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This paper deals with Popper’s little-known work on deductive logic, published between 1947 and 1949,
According to his theory of deductive inference, the meaning of logical signs is determined by certain rules
derived from ‘inferential definitions” of those signs. Although strong arguments have been presented
against Popper’s claims (e.g. by Curry, Kleene, Lejewski and McKinsey), his theory can be reconstructed
when it is viewed primarily as an attempt to demarcate logical from non-logical constants rather than as a
semantic foundation for logic. A criterion of logicality is obtained which is based on conjunction,
implication and universal quantification as fundamental logical operations.

1. Introduction

Between 1947 and 1949 Popper published a series of articles on the foundations of
(deductive) logic. The programmatic titles of some of them (‘New foundations for
logic’, ‘The trivialization of mathematical logic’) indicate, as Popper said later in
1974b, that they were written ‘with much enthusiasm’. The immediate reaction of
mathematical logicians to these papers was rather negative: reviews by Curry /948q —
1948d and 1949, Kleene /948 and 7949, and McKinsey /948 pointed out several
mistakes and expressed doubts as to whether Popper’s programme could be
retained.' There was, beside short (and positive) remarks by Kneale 7948 (see also his
1956, 256 and 1961, 102, and Kneale and Kneale /962, 563), no immediate reaction
from more philosophically oriented logicians. The first article I know of is that of
Merrill 7962, which cites Prior’s 1960 reference to Popper and Pap’s /19358, 144, foot-
note. Popper’s theory of deductive logic is at least mentioned in Passmore /957,
407 —408. There are further comments by Wisdom 1964 and Lenk /970, footnote 57.

The only detailed discussion published up to now of Popper’s theory is Lejewski’s
1974. After that date I have only found Shaw’s and Lyons’s short statements /977 on
a special aspect of Popper’s theory, Shoesmith’s and Smiley’s 7978, 35, remark,
Bartley’s short discussion (1980, 69—70 and /982, 176—178), and some references in
footnotes, in spite of the fact that the quantity of literature dealing with Popper’s
philosophy has been growing steadily from year to year. There exists some unpub-
lished material, of which T know only Brooke-Wavell’s Ph.D. thesis /958 which

1 Seee.g. Curry /949: ‘The whole program is very obscure, and has not been without serious error’.
Beth's /948 and Ackermann’s /948 and /949 — 1949 reviews contain no criticisms but only state-
ments of Popper's aims. Concerning Hasenjaeger's 1949 review see footnote 12,
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presents a truth-functional discussion of Popper’s logical rules without tackling the
problem of their justification, and Dunn’s Honors thesis 1963 discussing Popper’s
theory in some detail, partly following McKinsey /948 in his criticisms. Judging by
some remarks in Popper’s reply /974b to Lejewski’s /974 article in the Schilpp
volume on The philosophy of Karl Popper (Schilpp 1974), it seems that the negative
reactions or the lack of any reaction at all to his proposals kept Popper from further
work in this direction.’

The aim of the present paper is to show that in spite of the correct criticisms by the
above mentioned reviewers, Popper’s articles contain some very interesting philo-
sophical thoughts on the nature of deductive logic. More precisely, I think that they
contain a detailed and well-founded proposal for an answer to the question of the dis-
tinction between logical constants and descriptive constants, or in Popper’s termino-
logy the distinction between formative and descriptive signs.

This problem has recently been discussed anew (cf. Bjurlof 71978, Dofen 1980,
Field 71977, Hacking 71977 and 1979, Kuhn 1981, Lenk /981, McCarthy 1981, Pea-
cocke 1976, 1980 and 1981, Sundholm 7987 and Tennant 7980)," partly in connection
with growing interest in theories of meaning according to which meaning is deter-
mined by certain rules for the use of the signs considered. It may be that the main
theme of Popper’s articles fits in better with the present stage of discussion than with
that in progress at the time of their appearance.

When we try to elaborate Popper’s theory of what a logical constant is and to
present it as a proposal worthy of discussion, it seems that we have, at least in part, to
argue against his present view. In /947h he states that the question of the demarcation
of the logical constants was the main point he wanted to clarify (which is treated in
Lejewski /974 only marginally), but that he now thinks that it is insoluble and more
particularly, that no sharp demarcation between logical and descriptive signs can be
drawn. What we are going to show is that according to Popper’s reconstructed theory
the range of logical signs is indefinite and in this sense not sharply determined; how-
ever, the criterion we shall propose will make it possible to count certain signs as
logical, and certain others as not logical, so that the demarcation line is not
completely blurred.

In order to reconstruct Popper’s theory of deductive logic as a theory which
presents a definition of the logicality of signs we have to separate from it other
aspects which have given rise to the rigorous and entirely correct criticisms in the
above mentioned reviews. By this we mean in particular what may be called the
foundational aspect, namely, Popper’s programme to build up a basic semantics for
logical signs by means of so-called ‘inferential definitions’. Thus we think that the
attempt to distinguish logical signs by presenting at the same time a semantical
foundation for logic—an attempt made not only by Popper but also in most of the
recent work on the problem of logicality (with the exception of DoSen 1980)—fails,

2 Popper notesin /974a, section 27, that Tarski was not interested in his work on formal logic. This was
one of Popper’s main reasons for giving up his work on logic (personal communication, 1982)
although some unpublished material exists (cf. /974a, note 198).

3 Further references can be found in DoSen /980. For the discussion of this problem in the German
philosophical tradition see Lenk /968,
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but only because Popper’s semantical foundation fails. We find that the arguments
of the reviewers are directed only against the programme of a foundation of the laws
of logic by ‘inferential definitions’. It will turn out that once we give up this found-
ational claim of Popper’s programme we can extract from his work a precise criterion
of the logicality of signs.

In short, we shall interpret Popper’s ‘inferential definitions’, which are intended
to give a meaning to the logical constants, as conditions for the deducibility relations
concerning certain signs. These must be fulfilled if these signs are to be regarded as
logical, whereby the semantical justification of this deducibility concept itself must
be given elsewhere and is independent of these conditions. This means of course thal
the idea of reducing logical laws to pure definitions and thus of trivializing logic—an
idea which is often formulated in Popper’s papers—can no longer be upheld. What
remains is the more restricted but not less interesting problem of a definition of logic-
ality independent of a semantical foundation for logic.

