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1. INTRODUCTION

Kruskal's tree theorem states that finite trees are well-quasi-ordered under the
homeomeorphic embeddability (see [10]). Besides for its mathematical transparency, this
theorern has applications in computer science (in the theory of rewriting, see [1], [3]).
However, the most prominent feature of the Kruskal's theorem is its proof-theoretical strength
that exceeds the one of the theory of predicative analysis, ATRgy, which is well-known in
mathematical logic and foundations of mathematics. Hence the Kruskal's theorem is not
provable by predicative means. This fundamental result is due to Harvey Friedman (see [12]),
who also invented finite trees labeled by bounded natural numbers under the homeomorphic
embeddability with the asymmetrical gap-condition and proved (see [12]) that the
corresponding well-quasi—ordering property is true but not provable in the theory of H%
comprehension axiom, HM1CAg, which is stronger than ATRg (in particular, MiCAq easily
proves the Kruskal's theorem). To put it more precisely, let T be a finite tree with a labeling
function £:V(T)=+n, where V(T) is the set of vertices in 7, and n€N is identified with
{(),...,n—l}. Then <T,Q> be the correlated n—bounded labeled finite tree. Now <T1,Q1> is
embeddable in <TQ,Q2> if there is a homeomorphic embedding f: Ty= Ty which preserves the
labels while satisfying the following asymmetrical gap-condition
(a) If a vertex z is the immediate predecessor of a vertex y in 77,

and u is any vertex between f(z) and f(y) in Ty,

then £4(y) = Lo(w).




THEOREM 1 (Friedman). Let n€lN be fized. The set of all n-bounded finite labeled trees
is well-quasi-ordered by the above embeddability. Moreover, this statement is a theorem
of MICAgy. However, the corresponding universal statement "For every n€lN, the set of
all n-bounded finite labeled trees is well-quasi-ordered by the above embeddability” is not

provable in MICAg.

In order to generalize this result, the author invented (see [4], [5]) finite trees labeled
by arbitrary (countable) ordinals under the homeomorphic embeddability which does not
decrease the labels while satisfying the following symmetrical gap-condition
(s) If a vertex z is the immediate predecessor of a vertex y in 77,

and u is any vertex between f(z) and f(y) in Ty,
then min{€(2), L1(y)} < Ly(w).
It turns out that the corresponding generalized labeled tree theorem is accordingly stronger
than the universal statement from Theorem 1. For let I'TRg be the theory of impredicative
analysis that is defined analogously to its predicative counterpart, ATRg, but with respect to
11} transfinite recursion. That is, ITRq enables to define sets by transfinite iteration of I}
comprehension on arbitrary (countable) ordinals, and hence it is essentially stronger than
OiCAg. The following theorem is an immediate consequence of [5]. It shows that the
generalized labeled tree theorem has exactly the strength of the impredicative analysis. (By
contrast, [4] shows that its one-dimensional version dealing with finite intervals labeled by

ordinals is just as strong as ATRg, thus being somewhat weaker than the Kruskal's theorem.)

THEOREM 2. The set of all finite trees labeled by ordinals is well-quasi-ordered by the
above embeddability. This statement is a theorem of ITRg, but it is not provable in a
theory that arises from I'TRq by replacing N1} transfinite recursion aziom by the corres-

ponding l’[% transfinile recursion rule.

Meanwhile, Harvey Friedman conjectured that finite trees with edges (not vertices!)
labeled by ordinals are well-quasi~ordered by the homeomorphic embeddability with the

following gap-condition
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(e) Every edge z in 17 is mapped by fonto a path in Ty consisting of edges u

such that £(z) < Ly(u).
This conjecture was established by Igor Kriz (see [9]) at about the same time as the author's
result (see Theorem 2 above) by using different ideas which are formalizable in the theory of

{1} comprehension axiom, HLCA, but certainly not in I'TRg.

THEOREM 3 (Kriz). The set of all finite trees with edges labeled by ordinals is well-

quasi-ordered by the above embeddabilily. This statement s a theorem of [IEZCA.

It also follows from [9] that the generalized labeled tree theorem from Theorem 2 caunot be
stronger than the one from Theorermn 3. On the other hand, I'TRg is dramatically weaker than
NLCA, so that the proof from [9] can hardly estimate the strength of the Harvey Friedman's
conjecture.

In this paper I prove by the "tree—priority" method of [5] that this conjecture is
actually a theorem of ITRg, thus being proof-theoretically equivalent to the generalized
labeled tree theorem from Theorem 2. Hence the Harvey Friedman's conjecture has exactly the
strength of the impredicative analysis, I'TRy. This answers a question posed by Harvey
Friedman to the author at 1991 Joint Summer Research Conference on Graph Minors. The
proof is purely combinatorial by nature and its formalization does not require any special

knowledge in mathematical logic.

2. LABELING TREES BY ORDINALS

2.1. Basic notations. A (finite) tree is either the empty object, @, or a finite partial
order T'= (S,4) with the minimal element, r(7)€S, for which (VyeS)(r(T)dy), and such that
for any z€S, {yES:ydz} is linearly ordered by "<". We always assume S Cg;[N (N=the
natural numbers) and Card(S)>1. Note that any z,y€S uniquely determine their infirnum,

inf(z,y)€S, for which inf(z,y)dz, inf(z,y)dy and (Vz€S)((zdzrz9y)— zdinf(z,y)).




Let a tree T'= <S,<l> be fixed. Elements of S are called vertices. r(7) is called the
(uniquely determined) root of T. If (Vy€S)=(z<y) then z is called the end—vertex. If z<y then
x is said to occur lower than y. If <y and (Vz€8)-(2<24y), then we write pre(y) = z and call
z the (uniquely determined) predecessor of y. An edge is any pair <pre(y),y>, Any vertex z
such that r(7T) = pre(z) is called a root—neighbor. By V(T), End(7) and E(T) we respectively
denote the set S of all vertices, the set of all end-vertices and the set of all edges.

For any two trees T = <51,<11> and Ty= <SQ,<12>, let feHEM: Ty= T express that fis
the homeomorphic embedding of Ty into 77, i.e. a monomorphism preserving inf(-,-) as well
as the order of each branching. The latter condition means that if z=pre(y) = pre(z) in Ty,
f(z) = pre(u) = pre(v) in Ty, udsf(y) and vdyf(2), then y< zimplies u<v (in N).

2.2. Vertez-labeled trees. Let (= </P><>, PCN, be a fixed countable well-order. A

vertex—labeled tree (v.t.) relative to { is a structure V= <T,Q>, T being the underlying tree,

L:V(T)»7P the labeling function. We define the embeddability "<" on v.t. (cf. [4], [5]).

Let V= <Sl,<11,ﬁl> = <T1,Q1> and Vy= <S~2,<12,Q2> = <T2,Q2> be nonempty v.t.. Let
F: Vi £ Vy denote conjunction of the following assertions (2.2.1)-(2.2.3), where z,y and u range
over Sy and Sy, respectively, and pre;(-) is pre(-) specified to T;.

Then let V< Vy abbreviate 3f(f: Vi < Vy).

(2.2.1) fEHEM: Ty Ty and f(End(T7)) C End(7y).
(222) U423 s f(2)
(2.2.3) If pre(y) = z and f(2) 99 u<af(y), then win{{(z), L1(y)} L Ly(w).

The condition (2.2.3) is referred to as the symmetrical vertex-gap—condition.

