of the best individual:
Alternating each row shows a 3D version and a 2D flattened version of the
patterns. Each square represents a possible connection between two neurons.
Each green square represents a created connection. A connection is created if
the CPPN output value is higher than 0.75. Illumination was used to clarify
the spatiality of 3D plots. The ragged appearance in the 3D plots is due to
underlying grid data. The original function would have smoother transitions.

90 APPENDIX A. FURTHER TABLES, FIGURES AND ALGORITHMS

(a) D neuron 1 (b) D neuron 1

Figure A.2 Experiment 4: exemplary ES neuron slices of the con-
nectivity pattern: The header of each image indicates from which ES neuron
new EM neurons are searched. Therefore, the first two inputs of the CPPN
function are fixed to the coordinates of this ES neuron. The result is a 3 di-
mensional function (2 input and 1 output dimension). The output space got
flattened. Each red cross marks the position of a found neuron. Bright yellow
surface represents a value next to 1. Dark blue surface represents a value next
to -1.

Appendix B

Relations to Nagel’s
experiments

The implementation of Chadderdon’s model used in experiment 1 is a reimple-
mentation of Chadderdon’s model [4] by Nagel [23]. In detail, the model used
in experiment 1 is parametrically identical to Nagel’s ongoing experiment [23]
with the following parameters: ppd = 1, pa = 1, we = τremaining/20. It has to be
noted, that those parameters have not been explained in this work directly, but
they are identical with the way Chadderdon’s model was explained in chapter
3.

The way Nagel’s model is used corresponds to Nagel’s experiments with
the following model parameters: τeligibility = 100ms, ncells = 304, nD,firing ≈ 5,
τlearning = dynamic. It has to be noted, that those parameters have not been
explained in this work directly, but they are identical with the way Nagel’s
model was explained in chapter 3.

91

Appendix C

Further discussions

C.1 Discussion of Nagel’s model

Although, Nagel’s model is already very biologically plausible, some mechan-
isms existing in the motor cortex are not considered. For example, introducing
learning based on efference copies could give Nagel’s model the possibility to
adapt to environmental changes. An efference copy [34] is a copy of the sig-
nal leading to a specific movement that gets compared to the signal of the
perceived movement. If they differ, adaptation has to be applied. Further
on, to make this motor cortex model more realistic, additional joints could be
simulated.

In all experiments the model struggled with holding an angle after it is
reached. Therefore, Nagel [23] argues plausibly that the model should go into
a resting state, when an angle is reached. This means, that no further motor
control commands should be sent after an angle is reached. Till now this
addition is not implemented.

Without given any reason by Chadderdon [4] and Nagel [23] noise was not
applied to D and ES synapses. One argument against is that noise in D and
ES neurons is not needed to model motor babbling. On the other hand, it is
very likely, that all neuron types and neural codings are prone to noise.

An angle is counted as reached by the critic if a movement crosses the target
angle. This is not realistic because a large movement crossing the target angle
by far should logically not count as reaching the angle. Therefore, an angle
should be encoded as reached if the movements stops in the vicinity of the
target angle.

A further problem is that the forearm model is blocking at minimal and
maximal angle. Therefore, no exact movement in the direction of those angles
must be done. For example, all movements that lead to an angle higher than
the maximum angle will reach this angle exactly. As a result, learning a next
to maximal and a next to minimal target angle is likely to increase the ability
of the model to hold angles.

92

C.2. DISCUSSION OF ES-HYPERNEAT 93

C.2 Discussion of ES-HyperNEAT

An important issue is, that is fairly questionable, if the whole complexity of
the ES-HyperNEAT approach is needed to determine the amount of neurons as
well as the connections of an ANN. Admittedly, the underlying principle that
variation defines information is plausible. But, ES-HyperNEAT uses 4 differ-
ent thresholds and a complicated mechanism to determine neuron positions in
space. This is unnecessarily complex. A by far simpler approach would be
to take the connectivity pattern created by HyperNEAT. In addition, neuron
positions are not predefined. Now, a grid is applied over the connectivity
pattern. Then, at every square where the pattern function exceeds the con-
nection threshold, a connection and, if not already existing, the corresponding
neurons are created. This approach would only need one threshold and less
calculation time than the ES-HyperNEAT approach. Moreover, it is assumed
to achieve similar results as ES-HyperNEAT. Future studies might include an
implementation and performance analysis of this algorithm.

One additional serious disadvantage of ES-HyperNEAT is, that it is based
on a 2D neuron space. Therefore, connectivity patterns are hard to analyze
since only slices of the hyperspace can be examined. As shown in experiment
4 (section 5.4) this is not efficiently applicable and not easily understandable.
Therefore, in further studies it would be appropriate to apply HyperNEAT
to a 1D neuron space. In this case, two approaches are possible: The first
one is to use a quadtree on the resulting 3D hyperspace. This hyperspace is
dimensionally identical to the slices in the original approach. However, a point
found by ES-HyperNEAT in this space represents a connection between two
neuron positions and not, as before, the position of a neuron. Unfortunately,
as shown in section 5.5 a first attempt of this approach failed. The second
approach would be to use 1D slices of a 2D connection space. Those slices are
analyzed by means of a 1D segment tree. This results in a 1D neuron space.
It is assumed that the introduced approaches can lead to easy to analyze
connectivity patterns as seen in experiment 3 (section 5.3).

94 APPENDIX C. FURTHER DISCUSSIONS

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct
or indirect sources used are acknowledged as references.

This paper was not previously presented to another examination board and
has not been published.

city, date signature