In the next section we treat Popper’s theory as he himself presented it, while in the
third section we deal with the main objections to this theory. In the fourth section we
show how they can be avoided by abandoning Popper’s foundational claims, and in
the fifth section we discuss the definition of logicality which can be extracted from
Popper’s work after this reinterpretation of his programme. For simplicity we
consider only sentential connectives as examples of logical operators. In the appendix
we sketch the application of the proposed definition of logicality to quantifier logic (a
case that is considered by Popper himself in /947a¢— 1947¢). The systematic investiga-
tion of specific constants for logicality according to the proposed definition as well as
the comparison of logical constants in different logical systems (e.g. modal logic,
relevant logic, quantum logic, higher order logic) must be left for further work; it
would have to include an extensive discussion of Dosen 1980, which is the most highly
developed systematic approach to the problem of logicality. Here we are mainly inte-
rested in establishing a systematic reconstruction of Popper’s theory.

2. Popper’s concept of ‘inferential definitions’ of the logical signs
Popper’s starting-point is the assumption ‘that the central topic of logic is the
theory of formal or deductive inference’ (1947b, 193). Thus it is one of the main tasks
of logical theory to define the concept of a valid deductive inference (or ‘conse-
quence’, which we use in the same sense). Now we have already such a definition at
our disposal, viz. Tarski’s model-theoretical one, whose roots go back to Bolzano.
According to Tarski we can define an inference
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contants of 4 by variables which correspond to them according to a fixed bijection
between non-logical constants and variables (cf. Tarski /936). So the definition of a
valid inference presupposes the distinction between logical and non-logical con-
stants.

The slightly modified way of defining the validity of an inference which Popper
proposes is: (2.1) is valid if every form-preserving interpretation of (2.1) whose
premisses are true has a true conclusion. A form-preserving interpretation is a map-
ping between languages ‘which (a) preserves the meaning of all the formative signs,
i.e., gives a proper translation of all the formative signs, and which (b) preserves
recurrences of those groups of non-formative (descriptive) expressions which, in a
proper translation, would fill the spaces between the translated formative signs’
(1947a, 258). Thus this version too, which uses the concept of truth in an unanalysed
way instead of the concept of fulfilment of a sentential function, takes for granted
the distinction between logical and non-logical constants,

So the situation for Popper is that once we can draw a distinction between logical
and descriptive signs a satisfactory definition of logical inference is possible along the
lines of Tarski’s theory (cf. 7947a, 273)." We could therefore expect Popper to give a
definition of the logicality of a sign in order to supplement Tarski’s definition of a
valid inference. Popper, however, goes quite another way, which he describes as
follows (1974h, 1096):

Tarski showed that the concept of logical consequence can be easily elucidated
[...]oncewe have decided upon a list of logical or formative signs. My idea was
very simple: I suggested we take the concept ‘logical consequence’ as primitive
and try to show that those signs are logical or formative which can be defined with
the help of this primitive concept.

This formulation suggests that the definition of logicality presupposes a conceplt
of logical consequence, which itself must not be dependent on such a definition (if we
want to avoid circularities of definition). And this seems to mean that the definition
of logical consequence has to come first, and then the definition of logicality, or that
the latter has to use a sign for logical consequence as a kind of variable. The question
of logicality would then no longer be important for the definition of logical conse-
quence, which is taken by Popper to be one of the main tasks of logical theory, as we
have seen.

This, however, is a somewhat misleading view. The concept of deducibility is
Popper’s central concept and the logical operators obtain their meaning from roles
they play in deducibility relations. In this sense Popper’s programme is completely
different from the Tarskian approach, according to which the deducibility relation is

4 This had already been stated by Tarski /936, 1o whom Popper refers (1947, 251; 19745, 1096). The
concept of truth itself is not taken to be problematic by Popper (cf. 1947a, 265-267); in several
writings beyond the articles considered here he emphasizes that he conceives of Tarski's explication as
successful. Nevertheless, the theory of deductive inference developed by Popper in order to avoid the
problematic distinction between logical and non-logical signs in the definition of logical inference
does not need the concept of truth, since it is based on rules.
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justified with regard to logical operators with a previously given meaning. It is much
more related to Gentzen’s approach, whose natural deduction or sequent calculi are
intended to characterize the meaning of the operators involved.” This, however, does
not mean that the deducibility concept is completely undefined or taken to be given
elsewhere. The rules which determine the meaning of a sign (and whose special
properties make the sign a logical one) also characterize the concept of deducibility.
There is no non-trivial deducibility concept that does not employ rules for certain
operators. So it would be more adequate to say that the logicality of signs is explained
ina framework of a rule-governed semantic theory which is likewise explained, rather
than to say that a deducibility concept is presupposed as undefined (or as defined
elsewhere).®

When presenting Popper’s theory we use ‘a’, *b’, *¢’, ‘d’ and ‘e’, with and without
subscripts, as syntactical variables ranging over sentences of an object language
which remains unspecified and which may differ from context to context. We con-
sider only sentences since we have restricted ourselves to sentential logic. It is
assumed that for the object languages considered a deducibility relation is given. We
also speak of ‘derivability” which is used in the same sense; a similar situation holds
for *deducible’/*derivable’. Deducibility can be considered to be a 2-place relation
between finite and non-empty sets {a,, ... ,a,} of sentences and sentences a. Follow-
ing Popper we use the stroke */” as the basic metalogical relation sign to express this
relation:

‘a,, ...,a,/a means that @ is deducible from {a,, ... ,a,}.

When we say that a is deducible from «, or from «,, . .. ,a,; and a, we mean that a is
deducible from {a,} or {q,, ... ,a,}. When mentioning metalogical signs and formulas
we omit quotation marks, since it will be always obvious Irom the context whether
they are used or mentioned. Without indication we undertake some slight technical
improvements of Popper's formulations (e.g. by taking / to express a relation
between a ser of sentences and a sentence instead of a relation between an indefinite
number of sentences and a sentence).

a//b means the interdeducibility ol @ and b, i.c. @/b and b/a. Obviously // is an
equivalence relation. Inference rules can be represented as

[

Cr. Gentzen 1935, 189 (ed. Szabo, pp. 80-81). The close relation of his framework to Gentzen's seems
not to have been seen by Popper; only one short remark on Gentzen can be found in /948g, 181,