The analogous "asymmetrical" embeddability "<*" on v.t. arises by replacing (2.2.3)

by the following stronger asvinmetrical vertex—gap-condition

(2.2.4) If pre;(y) =  and f(x)dyudaf(y), then Li(y)$Lo(w).

vz

2.3. Edge-labeled trees. Let = <7’,<> be as above. An edge—labeled tree (e.t.) relative
to @ is a structure £ = <T,Q>7 T being the underlying tree, Q:E(T)-"P the labeling function.

The embeddability "<" on e.t. is defined as follows (cf. [9]).



Let E) = <5'1,<11,Q1> = <T1,Q1> and Ey= <S~2,<12,Q2> = <T2,Q2> be nonempty e.t.. Let
[ By < By denote conjunction of the following assertions (2.3.1) and (2.3.2), where z,y and w,v
range over Sy and Sy, respectively, and pre;(-) is pre(-) specified to Tj;.

Then let By < Ey be an abbreviation of 3f(f: B} < Es).
(2.3.1): = (2.2.1).
(2.3.2) If preq(y) = =, preg(v) = w and f(z)<dgvds f(y), then L1({z,y)) 3Ly ({u,v)).

The condition (2.3.2) is referred to as the edge-pgap-condition.

2.4. Complex edge-labeled trees. Let 0= <7’,<> be as above. A complex edge—labeled

tree (c.e.t.) relative to 0 is a structure C= <S,<I,M,Q>, T= <S,<]> being the underlying tree,
MC S-{r(T)} the set of distinguished vertices called marks, £:E(T)=7P the labeling function,
provided that the following conditions (2.4.1) and (2.4.2) hold.

(2.4.1) If ye M and r(T)<4z<y, then {((pre(y),y))<L({pre(z),z)).

(2.4.2)  If z,yeM, 2424y and (Ywe M)~ (zdwdy), then L((pre(z),z))L({pre(z),2)).

The (not necessarily transitive) embeddability "L" on c.e.t. is defined as follows.

Let Cy= (5,9, ML) = (T, ML) and Cy= (Sy,<9, My, L) = { Ty, My,Ly) be non-
empty c.e.t.. Let f: 1L Cy denote conjunction of the following assertions (2.4.3)-(2.4.6), where
z,y and w, v, w range over 57 and Sy, respectively, and pre;(-) is pre(-) specified to Tj.

Then let C;C Cy be an abbreviation of Af(f: C{C Cy).

(2.4.3):=(2.2.1)

(2.4.4): = (2.3.2).

(2.4.5) If prey(z) = v(7Y), preg(v) = u, v9y f(z) and z€My, then
Q1(<F(T1),ZL‘>)5Q2(<’lt,v>).
(2.4.6) If prey(z) = v(Ty), preg(v) = u, wdyvdyf(z) and we My, then

Ea((e(T1),2)) 2 Ly(Cum)).
2.5. Definitions. Let & = {&(0), &(1),..., S(n),...} be an infinite sequence of non-
empty v.t. relative to . & is called "<"-bad if &(1)<&(j) does not hold for any i< j. The
notion of a "<*"'-bad sequence of v.t., the notion of a "<"-bad sequence of e.t. and the

notion of a "C'"-bad sequence of c.e.t., relative to 0, are specified accordingly.



Let Propositions A, B, C and D say that for any countable well-order {J, there is no
infinite "<"-bad sequence of v.t relative to (J, no infinite "<*"-bad sequence of v.t relative
to &, no "<"-bad sequence of e.t relative to ( and no "C"-bad sequence of c.e.t. relative to
0, respectively. Note that Propositions A, B and C respectively express that the corresponding
structures of vertex—labeled trees and edge-labeled trees are well-quasi-orders. Recall that A
and C are true propositions according to [5] and [9], respectively.

Let ITRg (also known as HITRg) be formal subsystem of analysis that extends the
elementary analysis, ACAg (being the 2nd-order conservative extension of Peano Arithmetic),
by the axiom standardly expressing in the 2nd-order language that for any well-order O, there
exists the hyperjump-hierarchy of sets along O (cf. [4], [5], see also [2], [11], [12] for more
information on subsystems of analysis in question). By [5], Proposition A is provable in 1TRg.

2.6. THEOREM. Propositions A, B and C are all provable in I'TRy.

In the next two sections, we shall prove that Proposition C is a theorem of I'TRgy (and
in the final section, we shall prove in ITRg Proposition D). The remainder of the theorem is
easy. Namely, C implies B provably in ACAg. For let & be any "<*"-bad infinite sequence
of non-empty v.t. relative to = (P,<). Let p(n)e? be the root-label of S(n). Arguing in
ACAg, there is a strictly increasing function § on N such that pof(i) < pof(j) holds for all i<j.
Let &7 = Gof be the correlated infinite "<*"-bad subsequence of &. Let (7 = <7’/ ,j> be the
minimal well-ordered proper extension of {J, and let 0J; = </P1,51> be the disjoint well-ordered
sum (' +0. Let o be the order—type of 0, then the order—type of 0; be (o041)+0. Let &y be
the sequence of v.t. relative to (J; that arises by replacing in every v.t. &’ (n), labels 7,€? of
all its root—neighbors by the labels corresponding to o4 in P;. Clearly, & is "<*"-bad.
Let &y be the sequence of e.t. relative to (J; such that each e.t. Gy(n) arises by setting
L({pre(z),2)): = L(z) for every edge in Sy(n). Assume that f:Sy(1)<By(j) holds for i<].
Clearly, f must preserve the roots. By definition of &, this implies f:&(1) <*®,(j), ie. & is

not "<*"-bad - a contradiction.




2.7. Remark. It is readily seen from the above arguments (see also [9]) that
Propositions B and C are in fact equivalent, provably in ACAg. Since A has the proof-
theoretical strength of ITRg (see [5], [6], [7]), while being obviously implied by B, this shows
that C has the proof-theoretical strength of ITRgy as well. To put it more exhaustive, the
following are the case.

(2.7.1) C is a theorem of I'TRg, but it is not provable in a theory that arises fromn I'TRy
by replacing I} transfinite recursion axiom by the corresponding M} transfinite recursion rule.
(2.7.2) ITRg has the same H}—theorems, and hence the same arithmetical theorems, as
ACA( extended by C.

(2.7.3) The consistency of ITRg is provable in ACA (= ACAy extended by full induction
schema) extended by C.

2.8. Note. In the sequel we use Higman's well-quasi-ordering theorem in the following
form (which has the same proof-theoretical strength as the familiar result from [8]).

THEOREM (Higman). Let B= (S,C) be any binary relation that admits no infinite "C"-
bad sequence. Let B = (§9.0) | where S consists of all tuples (zg,....z, ), 2;€8, and

(xgyeq Y U (ypgyennymy €(F0SH(0) < F(1) < o< f(n) < m) (Vi < n) (2 Cyp i)

Then R admits no infinite "C<"-bad sequence.

3. PROOF OF THEOREM 2.6. PART 1

3.1. Definitions. Let a well-order = <?j> be fixed. For the sake of brevity, in the
sequel we drop "relative to (" when speaking on c.e.t.. A non-empty c.e.t. C= <T,M,Q> is
called open if it has some root-neighbor z#M. A non-open and non-—empty c.e.t. is called
uopen. A nopen ce.t. C= <T,M,Q> is called closed if 1t has the unique root-neighbor z (hence
z€M holds). In this case, the corresponding (uniquely determined) lowest edge <r(T),z> is
denoted by e(7). For any veP, a non—empty cet. C= <T,M,Q> 1s called closed before v,
respectively behind v, if it is closed and (its lowest label) L(e(T)) is <v, respectively * v (in ().
For the sake of brevity we often write r(C), (), etc. instead of v(T), e(T), etc., respectively,

provided that C= <T,M,Q>.