6 Some passages show that in spite of treating the consequence-relation in quite another framework
Popper does not entirely give up Tarski's concept of logical consequence. In 7947g, 287, he savs thar it
is @ problem, whether his new definition of the validity of an inference actually guarantees the trans-
mission of truth. This can be understood as if Popper required a soundness proof of his concept of a
logical consequence with respect to that of Tarski. This would coincide with statements often to be
found in Popper’s other writings that transmission of truth {(or equivalently retransmission of falsity)
is a central characteristic of logical inferences (cf. e.g. 1974, sections 27 and 32). But he does not
point out exactly the relationship between his alternative concept of derivability and Tarski’s. Also in
1947h, 203 (footnore), Popper states that his theory ‘opensa way toapplving Tarski's concept without
difficulty’. This secems also to be the result of Merrill’s defence 1962 of Popper’s theory against
McKinsey.
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where & and — are the metalogical conjunction and implication signs, respectively. m
may equal 0, i.e. the antecedens including — may be missing. Thus Popper does not
write rules as instructions regarding how one can produce signs from signs already
produced, but describes metalinguistically the effect such instructions have on the
deducibility relation. (Note that /is not, as Gentzen’s sequent arrow is, a sign belong-
ing to the object language.) The free variables in metaliguistic statements like (2.2)
are of course understood as universally bound. So we say that a metalinguistic state-
ment, in particular a rule of the form (2.2), holds or is valid, if the metalinguistic
statement holds which is obtained from it by universally quantifying over all
variables (i.e., in the case of (2.2), over all @’s and b’s).

As basic inference rules which describe the derivability concept independently of
the use of logical signs, Popper uses what he calls the generalized principles of reflex-
ivity and transitivity:

yy oo,/ (1<i<n 2.3)

(@,....a,/b &... &ay, ... ,a,/b, &by, ... b,/ a) 2.4)
= a,...,a,/a

These are, with minor differences (cf. Lejewski /974), the rules which according to
Tarski define a consequence relation. Popper calls these rules (and rules derived from
them) ‘absolutely valid’. More exactly, he defines a semantic concept of absolute
validity with respect to which these rules are complete.”

This deducibility concept, which is based on (2.3) and (2.4), is extended by prin-
ciples governing the use of certain object-language operators which are intended to be
justified as logical constants. The aim of these principles is to define logical constants
in terms of the derivability operator /. In order to explain what kinds of principles
Popper distinguishes we shall take the conjunction sign A of the object language as an
example. (Concerning our way of designating object-language signs, we adopt the
following convention: Atomic signs like signs for operators, parentheses and
commas, are used autonymously, i.e. designating themselves. A succession of meta-
linguistic signs denoting object-language signs or being syntactical variables for
object-language signs denotes for all values of the variables the result of the con-
catenation of the signs denoted.)

For conjunction Popper first proposes the principle: ‘The statement ¢ is a con-
junction of the two statements @ and b if, and only if, ¢/a, ¢/b and a,b/c’ (1947b,
206). This is obviously an explicit definition of a 3-place metalogical predicate * . . . is
a conjunction of ...and ... . [t may be abbreviated as:

7 We omit a presentation of Popper’s definition of absolute validity, which is a special version of
Tarski’s validity concept, in this special case not depending on the concept of a logical sign. Popper
also sketches a way 1o avoid employment of the truth-predicate (/947a, 274-281). He presents too
another approach 1o absolutely valid rules which uses the conjunction sign. He claims that the second
approach is deductively stronger than the first, a claim which was shown to be false by Curry /948a
and [948c.
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Conj (c,a,b) ~— (¢/a & ¢/b & a,b/c), (2.9)

where < is the metalinguistic biconditional. (Other metalinguistic constants besides
&, — and <, for which we use abbreviations, are negation ~ and universal quanti-
fication ¥.)(2.5), being simply an explicit definition, is independent of whether the
language considered possesses a statement ¢ being a conjunction of @ and b for every
two statements @,b in the sense of (2.5), and of how many such conjunctions of @ and
b exist. Whether a language contains a conjunction is determined as follows: ‘A
language L contains the operation of conjunction if, and only if, it contains, with
every pair of statements, ¢ and b, a third statement ¢ which is the conjunction of @
and b (1947b, 206). These different definitions show that Popper wants to dis-
tinguish between abstract definitions of logical signs and their application to particu-
lar languages.

That Popper here speaks of the conjunction presupposes that a conjunction of @
and b is uniquely determined. But this cannot mean that if ¢, and ¢, are conjunctions
of @ and b, then ¢, and ¢- are identical sentences. ‘Uniquely’ means ‘uniquely up to
interdeducibility’; i.e. if ¢, and ¢, are conjunctions of ¢ and b, then ¢,//¢,. More
formally,

Va,b,c,,c. ((Conj(c,,a,b) & Conj(c,,a,b)) — ¢,/ /c,).

This can be proved by use of (2.5).

Thus, if the language considered contains the operation of conjunction, instead
of regarding conjunctions of @ and b we can use abstract terms with respect to inter-
deducibility //. These abstract terms may be denoted by @ A b. If we conceive the
abstract terms as denoting equivalence classes we may say that @ A b denotes the equi-
valence class with respect to // of all conjunctions of g and b."

When we want to use such abstract terms like @ A b as sentences, we have to define
how to apply our deducibility relations to them. Assuming that a ‘substitutivity
principle for logical equivalence’ holds (cf. Popper 1947b, 203), i.e. that derivability
is not affected if a sentence is replaced by a //-equivalent of it, we can identify a A b
with its arbitrary representatives, i.e. define:

a,...,ay,/an biff for an arbitrary conjunction cof ¢ and b: a,, ... ,a,/c,
a,,....anb,....a,/diff foranarbitrary conjunctioncofeandb:a,,...,c,...,a,/d.

The procedure just sketched means that we have enriched a language which contains
the operation of a conjunction by a standard name a A b for the conjunction of each

8 A concept of abstraction with respect to an equivalence relation, which does not depend on the form-
ation of equivalence classes, was introduced by Lorenzen [955, section 10, and [962. It has the
advantage that it can also explain the formation of classes (and in particular of equivalence classes) as
a result of abstraction.
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pair a,b. Since the use of @ A & in deducibility contexts is now explained, we can treat
signs of the form a A b like usual sentences.

According to our introduction of @ A b, ¢//a A b expresses that ¢ is interdeducible
with a conjunction of @ and b and therefore itself such a conjunction. So ¢//a A b
means the same as Conj(c,a,b), and we can write instead of (2.5):

c/lanb < (c/a & c/b & a,bf). (2.6)

(2.6) is considered by Popper to be a reformulation of (2.5), expressing more clearly
‘that what we have defined is not so much the conjunction of @ and b but the precise
logical force (or the logical import) of any statement ¢ that is equal in force to a con-
junction of @ and b’ (1947h, 208).” (2.6) is called an ‘inferential definition’ of con-
junction. Inferential definitions of other signs have a similar form; those for (object-
language) implication >, classical negation — and disjunction v, for example (I use
Popper’s somewhat unusual symbols) are (1947b, 218):

a’/b>c¢~— Vala/a~—a,b/c) 2.7)
a//—b <~— Va,blaa/b = (a,a,/b, &a,,b,/b)) (2.8)
v a//blc'——* Vala/a, < (b/a, & c/a)). (2.9)

For some operators Popper gives different (but equivalent) inferential definitions;
another inferential definition for A is:

a//bac~— Val(a/a, = b,c/a,)." (2.10)

The general schema which underlies the various inferential definitions Popper
presents for sentential operators can be stated for an n-ary sentential operator S as
follows:

a//Sla,, ....a,)— Aa,a,,....,a,). (2.11)

9 The treatment just presented (particularly of @ o b as an abstract term) is mainly an interpretation of
mine. | see no other way to understand Popper’s claim that (2.6) is identical with (2.5). This interpre-
tation is suggested by Popper’s calling @ A b a ‘variable name” of the conjunction of @ and b (/947h,
207) which I can interpret only as ‘abstract term’ in the sense explained above (cf. especially 719475,
214, lines 22 to 27). (2.6) presupposes of course the existence of an operation of conjunction whereas
(2.5) does not: this will be one of the points of criticism to be described in section 3.

10 Cf. 1947b, 218-219. In /949 Popper emphasizes that his inferential definitions often use certain
maximality or minimality features of compound expressions with respect to deducibility. According
to (2.7), b > ¢is, for example, the weakest sentence from which, with b, ¢ is deducible. According to
(2.10), b a cis the strongest sentence deducible from b,c. A systematic account of logical operators as
forming sentences which are in certain aspects strongest and weakest sentences has been undertaken
by Tennant /978, 74—77 in his ‘principle of harmony’. For a discussion of this principle cf. Over 71979,
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Here A(a,a,, . ..,a,)is a formula of the metalanguage, containing no more free syn-
tactical variables for sentences than a,a,, ... ,a, and / as the only predicate sign (i.e.
besides / only logical operators of the metalanguage). One could, as Popper does,
consider also inferential definitions containing on the right hand side operators of the
object language for which inferential definitions are already available. This,
however, is not essential as will be shown in section 5 at (5.6)—(5.11).
Analogously, we can formulate as a general schema for explicit definitions like

(2.5):
L (a,a,....a,)~— Aa.a,....a,), (2.12)

with the same restriction for (a,a,,....,a,). Lsisan (n+ 1)~ place metalinguistic

predicate, L ¢(a,a,,...,a,) may be read as ‘a is an S-connection of a,,...,a, .
Popper distinguishes ‘characterizing rules’, i.e. inference rules characteristic for

an operator from inferential definitions of the form (2.11). For a these are the rules

anb/a anb/b a,b/anh (2.13)

or alternatively
anb/c—ab/c (2.14)
(which is a pair of rules), for implication the rules
a’'b>c < ab/c, (2.15)
and for classical negation
—a,b/—c ~— ¢,b/a. (2.16)

These characterizing rules, also called *primitive rules of derivation’, are rules which
are considered to determine the meaning of the operators involved (/947b, 213-215);
Popper even speaks of ‘contextual definitions’ (/947b, 217). Characterizing rules are
rules of the kind we know from Gentzen-style systems, i.e. rules concerning in cach
case one characteristic operator.

So we have two kinds of metalinguistic expressions: definitions of form (2.12) and
inferential definitions of form (2.11) on the one hand, and characterizing rules
{(which have no standard form) on the other hand. Popper mainly discusses infer-
ential definitions which he considers to be equivalent to definitions of form (2.12). In
many cases (for example the standard sentential operators) the inferential definition
of an operator holds it and only if certain rules hold; then the rules are characterizing
rules of the same operator for which the inferential definition is given. He also speaks
of fully characterizing rules (1948b, 113). For example, the rules (2.13) hold iff (2.10)
holds, so they are characterizing rules of the conjunction operator, inferentially
defined in (2.10). In such a case the characterizing rules and the inferential definition
are interchangeable (/947h, 219).
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This does not mean that the relation between characterizing rules and an infer-
ential definition is not significant: If certain rules for an operator are reducible to
inferential definitions, these rules can really be considered to be definitions deter-
mining the meaning of this operator (1947b, 219). That is, these rules are not simply
laid down (as Popper thinks is the case in customary systems of logic) but are conse-
quences of inferential definitions of the signs involved, and vice versa. Precisely due
to their relation to inferential definitions, fully characterizing rules are not arbitrary
but possess a defining character. By showing that rules for an operator are fully
characterizing rules relative to an inferential definition of the operator, Popper tries
to give a semantical justification of these rules. And since this is possible for the usual
operators of sentential and quantifier logic, he believes himself to have given a justifi-
cation of logic. This is done by reducing rules to inferential definitions; so he can say
that ‘we obtain the whole formal structure of logic from metalinguistic inferential
definitions alone’ (/947c, 562). Thus, according to Popper, all rules of logic are
derived from pure definitions of the logical operators, and logic becomes a trivial
matter.

Logic can therefore be described as containing, besides absolutely valid rules,
characterizing rules for operators which can be shown to be equivalent to inferential
definitions. This suggests a criterion for the logicality of an operator: an operator,
characterized by certain rules, is logical iff these rules are equivalent to an inferential
definition of the operator. This is in fact the criterion Popper employs in /948b in
order to show that certain operators are not logical (/948b, 118; cf. section 5 below)."

3. Objections to Popper’s theory
We now discuss some objections stated by reviewers of Popper’s articles and by
Lejewski—objections that are wholly correct if one takes the theory as it stands. We
classify the objections in three groups. As the standard example of a logical operator
we have again chosen the conjunction sign.