Acet. C)= <5'1,<11,JV[1,(),1> = <T1,M1,Q1> 1s a gubtree of a c.eit. Cy = <,S'2,<12,M-2,()/2> =

(Ty,My,Ro) if 44 = 1Sy, My = MynSy and £y = £, Ty, where S satisfies (3.1.1)-(3.1.3.).

(3.1.1) 5 C Sy,
(3.1.2) If z,y€S5;, 2€5y and £<d92<5y, then eS|
(3.1.3) If 2,yeS; and z= inf(z,y) in T4, then 2€5;.

This relation we denote (<< Cy. Clearly, "<<" and its sharp version "<«" are both transitive.
The (finite) collection of all subtrees of a given a c.et. C is thought to be lexico-
graphically well ordered such that C}<< Cy always implies that Cj is smaller than Cs.
Acet (= <T1,M1,Q1> occurs in the root—piece of Cy= <AS’2,<12,M2,Q2> = <T2,M~3,Q2>
if Cy2<Cy and for some root—neighbor y in Ty there is no z€My with zdyy. This relation we
denote C1€(Cy),,. Thus in particular, an edge <pre(y),y> occurs in the root piece of (=

<.5',<1,M,Q> if there is no ze M with zdy.

3.2. Definition. Let C[0] be the set of all c.e.t. relative to 0, and let F-N-+C[0] be
"C"—bad. We define a suitable minimal cofinal c.e.t.—sequence M_¢(F): N-C[0], and the
correlated strictly increasing index—sequence f:N=+IN, by the following simultaneous recursion.
(3.2.1) Let f(0): = min{i: FQ)#O}. For every m<f(0), let M ¢(F)(m): = D.

(3.2.2) Suppose that M ¢({5)(j) and (i) are defined for all i<k and j<f(k).

(3.2.2.1) Let M ¢(55)of(k) be the minimal subtree C<<Fof(k) for which there is a strictly
increasing g:IN-IN with g(0) = f(k) and a &:IN=+C[P] such that B(0) = C and the following
conditions hold for all n,m,jelN.

(a) Feg(1n)#0#S(n).

(h) I j<f(k) and n<m, then (M ¢(F)(j) EB(n)) and ~(S(u) ES(m)).

(c) B(n) << §eg(n).

(d) If G(u)#50g(n), then Feg(n) is open and S(n)e(Fog(n)), -

(3.2.2.2) Let f(k+1) be the minimal i>f(k) for which there are g and & as in (2.2.2.1)

where C'= M ¢(§)of(k) and g(1) = i. For every (k) <m<f(k+1), let M (&) (m): = .



3.3. Definition. Under the same assumptions as in 3.2 (see above), let §:N-C[0] be

"C"~had, 0= <7’,j> and veP. We define a suitable minimal limit behind v c.e.t.~sequence

Myin(v,5): N+C[0], and the correlated strictly increasing index-sequence J:N-N, by the same
clauses as in 3.2, except replacing in (3.2.2.1) clause (d) by the following clause (e).

(e) If &(n)#5og(n) then B(n) is closed behind v.

3.4. LEMMA. Let F:N-C[0] be "C"-bad, let 0= <7’,j> and veP be as above. Then both
M (5) and My, (v,§) are "C"-bad, and the following are the case.
(3.4.1) Suppose that for all m<n, if §(m)= <Tm»Mm»Qm> and §(n) = <Tn,Mn,Qn> then
Qm(<r(Tm),:1:>)an(a) holds for any root-neighbor z€ My, and for any edge aE(S(n))l.p. Then for
any "C"-bad G:IN-+C[P] there is no strictly increasing function g on N such that for every uelN,

B (1) << My(F)og(n) and S(n)e(Mog(Fog(n)r,
(3.4.2) For any "C"-bad &:N-+C[0] there is no strictly increasing function g on N such
that for every nel,
B(n) <M (v, 8)og(n) and B(n) is closed behind .

(3.4.3) Suppose that the set {C:(IneN)(C<«<F(n) and C is closed before 1/)} admits no
infinite "C"-bad sequence. Then My;n(v,§) contains at most finitely many components which
are neither open nor closed behind v.

Proof. That M ¢(3) and My;,(v,3) are "C"-bad follows immediately from definition.
(3.4.1): Suppose that there is a "C"-bad sequence &:N-+C[J] such that for every n, &(n) is a
proper subtree occurring in the root-piece of M ¢(:)og(n), where g is fixed. Since M ¢(5)eg(n)
is a nonernpty subtree of §og(n), we have §og(n)#@. Since B(n)#M ¢(F)og(n), we have B(n)#
Fog(n), and hence M ¢(F)og(n)e(Fog(n)),, holds by the clause (d) of (3.2.2.1). Therefore,
B(1)e(Mr(R)og(n)), implics B(n)e(Foqin)), . Finally, for any m<n, Mq(Foa(m) CS(m)
implies M ¢(F)og(m) E M ¢(F)og(n), since the only nontrivial condition (2.4.5) holds by the
assumption of (3.4.1) - a ;;tont.radict,ion with "C"-badness of M_¢(F). As a result, & satisfies
all the requirernents of (3.2?.2.1), and hence it could be chosen in the definition of M ¢({)og(0)
= but this contradicts the minimality of M ¢(§)og(0), since B(n) is smaller than M ¢(F)og(0).

(3.4.2): This is proved analogously.
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(3.4.3): Suppose that there is an increasing function b on N such that My;,(v,5)eh(n) are all
nopen, but not closed behind v. Let §) abbreviate My;,(v,5)oh. So for any H(n) = <T,M,Q>, if
r(T) = pre(z) then zeM. Now by the assumption of (3.4.3), $ has no infinite subsequence
consisting of closed c.e.t.. Therefore, we may just as well assurne that every $)(n) has at least
two root-neighbors. Consider the collection of all cet. C7 = <T/,MPS/ R4 fS/>, where T’ =
<S/,<1r5'/>, Hn) = <T,M,Q> = <S,<1,M,Q>, r(T) = pre(z) and S’ = {r(T)}U{U&S:zQU} hold
for some zeV(T). Since 5 is "C"-bad, it is clear by an obvious specification of the Higinan's
theorem that there is an infinite "C"-bad sequence $)” consisting of such c.e.t. C’. By the
assumption of (3.4.3), there is an infinite "C"-bad £’ -subsequence & consisting of such €’
which are closed behind v. Now that all these ' are closed proper subtrees of the correlated

components of 5, this leads to a contradiction as in the previous case (3.4.2). O

3.5. Definition. Let §:N+C[0] be any infinite sequence in €[0], let 0= (P,<X) and
7€P. Then T is called r=bad in €[J] if the following hold.
(3.5.1) §is "C"-bad.
(3.5.2)  {C:(FnelN)(C<«<F(n) and C is closed)} admits no infinite "C"~bad sequence.
(3.5.3) If F(n)= (T,M,L) and zeM, then L({pre(z),z))< .

(3.5.4) If §(n) = (T,M,L) and (pre(z),)€(S(n)),,, then r<L({pre(z).z)).