3.1. First objection (Kleene and Lejewski). Popper’s so-called ‘inferential defin-
itions’, of which (2.6)is an example, are at the first glance not explicit definitions, in so
far as a complex statement stands on the left hand side of the biconditional; it contains
thesign //, which is not the sign to be defined. Popperis aware of this (though he some-
times speaks of ‘explicit definitions’; for example, 1947b, 218), when he says that not
the conjunctionitselfis defined, butitslogical force (/1947a, 286; 1947¢, 564). Wecould
retain the claim of (2.6) being an explicit definition if we interpreted the left hand side
¢//a A bto be a singular statement saying that ¢ is the conjunction of ¢ and b. In that
case we would interpret ¢//a a b as a three-place predicate .//.A. applied to ¢, @ and b.
¢/ /a nbwould then be synonymous with Conj(c,a,b), and a nbwould not be aseparate
sentence of the object language.

This interpretation, however, cannot be maintained. Popper uses, as Kleene points

11 For other aspects of Popper’s work which we are not discussing here, in particular for the relation of
Popper’s approach to Tarski’s theory of consequence and a formalization and equivalence proof of
both theories, sce Lejewski /1974,
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out in 1948, a A b as a substitute for ¢ when he derives the characterizing rules (2.13)
or equivalent rules from (2.6) (cf.Popper 1947¢, 565). In this way he presupposes that
a conjunction operator is already at our disposal. Thus Kleene shows that the infer-
ential definition (2.6) differs from an explicit definition (2.5) in that (2.6) makes an
existential assumption; thus (2.5) and (2.6) are not different formulations of the same
statement, as Popper thinks. This corresponds to our above reconstruction of his
claim that (2.6) be identical with (2.5) where @ A b was interpreted as an abstract term
for a conjunction of ¢ and b (presupposing that conjunctions of sentences always
exist). Thus if we want to use the inferential definition (2.6) in the way Popper does,
we first have to show that a conjunction of two sentences always exists in the lan-
guage considered. Popper, however, wants to justify certain rules as meaning-deter-
mining rules for conjunction by their relation to an inferential definition, and so he
must not presuppose the existence of this operator in the application of the inferential
definition. In this way, Kleene’s argument can be viewed as directed against Popper’s
semantical intentions: The inferential definitions cannot provide a semantics for
logical operators since they presuppose the existence of the logical operators with the
required semantical properties in the object language. "

Lejewski’s argument (1974, 644—645) is closely related to Kleene’s. He discusses
first Popper’s example (cp. 1947a, 284) of an inferential definition of a one-place
operator ‘the opponent of”, for which we use the abbreviation opp(.):

a//opp(b) «— Velb/a & a/c). (3.1.1)

From (3.1.1) we can derive, substituting opp(b) for @ and using reflexivity and transi-
tivity of /, Ve(b/c); hence any deducibility assertion could be obtained in the lan-
guage considered. Thus the acceptance of (3.1.1) would make the object language
inconsistent.” Lejewski sharpens this example by defining ‘the opponent* of’
(opp*(.)) by

a/lopp*b) — Velb/a & ~(b/c)). (3.1.2)

The acceptance of (3.1.2) would even make our metalanguage inconsistent.

The reason for this result, according to Lejewski, is that it is wrong to propound
(3.1.2) *as a legitimate definition without first satisfying ourselves that, in accordance
with our explicit or tacit presuppositions, for every statement b of L the opponent™* of
b was also a statement of L’. Thus the inferential definitions do not define a new
operation but give at most a name to the result of an operation (like conjunction),
which must first be proved to be existent in the language considered. So Lejewski
again stresses the existential presupposition of operations in the application of

12 Hasenjaeger 1949 stresses the same point: *Die Schlufifiguren werden als Gebrauchsdefinitionen fur
die logischen Verkniipfungen aufgefalt und gewinnen dadurch den Charakier von metalogischen
Existenzaxiomen, was Verf. [Popper] anscheinend tibersieht’.

13 One should note the similarities between Popper’s discussion of the operator ‘the opponent of” and
the discussions of Prior's operator ‘tonk’. Cf. Prior /960 and 1964, Stevenson 1960, Belnap 1962 and
Wagner J981.
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inferential definitions. The characterizing rules derived from inferential definitions
are no longer semantical rules defining an operator but describe properties of con-
Junctions etc. which already exist in a particular language.

The interpretation Popper gives of (3.1.1) suggests a hypothetical interpretation
of inferential definitions. That (3.1.1) yields a contradiction in the object language is
for Popper no reason to reject (3.1.1) as a correct inferential definition. He conceives
the result as a proof that ‘no consistent language will have a sign for ““opponent of
b'? (1947a, 284). And analogously, the metalinguistic contradiction resulting from
(3.1.2) could be counted as a proof that no language at all will have a sign for
‘opponent of . Then inferential definitions are to be read as: ‘/f an opponent of b
always exists in L then (3.1.1)’, *If a conjunction of b and ¢ always exists in L, then
(2.6)’, etc. To accept this is to accept Lejewski’s view that the inferential definitions
and characterizing rules do not determine the meaning of a sign but describe
properties of operations (viz. opponents, conjunctions, . . .) in given languages and
only give them a name. This is not unreasonable—it is in fact an original idea to con-
sider compound sentences S(a, ...,a,) as abstract terms represented by inter-
deducible sentences b which stand in a certain metalinguistically describable relation
T  to the arguments a,, . . . ,a,—but it is in strong conflict with Popper’s claim that
the inferential definitions and characterizing rules alone provide a semantics for
logical signs.

3.2, Second objection (McKinsey). Both the definiens of an explicit definition like
(2.5) and an inferential definition like (2.6) contain the deducibility sign /. Thus the
logical sign to be defined is defined in terms of the deducibility relation /. Hence /
must be definable independently of the logical sign to be defined. That, however, is
not possible. Only absolute deducibility (i.e. deducibility on the basis of the rules of
reflexivity (2.3) and transitivity (2.4)) is independent of inference rules for logical
operators. This concept however, is too weak to give the intended meaning to the
logical operators, as McKinsey 7948 shows by the example of Popper’s inferential
definition (2.9) of the disjunction sign v. From (2.9) we obtain

a//bve~—(b/a & c/a). (3.2.1)

Now it can be shown that if / is understood as absolute deducibility, a,....a,/d
implies that ¢ is identical with an a, (1 < i< n). Thus, if we understand on the right
hand side of (2.9) and (3.2.1) / in the absolute sense, it follows that if g is inter-
deducible with the disjunction of b and ¢, @ is identical with b as well as with c.
This completely counterintuitive conclusion shows that in his inferential defi-
nitions Popper must understand / in the specific sense based not only on absolutely
valid rules but also on inference rules for the logical operators.” On the other hand,
he wants to justify their rules by inferential definitions. Clearly this is circular. This
reinforces the point of the first objection. Popper’s inferential definitions can be used

14 There are, however, some passages suggesting that logical operators are defined in terms of absolutely
valid rules; see e.g. 1947q, 282,
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to check whether a given concept of derivability for a given object language contains
sentences which may be viewed as the result of applying operations of conjunction,
disjunction etc. to other sentences, and they can introduce signs like @ A b for such
sentences, but they cannot be used to justify the derivability concept itself. For that
further arguments are required.