3.6. LEMMA. For any well-order 0= <7’,j> and any veP, there is no v-bad sequence in
Cioy).

Proof Suppose that §:N-C[0 I\l/] is v-bad. Since all labels occurring in §(n), nelN, are
<v, (3.5.4) implies (§(n)),, = @, e if Fn)= (T,ML) and v(T)=pre(z), then z€ M. Now by
(3.5.2), the set of all lowest closed subtrees of §(n), nelN, admits no infinite "C"~bad sequence.
Hence there is no infinite "C"~bad sequence consisting of c.e.t. C7 = <T/,Mf.5'/,ﬁ Fs”), where
T = <S/}<IFS/>., Sn) = <T,M,Q> = <S,<1,M,Q>, r(7T) = pre(z) and S’ = {1( T)}U{’UES:.’L‘Q‘U}
hold for some n€N and z€S. Since all these € are closed (before v), it is clear from definition
of "C" for closed c.e.t. that, by an obvious specification of the Higman's theorem, there is no

’ L. . .
"C"-bad sequence whose cormponents are such C° - a contradiction with (3.5.1). O
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The remainder of Theorem 2.6. now readily follows from the above lemmma and the
assertion that the following theorem is provable in ITRy,.

3.7. THEOREM. For any well-order 0 = <7’,j> and any veP, if there exists an infinite
"<"~bad sequence of e.t. relative to Oy, then there exists a v—bad sequence in C[0 M.

Proof. Part I (Construction). We define the operator R which, for any o373v in 0,
and for any given o-bad sequence GZ[N-'QZ[OFI/], produces the appropriate 7—bad sequence
R(o,7,8): N+C[01]. In particular, if & is any given "<"-bad sequence of e.t. relative to
01y, then R(0,v,&) will be the required v~bad sequence in C[J ]

R(o,7,&) arises by the following transfinite recursion on 7. For the sake of brevity we
asswine that the previous operators M ¢(-) and My;,(v,-) are everywhere defined on the
whole domain N+C[{O14].

(3.7.1) Preliminary clause. Set R(0,0,8): = G.

(3.7.2) Successor clause. Let 7= p+1 in 01w, where 0<p. Let R(o,7,8): = B3 for the following
auxiliary sequences &1, &, & N-+C[0 4]

(5.1) Set &y: = R(0,p,8).

(5.2) Set By: = M 4(&).

(5.3) ®; arises as follows. Take any nel, and let Bo(n) = (T, ML), Set Bz(n): = (T,NL),
M CN, where N extends M by adding every lowest vertex z€V(T) with <p1‘e(:c),1:>€(@52(n))rp

and Q(<pre(ax),z>) =p.

(3.7.3) Limit clause. Let 7 be limit in Oy, where o<7. Let {r}:N+P be the correlated
canonical 7-fundamental sequence, i.e. a sequence that satisfies (Vi<jeN)({r}(i)<{r}(j)<7)
and (Ya<7)(JieN)(a<{7}(i)). Let {7},:N+7P be the analogous r-fundamental sequence behind
o that is defined by {7},(0): = ¢ and {7} (i+1): = {T}(H—min{j: 0<{r}(j)}).

Let R(0,7,8): = 7, where the auxiliary sequences D:N2+C[O 1] and R, H,..., 7

IN+C[O 1] are as follows.

(L.0) R:N-+C[O 1] and D:N2+C[O 1] are defined recursively as follows. Let 2R(0): = S(n)

and R(1+1): = R{ 7} 4(1), {7} 5(i+1),2R(1)), and let D(i,n): = R()(n).



_12_

(L.1) Let $;:N-+C[0 1] be the corresponding diagonal sequence that is formally definad by
Hi(n): = DI (n)n), where J(n): = min{i:(Vi>1)D(@,n)=D(jn)} and D(oo,n): = S(n). (In the

next section we prove that J(n)elN holds for all nelN, so that the latter clause is unimportant.)

(LZ) Let fjg: = M“m(a,f’jl).

(L.3) )3 arises as follows. Put $3(0): = $9(0). In order to determine $3(k+1), consider
$5(k+1) = {T,ML). For any m<k, let H3(m)= <Tm,Mm,()/m>7 and let J(-) be as in (L.1)
above. Now set

D, if $Hyk+1) is closed behind o but (%) fails (see below),
Nalk+1): =
Halk+1), otherwise.

(*): (Vm < K)(VaeB(Ty)(Lp(a) < 7 = max{{,(a), {7}, (I(m)) } L L(e(T))).

(L.4) $)4 arises as follows. Take any nelN. If H3(n) = <T,M,Q> then let
( T,M—{z},ﬂ>, if $3(n) is closed behind ¢ and r(7T) = pre(z),
Ha(n): =
Hz(n), otherwise .

(L.5) s, arises as follows. Take any nelN. If Hy(n) = <T,M,Q> then let

Ha(n), if $H(n)=H3(n),
$s(n): =
<T,M,Q/>, otherwise.

where

o max{L(b) < 7 bEE(T)n(f)l}(n))rp}, if a€E(T)n(Hg(n))rp,

{(a), otherwise.

(L.6) Set Hg: = M ¢(5s).
(L.7) 7 arises as follows. Take any nel. If $g(n) = <T,M,Q> then set $7(n): = <T,N,Q>,
M C N, where N extends M by adding every lowest vertex zeV(T) with <pre(z;),:c>€(f)6(n))l.p

and L((pre(z),2)) = p, where we set
= max{L(b)< r: beE(T)n (ﬁc(n))rp}.

This yields R(o,7,&) for limit 7, and thereby completes the construction of R. O



4. PROOF OF THEOREM 3.7. SOUNDNESS

Soundness of the above construction (3.7.1)-(3.7.3), together with the auxiliary assertions
(4.2.1)-(4.2.6), 1s proved by simultaneous transfinite recursion on 7 in 4.4 below. Let us first
introduce some new notations.

4.1. Notations. For any c.et. C= <T,M,Q>, its underlying (unlabeled) tree T is called
the skeleton of C. Previously defined relations on c.e.t. are naturally specified to the skeletons
so that eg. Cj<«Cy, C1Cy or Ci€(Cy),, strengthen Ty« Ty, Ty« Ty or Tie(Cy),y,
respectively, provided that C} = <T1,M1,Q1> and Cy= <TQ}MQ,Q2>.

For purely technical reasons, in every C= <T,M,Q> we extend { onto M by setting
L) = Q(<pre(1:),z>) for each ze M.

For any weP, let (C)g ()= (T,NL) for N:= M—{xeM:ij(z)}, and in particular

(D)4 (x) = @. We say that (C)4 () arises from C by dropping all marks behind 7.

Finally, we say that an edge <pre(y),y>6E(T) occeurs in the root—piece behind 7 in a

given cet. C= (T,ML) = (S,4,M,L), if there is no +€M with zdy and (z)< 7. This relation
we abbreviate by (pre(),y)€(C)yp (n)-

4.2. Definition. Let & F: N+C[0!y] be any infinite sequences in C[01v], and let
o373vin . We say & and ¥ cohere with respect to ¢ and 7 if the following conditions hold
for any n,meN.

(4.2.1) Let S(n) = <TG,MG,Q(,> and §(n) = <T7,Mq,ﬂ7>. Then 7, << T,. Now assume that
S(m)#0. Then if S(n) is open then TTE(S(H))FP, and if ©S(n) is nopen then S(n) = F(n).
(4.2.2) Let S(n) = (T, ML) and @#F(n) = (7;,M, L), and let 2€V(T,). Then zeM,,
implies both zeM_ and Lo(z) = U(z).

(4.23)  Let S(n)=(ToMely), D#F() = (S0, M L) = (T ML), weMy and let
()/,T(/l,‘)<(7. Assume zd,y. Then Qﬁ(<pre(y),y>) = QT(<pre(y),y>). Moreover, y€ M, implies yeM,
and hence yeM_ implies fq(y) = Qq(y).

(4.2.4) Let S(n) = (Ty My ), OF5m) = (T,,M L) and a€B(T,)n(F(1)),, () Then
Ls(a) =L (a) provided that r< (a). Otherwise, { (a)<r implies {_(a)2l ()= (b) for

some beE(T)n (S(n)),,.
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(4.2.5) If m<n, o7 and S(m) = §(m), then (S(m)L(F(n))q 1)
(4.2.6) Let @#S(n)={T,,M,L,), and for all m<n let S(m)=F(m) = (T My L
(possibly including { Ty, My, Lp) = @). Then §(n)#0 provided that (*) below holds.

*) (Vi <n)(Va€E(Ty))(VOeR(T,)n (G(n))rp)(ﬂm(aH 7o Lp(a)<L,(0).

4.3. LEMMA. For any &:N-C[0], if {C:(TnelN)(C<«<Sm) and C is closed)} admits no
infinite "L"-bad sequence, then so is {C:(E]nelN)(Cfi@(n) and C is nopen)}. The conclusion
also holds under the root—preserving strengthen of the embeddabality "C".

Proof. This is an easy consequence of the Higman's theorem (cf. above the analogous
passage in the proof of the Lemma 3.6). O

In order to complete the proof of Theorem 3.7, it suffices to establish souundness of the
operator R constructed according to the above clauses (3.7.1)-(3.7.3). This, in turn, is an
obvious consequence of the following theorem.

4.4. THEOREM. Let o373y in O, let S:N-+C[O 1] be o-bad, and let F:N-+C[O ] denote
the sequence R(0,7,8) defined by (3.7.1)-(3.7.3). Then § is -bad, and & and § cohere with
respect to o and T.

Proof. This is proved as follows by simultaneous transfinite induction on 7. Since the
required conditions (3.5.3), (3.5.4) and (4.2.1)-(4.2.4) are readily seen by definition of
R(s,7,&), we verify the remaining conditions (3.5.1), (3.5.2), (4.2.5) and (4.2.6) only. So let
§ = R(0,7,6) and consider the corresponding defining clauses (3.7.1)~(3.7.3).

(3.7.1): Clear.
(3.7.2): Let 7= p+1 where 0=p, and let the sequences &;, &y and B3 = § be as above.

(3.5.1): That &;=R(0,p,5) and &y = M ((B;) are "C"-bad is readily seen by the
induction hypothesis and by definition of Mcf(—), respectively. But then &g is "C"-bad as
well, since adding new marks can only destroy the embeddability "C".

(3.5.2): Since closed subtrees occurring in the range of &y= M (&) are the ones
occurring in the range of &, = R(7,p,&), by the induction hypothesis all these closed subtrees
admit no "L"-bad infinite sequence, i.e. By satusfies (3.5.2). It remains to show that so are

the new closed subtrees which arise by adding marks in the range of B3 according to (S.3).



Suppose this does not apply and consider an infinite "L"-bad sequence Q5:[N-+(]:[0r1/] such
that for every nelN there is an mel for which &(n) is a closed subtree of &3(m) with the
lowest. label p. Hence (&(n))gp)€(By(m)),,. Moreover, the corresponding sequence of c.e.t.
{(@(n))d (p):n(i[N} is "L" bad as well, since p is the miminal label occurring in the root—piece
of By(m). By Lemma 3.4 (3.4.1), there are finitely many proper subtrees of &y(m) atmoug
these c.e.t. (B(n))g (p), i.e. such that (S(n))yp) «By(m). So B(n) = By(m) and (B(n))g p) =
By(m) hold for almost all nelN. For every such n, take the correlated m and let 9(in) =
<T,M,Q> = <S,<1,M,Q>‘ Since ®(n) is closed, B9(m) has the unique root-neighbor zeS. Let
Bo(m)* = (T* MIS* LI T*) for T*= (§*al$*) where $* = {veS:zgv}. So By(m)* «By(in).
Consider two cases.

(a): Suppose that there are infinitely many open subtrees among these Sy(m)* i.e.
such that &y(m)*€(Bo(m)),,. Then by Lemma 3.4 (3.4.1), the collection of all these open
c.e.t. By(m)* admits no "C"-bad infinite sequence, and hence Bo(m)*CSy(m’)* holds for
some m<m’. But then By(m)CSy(m”) holds as well by sending the root of By(m) to the
root of ®&y(m’). For by the induction hypothesis (3.5.4), at least one among the root-
neighboring edges in ®9(m)* is labeled behind p, and so are labeled all edges occurring in the
root-piece of &y(mn”). Hence by the clause (2.4.5), all labels occurring in Bo(m’)* lower than
the image of the root of &y(m)* are »p = L(e(®By(n))). Now let n and n’ be the correlated
coordinates such that (&(n)) 4 py = Ba(m) and (S(n")) 4 (py = Ba(m”). Then S(n)LS(n"), and
hence B3(n)CSBs(n’).

(b): Otherwise, there are infinitely many nopen subtrees Bo(m)*e(Sy(in)),, in
question. Then by the induction hypothesis (3.5.2) together with Lemma 4.3, there are m<m’
such that Gy(m)*CBy(m”)* holds by sending the root of By(m) to the root of By(in’). But
then By(in) CBy(m”) holds as well by sending the root of Bg(m) to the root of Bo(m”), since
p = L(e(By(m))) = L{e(Bs(in”))). As above, this implies B4(n)C&5(n").

(4.2.5): Let m<n, o7 and &(m)=®B3(mn)=F(m). By the induction hypothesis
(4.2.1)-(4.2.4) and by an obvious monotonicity of &;-®5 this equation just as well imuplies

S(m) = Gy(m) = R(0,,8)(mm) = By(mn) = M (&) (m). Consider three cases.
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(3): Lot 7<p. Then clearly (Ga(n))g ) = (By(n)gry, while ~(Sn)E (B (n))g xy)
holds by the induction hypothesis (4.2.5). By the induction hypothesis (3.5.3), every mark in
S(m) is <o, and every label in the root-piece of (&1(n))yz) s = o. Since (By(n))g(yy Is a
aubtree of (1)) g ) this also yields ~(&(m) (@) (s ie. (S C(B(n) 4 )

(b): Let 7= p. Then Gy(n) = (By(n))a 1) and ~(Gy(m) CBy(n), since By is "C'bad,
Since S(m) = Gy(m), this yields «(S(m) E(G3(n))4 ().

(¢): Let p<m. Then Bz(n)=(S3(n))q ) and ~(S3(m)ESz(n)), since Sy is "C'-bad.
Since S(mn) = Gy(m), this yields ~(S(m)C(By(n) 4 x))

(4.2.6): Let @#8(n), let &(m) = B3(m) = F(m) for all m<n, and let (*) be the case.
As in the previous case, this also implies G(m) = &1(m) = R(7,p,E)(mn) = Sy(n) = M (S )(m).
Hence @;(n)#@ holds by the induction hypothesis (4.2.6). But then ®o(n) =M +(&;)(n)#9,
since (Vin<n)(®;(m) = M 4(®;)(in)) and B(n)#@ together easily imply that M ;(&)(n) is a

non-empty subtree of &;(n) by definition of M ¢(=) (see 3.2 above).