3.3.  Third objection (Kleene). A definition like (2.5) is obviously a definition of a
3-place metalinguistic predicate “ . . .isaconjunction of .. .and . .. " and not a formal
definition of a sign within the object language itself. Similarly, an inferential defi-
nition like (2.6) or (2.10) is a metalinguistic characterization of A in terms of deduci-
bility, but not a formal definition or characterization in the object language. What
could best be considered to be a formal definition of A would be the characterizing
rules (2.13) for A; though they are metalinguistic expressions too, they have the form
of rules. We have seen that Popper in fact considers these rules to be meaning-
determining, in so far as they are derived from inferential definitions. That this is
insufficient has been shown by the two objections above.

Kleene 7948 presents a further argument, drawing attention to a passage in
Popper 1947¢, 569, where Popper compares his system with that of Principia mathe-
matica. Popper states that if in Principia mathematica a formula is provable which is
not intuitionistically valid and contains no negation sign (like Peirce’s formula
((a > b) > a) >a) the derivation of this formula in his (Popper’s) own system has to
use the definition of classical negation. Now according to Kleene this situation could
not obtain if we had only formal explicit definitions of the logical operators. ‘It
should make no difference whatsoever, in the case of a formula containing only **>"*,
whether or not the definition of classical negation has been stated’ (Kleene 1948,
174). This is, one could add, because definitions (and rules derived from them)
should be non-creative: rules of classical negation must not allow us to obtain new
derivability assertions not containing classical negation, if classical negation is a
defined operator. Another good example would be the case of the contradictory
operator opp with (3.1.1) as its inferential definition. Characterizing rules for opp
(for which we may choose the two rules a/opp(a), opp(a)/b) would make the
language inconsistent and are thus trivially non-creative.

So Popper’s theory involves more than only explicit definitions. A reconstruction
of his theory would, according to Kleene, have to make explicit the way of obtaining
deducibility statements for the object language within his metalinguistic system. This
would, as Kleene supposes, require an inductive definition of ‘obtainability’ of meta-
linguistic formulas from inferential definitions which would presuppose the logical
apparatus for which Popper is trying to give a foundation.

In 1963 Popper discusses an analogous subject with respect to the calculus of
probability, and allows definitions to be creative (he actually compares creative
definitions with ‘real” definitions in the traditional sense). This is, however, only a
different usage of the term ‘definition’ and no way out of the problem, since creative
definitions are no longer purely semantical stipulations but contain existence claims.
Popper is, in /963, aware of this when he says that the creativity of definitions of
operators forming from elements of a set Snew elements ‘can be eliminated by adding
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to our axioms a requirement demanding the existence of an element which has exactly
the properties of the element defined by the previously creative definition’ (1963,
183). The fulfilment of such existence claims, however, is not simply a matter of
stating an axiom: they may be, as the examples of opp and opp* show, fulfilled only
within inconsistent languages or no languages at all. This leads again to the first
objection above: Popper’s theory presupposes existence assertions and can be upheld
only by relativizing it to them.

The objections show that Popper’s programme to trivialize logic by reducing it to
pure definitions fails (at least in the way Popper attempts to doit). Itis not surprising
that mathematical logicians like Curry, Kleene and McKinsey were not, when review-
ing it, convinced by Popper’s theory.

4. The reconstruction of Popper’s theory

Going back to the philosophical motivation behind Popper’s approach, we see
that it was not primarily his intention to trivialize logic by reducing it to definitions
alone (an aim which has been shown by his critics to fail). His starting-point was the
problem that Tarski’s definition of logical consequence presupposed a division of all
signs into logical and extra-logical ones, and, therefore, a criterion of the logicality of
signs. And what Popper primarily wanted to present was exactly such a criterion.
Had he seen himself in a position to give it without using the term ‘logical conse-
quence’ or ‘deducibility” he probably would not have written a paper on the found-
ations of logic, because then the foundations of logic could have been given by
Tarski’s definition of logical consequence supplemented by Popper’s definition of
the logicality of signs. But since Popper’s proposal for a distinction of logical signs is
given within the framework of a theory of deducibility, the problems of the definition
of the logicality of signs and of the definition of logical consequence appeared to be
closely connected. This may be the reason why Popper treated as one task both the
definition of logicality and the provision of a foundation for the concept of logical
inference. The aim, however, to give a foundation for logic and logical inference was
a secondary goal dependent on the primary goal of defining logicality. The quotation
from 1974b, 1094, given above in section 2, confirms this view.

Since the objections described in section 3 are directed against this secondary goal
we have two possible ways of saving a major part of Popper’s theory. Firstly, we can
give an exposition of his definition of a logical constant which does not refer to the
concept of deducibility; secondly, we can give an exposition which does refer to the

) concept of deducibility but not in such a way that a solution of the problem of

L 74 defining deducibility is logicalpresupposed or equivalent to the definition of logical-

ity. The former possibility does not really exist since it would result in a theory com-
pletely different from Popper’s; thus we must confine ourselves to the latter.

Our proposal will be to give a definition of logicality in Popper’s sense within the
framework of deducibility. We will not, however, use this definition in order to
Jjustify certain inference rules for logical operators and hence a certain deducibility
concept but shall consider this concept to be given elsewhere. We shall accept his idea
that an operator characterized by certain rules is logical iff these rules are related in a
certain way to an inferential definition of this operator. But we do not accept his
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claim that this at the same time justifies the characterizing rules as rules semantically
defining the operator in question. Semantical justification of the characterizing rules
requires further arguments.

So we regard the semantical question of how deducibility rules can determine (or
even define) the meaning of a constant as a problem different from the demarcation
problem for logical constants. We give up the idea that the metalinguistic character-
ization of signs as logical signs gives a meaning to any sign, or that the fact that
certain rules are meaning-giving rules for an operator depends on its characterization
as a logical one. (Conversely, we do in fact hold that, if we are given meaning-
determining rules for a sign, then we can tell from those rules whether the sign is a
logical one. The definition of logicality itself, however, does not consist in stating
such rules but only in stating the necessary conditions such rules (or the deducibility
relation generated by them) have to fulfil, in order to be counted as rules for logical
signs.)