(3.7.3): Let 7> o be limit, and consider the corresponding sequences D, R, 9y,..., 7= {)’T.

(3.5.1,2): Note that $(n) ="D(J(n),n) and J(n) = miu{i:(\7'j>i)®(i,n) = @(j,n)} holds
for every nelN. Indeed, consider an infinite sequence of c.e.t. ®(0,n),..., Din),.... By the
induction hypothesis (4.2.1)-(4.2.4), the skeletous of D(i,n) are decreasing (or remain the
same), and their labels and marks are increasing (or remain the same) while being bounded
e.g. by the maximal label occurring in ®D(0,n). So, clearly, this sequence must somewhere
stabilize. Hence J(n)elN is well defined on the whole domain.

(L.1): We first prove that the diagonal sequence £, where £;(n) = ©(J(n),n), contains
infinitely many non empty-components. Suppose this is not the case. Then arguing by
induction on 1, it follows [rom the induction hypothesis (4.2.1)-(4.2.4) that every single
sequence SR(i), i.e. D(1,0),..., D(i,n),..., has infinitely many non-empty components. For any
1, let $1(m) = <Tm,Mm,Qm> (possibly including the empty triple). Now set

ng: = min{n:(Vm>n)f)1(m) = @}, 1y = ma.x{J(O),...,J(nO)},
np: = mind{n>ng (3 2i)(DG,0)FO A(Vmu<ng)(VaeE( T) L)< = Ly(a)2{r} (0N},

ip: = miu{i >i0: D) #FOAVm<ny)(VaeB( T, )Ly (a)< 7 = Qm(a)j{r}“(i))}.
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(The existence of ny follows from the above remark that every PR(i) has infinitely
many non-empty components.) So for any j,j’ 2i;, m<n, implies D(j,m) =D’ ,m)=
D(iy,m) = H1(mn), and ny<m<ng implies D(j,m)= O =D’ ,m) = H;(m). Hence D(jm) =
D(j’ m) holds for all j,j” >i; and m<n;. On the other hand, D(i;,n)#@ = D(J(n;),uy) =
$i(uq). Moreover, for any j2iy, JR(j) is {r},(j)-bad by the induction hypothesis (4.2.1)-
(4.2.4), and hence every label occurring in the root piece of D(jn,) is {1y () {r}(i}). By
the above definitions of ij, this shows that for any j2i; and m<nj, any label< 7 occurring in
D(j,m) is not smaller than any label occurring in the root piece of D(jn{), which proves the
corresponding instance of the condition (*) of (4.2.6). Hence by successively applying the
induction hypothesis (4.2.6) for all ij<j<J(ny), we finally arrive at ©(J(ny),n)#0 - a
contradiction. So there are infinitely many non-empty c.e.t. $(n) = D(J(n),n). Since every
single sequence $R(i) is "C"-bad, this obviously implies $); is "C"-bad as well.

Moreover, we claim that for any fixed 7<7 there is no infinite "C"-bad sequence of
closed subtrees occurring in the range of $); whose lowest labels are all <m. To this effect,
arguing by the induction hypothesis (3.5.2), it will suffice to prove that any such bounded
closed subtree occurs (as closed subtree) in the range of R(j) for any j with 7<{r},(j). So let
C= <T}M,Q> be closed and £ (e(T))<r<7 where C<«<®(J(n),n) for some n. By the induction
hypothesis (3.5.3)-(3.5.4), we may just as well assume g3€(e(T)). Now let e(T) = (r(7),z)
where ze€M. By the induction hypothesis (4.2.1), T is a skeleton-subtree of D(jn)=
<Tj,Mj,Qj> for every j<J(n). By the induction hypothesis (4.2.1)-(4.2.2), there exists the
uniquely determined j,< J(n) such that a:E(Mjo—Mjo_l), and hence e(7T) occurs in the root-
piece of ®(j,-1,n), which implies {T}G(jo*l)jﬁ(e(T)) by the induction hypothesis (3.5.4)
implies, and hence {T}U(jo~1)jﬂ(e(T))j7r. Hence for any j, w<{r},(j) implies j,<j, and
hence C'<<D(jn) holds by the induction hypothesis (4.2.3).

(L.2): That $y= My;,(0,9) is "C"-bad immediately follows by Lemma 3.4. It also
follows from the lemma that closed proper subtrees of the range of $9 admit no infinite "C"-
bad sequence. But we cannot exclude the remaining case that there is an infinite "C"-bad
subsequence of $)9 consisting of c.e.t. closed behind ¢, which by the above arguments implies

that the correlated subsequence of the lowest labels is not bounded before r. (Therefore, in
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order to fulfill (3.5.2), we defined more sophisticated sequences $)3-537.)

(L.3): It is readily seen from the previous observations that )3 still contains infinitely
many non—empty components, and hence it is "L"-bad. Moreover, its closed proper subtrees
still admit no infinite "["~bad sequence. In addition, for every component $3(n) which is
closed behind o, $3(n) = H9(n) actually satisfies the condition (%) of (L.3). Now g clearly
satisfies the required condition (3.5.3), as well as (3.5.4), since by definition an open
component H3(n) must coincide with $(n) for which (3.5.4) is readily seen.

(L.4): Recall that %), is obtained by dropping lowest marks in all c.e.t. $3(n) which
are closed behind . So 54 satisfies (3.5.2) by (L.2) above. We prove that $4 is "C"-bad.
Take any m<n and assume $4(m)C$y(n). This trivially contradicts (L.3) above if $3(n) is
not. closed behind . So suppose that $3(n) is closed behind o, and consider two cases.

(a): Let $3(m) be nopen. Then $z(m)= HNy(mn), and $H3(n) = Ny(n) while satisfying
(%). Hence every label <7 occurring in the root—piece of £3(n) is not smaller than any label
from $3(m), and hence the underlying embedding f: 4(m)C$4(n) also yields f:$3(m)CN3(n)
- a contradiction with (L.3) above.

(b): Otherwise, let $)3(m) be open. Denote $3(n) = <T,M,Q>, e(T) = <1‘(T),z> and o<
m={(e(T))<r. Then clearly $4(mn)= H3(n)=DI(m),m) and Hy(n)=(N3(n))q(y)- Let
D(jn) = <Tj}Mj,Qj> for any j< J(n). Then arguing as in (L.1) above, there exists the uniquely
determined j,< J(n) such that a:E(Mjo—Mjo-l)) which implies {7},(Jo=1)<7<{7},(jy). On the
other hand, the condition (%) of (L.3) yields {7} ,(J(mn))2 7, and hence J(m)<j,<J(n) holds.
Therefore  D(J(mn),m) = D(J(n)-1,m) = V(I (n),m). Since DI(n)-1,-)=RU(u)-1) and
D(I(n),-) = RUTI;(I(n)-1),{r}5(J(n)),R(J(n)-1)), then by the induction hypothesis (4.6.5)
this yields (D (n)~1m) EDU@)m)g ), 1o (Fym) CE ) g ) However, our
assumption $4(m)CNy(n), ie. H3(m)CE(N3(n))g (), casily implies H3(m)E(H(0))g(ny —
contradiction.

(L.5): Since £y satisfies (3.5.2)=(3.5.3), but not necessarily (3.5.4), so does 5. We
prove that g is "C"-bad. Take any m<n and assurne $5(in) CNs(n). Since labels of $H5(m)
magjorize the ones of $)4(m), this obviously implies $4(m)C$s(n). By definition $y(m)

= $3(n) implies $4(m) = HNs(n), and hence Hy(m)CH(n) - a contradiction to (L.4) above.
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Otherwise, let $)s(n) be closed behind o, and hence (%) of (L.3) be satisfied. But then
Ha(m)LHs(n) would also irmply $4(m)ENy(n), since all labels occurring in the root—piece of
$4(n) are not smaller than the lowest label of $)3(n), and hence the crucial condition (2.4.5)
would be preserved according to (3.5.3) and (*).

(L.6): That $g= M ¢($s) still satisfies (3.5.1)~(3.5.3) easily follows by Lemma 3.4.

(L.7): Since adding new marks can only destroy the embeddability "C", $7 = § is still
C"-bad, while obviously satisfying (3.5.3)~(3.5.4). In order to prove the remaining clause
(3.5.2), we adopt the previous arguments in the analogous case (3.5.2) of the successor clause.
So suppose there is an infinite "C"-bad sequence $):N+C[@ 1] such that for every nel there
is an el for which $H(n) is the new closed subtree of $7(mn) that arises according to the
definition (L.7). Since {J is well-ordered, we can just as well assume that for any n<n’, the
lowest label of $(n”) is not smaller than the one of $)(n). But by using the condition (%) of
(L.3), the existence of such §) leads to a contradiction, via Lemma 3.4 (3.4.1), in the same
manner as the existence of the analogous sequence & in the analogous successor—clause (3.5.2).

This completes the proof of (3.5.1,2).

(4.2.5): Let m<n, o37 and &(m)= $;(m)=5(m). By the induction hypothesis
(4.2.1)-(4.2.4), and an obvious monotonicity of JR(1),$,-%7, this unplies S(in) = D(j,m) =
£5;(m) = §(m) for all j and 0<i<7. Hence by iteration, the induction hypothesis (4.2.5) proves
the negation of R(JI(n))(m)C(RU(n))(1)) g (z)- Hence =(H(m)E(H(n))g(y)) holds. Now
suppose that there is an embedding f:&(m)L(§(n))q 5y, and consider the following cases.

(a): Assume $7(n) = Hg(n). Then f:F(m)C(H7(n))g (n) implies f:S(m)C(H40)) g (q)-
Consider two cases.

(a.a): Assume $4(n) = $H3(n). Then by definition $3(n) = Ha(n) = Hy(n) = D(I(n),n),
and hence &(m)C(Hy(n))q () implies R(I(n))(m) EERI(n))(n)) 4 (n) = a contradiction.

(a.b): Otherwise, let £4(n)#3(n). Then by definition $3(n) is closed behind o, and
hence the condition (%) of (L.3) holds, while $4(n) arises from $s(n) by dropping its lowest
mark. Let p be the lowest label in $3(n). Thus ¢2Xp<7 holds. By our assumption, there is an
ernbedding -9, C(54(0) g rye 1 S (Fa(m))ESa(m)p then, by (6), fHa(m) EHy(n)

holds as well - a contradiction with (L.4) above. For the same reason, since f has no extension
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9:94(m) E(54(n)) g () with g(r(Hy(m)))e(H4(n)),,, there are marks which are placed in
£4(n) below f(r($4(m))) and whose labels are thereby all <p. Let w<p be maximal such
label. Now if @< then clearly (£4(n))q 5y = $4(n) and hence, as above, $4(in)CHy(n) is the
case — a contradiction with (L.4) above. On the other hand, if 72 w<p then our embedding
L5100 E(5H4(n)) g () also yields f:$1(n)C($Hy(n)) g (5) — a contradiction (see above).

(b): Suppose that $7(1)#5g(n), and let u be as in the defining clause (L.7). If u<w
then ($7(n))q (q) = H7(n), and hence H7(m)CH7(n) holds - a contradiction with (L.7) above.
If p= « then ($H7(n))q (q) = No(n), and hence Hg(m)LNg(n) holds - a contradiction with (L.6)
above. In the remaining case, m<p, our assumption f:&(m)C(H7(n))q,, easily implies
LS(m)E(N5(n))g ) Since $H3(n) is closed behind ¢ and (*) holds, this also implies
F:6m)E($4(n)) g (). The desired contradiction is obtained as in the previous subcase (a.b).

(4.2.6): Let @#6(n), let &(m) = H7(m) = §(m) for all m<n, and let (*) be satisfied.
By the induction hypothesis (4.2.1)-(4.2.4) and by an obvious monotonicity of R(i) ;- 7,
this implies &(m) = D(j,m) = H;(m) = §(m) for all j and 0<i<7. In particular, J(m) =0 for
all m<n. Hence by iteration, D(J(n)n) = H1(n)#D holds by the induction hypothesis (3.2.1)-
(4.2.4) aud (4.2.6). Hence, arguing as in the analogous proof of the succesor clause (see above),
$o(m) = M| ;n(H)(0)FD. We claim that H3(n)#@ holds as well. Indeed, by the condition (%)
of (I..3), $H3(n) can disappear only when $9(n) is closed behind ¢ and, for some m<u and for
some label «<7 in ©(mn), either o<L(e(Hy(n)))<a or oXL(e(He(n)))<{r},(J(n)). However,
by the the induction hypothesis (4.2.1)-(4.2.4), the first option implies that £({e($)9(n))) is not
saller than the corresponding label occurring in the root—piece of in &(n) - a contradiction
with (*). By the above observation, the second option implies c<{(e(Hy(n)))< {7},(J(0)) = o
~ a contradiction. Thus H3(n)#@ and H4(n)#O#Hs(n). But then By(n) = M ¢(B5)(n)#0,
and hence B7(n) = §(n)#D as in the analogous succesor clause(see above).

This completes the proof of Theorem 4.4, and thereby completes the whole proof of
Theorem 3.7. 0

4.5. Formalizaiion. In order to complete the proof of Theorem 2.6, is will suffice to
formalize in I'TRg all the previous arguments. To this effect, first note that the Higman's

theorem is provable well within ACAg (see e.g. [4]). Consider operators M ¢(~) and My;,(-).
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It is redily seen that both sequences Mcf(m and My;,(v,§), as 2nd-order objects, are
definable by El-formulas with 2nd-order parameter &, and hence are recursive in the
universal I11-predicate over &.

Now consider the first part of the proof of Theorem 3.7, i.e. the coustruction of the
sequence R{o,7,&) by transfinite recursion on 7. Arguing in ACAg, we can surely extend our

well-order 0= <7’,j> to a suitable well-order 0; = <7’1)51> so large that it adinits ordinal

(o+1 |/+1).

exponentiation w ' where a<v in the sense of @, and ordinal sum a+2 for all u,ﬂjlw(
We claim that for every o<7<v, the sequence R(o,7,&) is recursive in wT*D1h iteration of the
universal Hll—predicate over &. This is easily verified by transfinite induction on 7. If 7=10
then R(o,7,8)=& and we are done. Let 7= p+1. Then either R(0,7,8)=8, if o= 17, or by
the above estimate, R(e,7,&) is arithmetical in the universal I1}-predicate over R(s,p,&).
Since wp—f-l{lw(p*“, we are done. For limit 7, by the same token, either R(¢,7,8) =8, or
R(o,7,8) is arithmetical in second iteration of the universal Tl-predicate over the collection
of all sequences R(i), i<w, where R(0) = S(n) and R(i+1) = R({r} (1), {r},(i+1),R(i)). Since
for all o2, w(o‘+1)+w(ﬁ+1)<1w(max(0‘76)+2)<1w7, then by the induction hypothesis, this
collection 1s arithmetical in w'th iteration of the universal H}—predi(:at‘e over &. Hence, surely,