This does not imply that a theory of this kind is not possible. Kneale /956, or
Hacking /977 and 71979, for example, define the logicality of a sign by the specific
way it obtains its meaning (namely by introduction and elimination rules of a certain
form); something similar can be said for other modern positions. But that would
vield an entirely new theory and not a reconstruction of Popper’s theory (we would
have 1o discuss e.g. questions of non-creativity of characterizing rules and several
other problems).

So we arrive at the following view. The meaning of logical operators can be des-
cribed by certain characterizing rules governing the operators. The logicality of the
operators is established by the fact that these characterizing rules obey principles of a
certain form (inferential definitions). That the characterizing rules are meaning-
determining does not follow from this fact (as Popper erroneously assumed that it
does). What we can extract from Popper’s theory is a criterion of logicality and not a
satisfactory meaning theory.

That does not mean that Popper’s criterion of logicality presupposes such a
meaning theory. The idea that operators are logical if their rules fulfil inferential
definitions may be formulated as follows. If we want to build up a meaning theory
for logical operators, the resulting rules which describe the meaning of those oper-
ators should be of such a form that they fulfil inferential definitions. That is,
Popper’s theory formulates restrictions for a semantic theory if it is to be a semantic
theory for logical signs. In other words, if we want to justify a certain deducibility
concept within a semantic theory and want the signs this deducibility concept deals
with to be logical signs, our semantic theory has to fulfil certain restrictions. The
restrictions are given by the admissible formulations of inferential definitions.

From this point of view we may interpret the inferential definition of an operator
S as an adequacy condition for a deducibility concept and rules describing the mean-
ing of S. What Popper calls an inferential definition of e.g. A can be conceived as an
adequacy condition for a semantical justification of certain rules which are intended
to represent the meaning of A. An operator is logical if an adequacy condition of a
certain form can be stated for its rules.

This view of inferential definitions as adequacy conditions for a semantical
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justification of rules has the advantage that the definition of logicality does not refer
to a special kind of semantical justification of rules. Popper’s definition of logicality
is compatible with a semantical justification ¢.g. of the rules of Ain a truth-condition-
semantics, in a game-theoretical framework, in a Gentzen-Prawitz-style framework
where meaning is determined by introduction rules for operators etc. It is only
required that the result of such a semantical justification is formulated as a deduci-
bility concept for sentences containing the operator in question. (We need not even
require that this relation be recursively enumerable; in that case we should not speak
of rules which characterize the meaning of an operator.) As opposed to this, all other
approaches, aside from Dosen 7980, to the question of logicality quoted in section 1
above use definite semantical frameworks which are not easy to compare with one
another. And end of the discussion as to which semantical framework 1o choose tor
an investigation of logical operators is not in sight. What makes Popper’s definition
of logicality (in our reconstruction) so interesting is its independence from these diffi-
cult questions of the foundations of semantics.”

Before going on to a more detailed exposition ot Popper’s definition ot logicality
we may sketch the way in which our proposal avoids the three objections mentioned
in section 3.

Firstly, since inferential definitions are no longer considered to be meaning deter-
mining but instead adequacy conditions there is no reason to require them to be
explicit definitions. Furthermore, it need no longer be assumed that inferential defi-
nitions of the conjunction and disjunction sign etc. presuppose that the language con-
sidered already contains conjunctions and disjunctions etc. in the sense of definition
(2.5) or generally (2.12). Adequacy conditions may be unsatisfiable (whereas seman-
tical determinations must be satisfiable by the operator they want to define). The
inferential definitions of opp and opp* are examples of adequacy conditions which
cannot be fulfilled respectively by any given consistent language or by any language
at all.

Secondly, that the inferential definitions presuppose the sign / presents no diffi-
culty. As adequacy conditions for the justification of a deducibility concept they have
to contain a sign for deducibility. A definitional circularity can only obtain for real
definitions, not for adequacy conditions.

Thirdly, that Popper’s theory lacks a semantics for the formal signs considered
and presents only metalinguistic explicit and inferential definitions is an objection
only as long as one wants to provide a semantics for logical signs.

5. What is a logical constant?

We have shown that we can avoid the criticisms of Popper’s theory if we put aside
his claim to give a semantical foundation for logic and interpret his ‘inferential defi-
nitions’ as adequacy conditions for systems of rules for logical operators (to be
justified semantically elsewhere). Now we want to discuss the definition ot a logical

15 Ouwr interpretation of inferential definitions as adequacy conditions does not affect the status of
explicit metalinguistic definitions like (2.5). They can as before be used to introduce by abstraction
¢.g. an operator A, if for sentences @,b a conjunction ¢ (where ¢ need not have a specific form) always
exists. But this introduction of an explicit operator does not eo ipso provide a semantics for it.
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constant resulting from this proposal. We present it in a systematic way (with respect
to sentential operators), in some points deviating from Popper’s ideas.'®
We define an n-place sentential operator S to be a logical operator if

a//Sla,,...,a,)— dAa,a,....a, (5.1)

holds, where d(a,a,, .. .,a,)is a formula of the meta-language containing no more
free syntactical variables for sentences than a,a,,...,a,, no name ot a sign of the
object language, and / as the only predicate (besides metalinguistic logical signs). We
use Popper’s term ‘inferential definition’ for (5.1), though we are aware that we do
not consider it to be a definition. Contrary to Popper, we do not require that (5.1) be
cquii--alcm to characterizing rules for §. (5.1)is an adequacy condition for rules for an
operator S and for a corresponding deducibility concept; so it formulates deducibility
relations involving the operator S which have to hold if we want to consider Sto be a
logical operator.

We can give a related definition of the logicality of (n + 1)-place metalinguistic
predicates L g, defined explicitly by

¥(a,a,,...,a,)~— Aa,a,,....a,) (5.2)

where J(a,a,, ... ,.a,)is of the form stated above. We define L g to be a logical rela-
tion, if for all a,,...,a, there is an @, unique up to interdeducibility, such that
L (a,4q,,...,a, holds (with regard to the object language considered)."”