(1+1

R(7,7,8) is recursive in the w™*U1h iteration. Summing up, the first part of the proof is

explicitly formalizable in ACAg.extended by transfinite H}—re(zursion along 0, P+

In the second part of the proof, i.e. in the proof of Theorem 4.4, we argued in H}CAO
(= ACAq plus Il-comprehension axiom) extended by Il-transfinite induction along 0!y,
while having all 2nd-order parameters definable by transfinite H}—recursion along 0, P+
(see above). Since I}-comprehension is obviously included in ITRg, both the transfunute
induction and all nested numerical inductions involved can be replaced by their restricted to

sets variants, which are easily derivable in I'TRg,. Thereby the whole proof is formalizable in

ITRg. This completes the proof of Theorem 2.6.
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5. PROOF OF PROPOSITION D

5.4. Definition. Let §= <1’,§ > be any well-quasi-order, and, as before, let 0= <7’,<>
be any well-order. Generalized e.t. (g.e.t.) and generalized c.e.t. (g.c.e.t.), relative to ¢ and 0,
are structures F= <S,<17Q,Q> and F'= <S,<1,M,Q,Q>, respectively, that extend the corresponding
et. F= <S,<1,ﬂ> = <T,Q> and cet. C= <S,<1,M,ﬁ>, by the new labeling function Q:End(T)-+7%,
which is referred to as the quasi—labeling function. So @ assigns to end-vertices of T labels
from @, which we call quasi-labels. The corresponding relations of embeddability "<*" and
"C#Y on g.e.t. and g.c.e.t. arise by extending f: By < By and f: C{L Cy by the new assertion
(5.4.1) If zeEnd(T}) then pq(z) < p9of(z).

Let E and F be the corresponding modified propositions about ge.t. and g.ce.t.
obtained by replacing in C and D the underlying embeddability "<" by "<*" and "C" by
"C#1 prespectively. Clearly, E implies C, and F implies D, provably in ACAy.

5.5. THEOREM. ITRgy proves Proposition E. Hence E has the same proof-theoretical
strength as each Proposition A, B and C.

Proof By an obvious specification of the previous proof of Theorem 2.6. O
Below by adding superscript "#" to the previous lemmas, definitions, etc. we refer to their
obvious "C#"~counterparts. So, in particular, Lemma 3.4% deals with minimal "C*"-sequences

# which, in turn, are the same as the

that arise by applying Definitions 3,2% and 3.3
corresponding Definitions 3.2 and 3.3, except replacing everywhere "C" by "C*".

5.6. THEOREM. ITRg proves Proposition F. Hence I' has the same proof-theoretical
strength as each Proposition A, B, C, D and E.

Proof. Let 0= <7’,j> and 0= <1’,§> be any well-order and any well-quasi—order,
respectively. Let €[00 J] denote the the set of all g.cet. relative to 0 and §. Suppose
F:N-C[0,9] be "C*"-bad in €[0,9]. Let §; be the correlated minimal sequence M;;(0,5):
N-C[0,d]. By Lemma 3.4%, § is "C#-bad, and there is no infinite "C*"—bad sequence whose
cotuponents are closed proper subtrees occurring in the range of Fj. Moreover, by (3.4.2)%

every infinite subsequence of nopen components n) must include an infinite subsequence of
1

closed components §1(n). Note that "C*" restricted to the set of closed (in fact, nopen) g.c.e.t.
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is transitive. Hence the set of all closed proper subtrees in question is well-quasi-ordered by
"C". A desired contradiction is proved by cases as follows.

(a) Assume that {§] has an infinite subsequence §jof such that §of(n) is open for all
nelN, where f:IN=+IN is strictly increasing. Let §y denote §pof. Let @ be the well-quasiorder
consisting of all lowest closed (proper!) subtrees occurring in the range of §, under the
etnbeddability "C*". Let @y be the disjoint well-quasiordered sum @+8;. Observe that with
every g.c.e.t. §a(n) is naturally associated a g.e.t. T(n) relative to 0 and @y, which is defined
as follows. Let z be any lowest mark in §y(n), let F(z) be the correlated maximal closed
subtree whose lowest edge is (pre(z),z), and let Fy(z) be obtained by deleting the lowest edge
in F(z) (including both vertices pre(z) and z). Now by definition ‘T(u) arises by deleting from
$a(n) every subgraph Fy(z) in question while supplying the resultinng new end-vertex z with
the new quasi-label F(z), viewed as an element of @). It is easily verified that for any i,jelN,
THY<PZT() implies $(1)E*Fy(j). But by Theorein 5.5, there are i< j such that T(i) <*X(j),
and hence §3(1)E*To(j) - a contradiction.

(b) Assume that (a) does not apply. But then § has an infinite subsequence §jog
such that Fpog(n) is closed for all nelN, where g:N-N is strictly increasing. Moreover, since 0 is
well-order, we may just as well assume that the lowest labels in §jog are weakly increasing.
Now for every nelN, let §(n) be the g.c.e.t. that arises by dropping the lowest mark in
S1og(n). Consider the resulting infinite sequence §s. Clearly, §y(n) are all open. Moreover, by
the monotonicity of the lowest labels in §o8, $a(i)C*Fo(j) implies $10g(i) C* Freg(j) for all
i,jeN. Hence §y is C¥-bad. Arguing as in the previous case, this leads to a contratiction. O

4.7. Remark. Finally, we further generalize edge-labeled trees by extending the quasi—
labeling function @ onto the whole vertex—domain, while replacing the previous embedding-
condition (5.4.1) accordingly by
(5.7.1) For all zeV(T}), 01(z) £ 09of(2).

Let G be the corresponding strenglitening of Proposition F.
Then by a slight modification of the above arguments, ITRg proves Proposition GG. So

in the proof-theoretical sense, G is not stronger than F, and hence it is not stronger than A,
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5.8. Remark. Recall that so far we considered vertex-labeled embeddability under the
symmetrical gap-condition (2.2.3)
If prey(y) = v and f(z)dgu<af(y), then min{{(z), {1(y)} 2 Lo(w),
and under the asymmetrical gap-condition (2.2.4)
If preg(y) = z and f(z) 9y u<dyf(y), then L1(y) 2 Lo(w).
Consider the alternative asymmetrical gap-condition
(5.8.1) If preg(y) = z and f(z) 9y u<dgf(y), then L(z) $Lo(w).
It is clear that both (2.2.4) and (5.8.1) imply (2.2.3). Note that [5] shows that I'TRg actually
proves Proposition A under the stronger condition (5.8.1). By Theorem 2.6, this also holds for
(2.2.4). Hence both possible asyrmmetrical gap—conditions are proof-theoretically equivalent to
the symmetrical gap-condition (2.2.3).
On the other hand, consider the alternative symmetrical gap-condition
(5.8.2) If preq(y) = « and f(z)<gu<yf(y), then wax{{{(z), L1(y)} 2 Ly(w).
By contrast to (2.2.3), this condition does not provide a well-quasi—order. An easy counter—
example is as follows. For any nelN, let &(n) be an interval (i.e. a tree without branching)
<()<11<1.,.<]n+‘2> whose vertices are labeled by the following function £(0)={(n+2)= 2,
0(21) = 0 and £(2j+1) =1 for all i<[4n]4+1 and j<[$(n+1)]. So all labels are natural numbers
stnaller than 3. Clearly, there is no i#j such that &(i) is embeddable into &(j) with the gap-

condition (5.8.2).
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