Whereas the first definition defines the logicality of a sign of the object-language,
the second definition defines the logicality of a relation between sentences. It is, how-
ever, immediately obvious that if Sis a logical operator in the first sense, the relation
between a,a,, . . . ,a,, and a, which holds if a is interdeducible with S(a,,....,a,)is a
logical relation in the second sense. Conversely, if we have a logical relation L gin the
second sense, we can introduce an n-place operator S of the object language such that
S(a,, ... ,a,) represents as an abstract term all the &’s for which L¢(a,a,....a,)
holds (cp. section 2 above); Sis then logical in the first sense. Logical operators are
just the operators introducible from logical relations by abstractions with respect to
interdeducibility. Thus it makes no difference for our purposes which definition of
logicality we consider; we shall choose the first one.

It is important to note that the definition of logicality includes the uniqueness of
the operator concerned. If we have

16 Thiscanonly be a sketch of some ideas, not a fully worked out theory. Such a theory has recently been
presented in great detail by Dofen /980 and applied 10 various logical systems including modal and
relevance logics. Dofen’s theory shares with the view presented here the emphasis on the point that
questions of logicality must be sharply distinguished from questions of semantics,

17 The requirement that the first argument of L ¢ be unigue up to interdeducibility could be included in
definition (5.2) by formulating it as

Leta, ay,....ay) ~ Vhib//a <~ Aba,,...a,).
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a//Sia,,....a,) — Aa,a,,...,a,
and
a'/Sia,,...a,)— Aa,a,,....a,)
for different n-place operators S, and S,, we can infer
Siay,...,a,)/ /Ssa,,....a,).

So operators which are not determined uniquely in this sense by their semantical rules
cannot be counted as logical according to our definition. This will be the case with
negation in Johansson’s minimal logic (sce below). I

In the following we have to show how far the proposed definition of logicality is
an adequate explication of what we associate with such a concept. Furthermore, we
must defend it against possible objections. We start with an objection concerning the
deducibility concept.

The definition of logicality refers to a framework in which the meaning of oper-
ators is given by certain deducibility relations. That does not mean that the semantics
of an operator must be given in terms of deducibility or of rules, but only that the
semantics justilies in the end certain deducibility relations, whatever kind of seman-
tics may be applied. Nonetheless, the definition of logicality does not leave com-
pletely open what properties the deducibility relation / may have. That Popper 1akes
the generalized rules of reflexivity (2.3) and transitivity (2.4) as basic might suggest
that they must be supposed to be features of the framework. This again would rule
out important arguments against the general validity of these rules—as developed
¢.g. in the discussion on relevant implication and the logic of entailment—from con-
sideration. However, it is not necessary to regard the generalized rules of reflexivity
and transitivity to be parts of the chosen framework.

What is required in essential arguments (e¢.g. for the equivalence of our two forms
of definitions of logicality and the uniqueness of operators fulfilling the same infe-
rential definition) is solely that

// 1s an equivalence relation, (5.3)

18  One can even prove the stronger result: that if

a’/Spla, .. .. any < Ayla,a,, . . ay),
al//Sslay, ..., ay) < Aslaay, ..., d)
and
A a.ay, ..., a,)— As(a.a,. ..., )
hold, then
Silay, oo/ /Sytay, ... ).

This means, for example, that if classical negation — and intuitionistic negation — are both present in
a system, we have —a// 1a. Cf. Popper 1948b, 113114,
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and
/ is invariant with respect to //, (5.4)
i.c.
ifa,,...,a;,...,a,/aand a,//b, thena,,....b,....a,/a,
and

ita,,...,a,/Jaand a//b, thena,,...,a,/b.

These are very weak properties, and it is hardly possible to dispense with them since
they are involved in the concept of *uniqueness up to // with respect to deducibility’.
These conditions are fulfilled e.g. in the system of entailment of Anderson and
Belnap /975.

That no more conditions are required for the supposed deducibility relation / has
consequences for the formulations of inferential definitions of operators, if we want
stronger principles for / to hold. The classical and intuitionistic operators as they are
used in the ordinary systems of natural deduction require a framework in which the
generalized principles of reflexivity and transitivity hold, so these principles must be
added to the inferential definitions. As an inferential definition of conjunction in
classical or intuitionistic logic (2.10) is no longer sufficient; one should take e.g.

a//bac—— [Vea/c, < b, (qu) & W], (5.9

where T contains (2.3) and (2.4)."

Besides the deducibility concept with some minimal propertics the definition of
logicality presumes of course the distinction between sentences and other linguistic
entities, in so far as use is made of variables for sentences of the object language.
This, however, is no real objection. A constant is always a constant of a certain
syntactical type, and in order to define the logicality of a constant we may presuppose
a certain distinction between these types. The logicality of a sign depends on certain
(adequacy) conditions for its semantics, and the latter obviously must assume syntac-
tical distinctions to be given. Also the fact that, when adding the principles of reflexi-
vity and transitivity to inferential definitions we have to use variables for finite sets of
sentences, presents no problem, since finite sets of sentences are not more problem-
atic than sentences themselves.

The restriction that in (5.1) A (a,a,, ... ,a,) must not contain any operator of the
object language (more precisely: names for such operators) provokes a further objec-
tion. It seems to make sense to allow A(a,a,, . .. ,q,) 10 contain operators which have
already been shown to be logical. In Popper [1947b, 219, we find e.g. an inferential
definition of the ‘alternative denial’ A of the form

19 Popper’s own attemplt 1o connect the principles of reflexivity and transitivity with the inferential defi-
nition of A (e¢f. [947c, 565) contains some errors, as Curry /948 pointed out.
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a//bAc < a//—(b Ac) (5.6)

where — and A are operators for which inferential definitions are given by (2.8) and
(2.10). However, (5.6) can be transformed into an equivalent inferential definition
whose right hand side uses no operator. We can eliminate — by first transforming
(5.6) to

a//bhe<~—Vd(Va,,b/(d,a,/bnrc—(da,/b, &a,, b/bAc))
= a//d) (5.7)

and then transforming this to

a//bhc < Ve(Vc (e/c, = b,c/c,) (5.8)
- Vd(Va,,b(d,a /e~ (d,a,/b, &a b /e))—a//d)).

Using the inferential definitions (2.8) and (2.10) and the principles for // and / men-
tioned above, (5.6), (5.7) and (5.8) can easily be proved to be mutually equivalent.
In general, let an (improper) inferential definition

a//Slay,...,a,) ~— A(a,a,,....a,) (5.9)

be given containing within @(a,a, ... ,a,) an occurrence of S,(4,, ... ,A,) as an
argument of /, where A4,,...,4,, may be built up from sentential variables and
possibly further operators. Let a (proper) inferential definition

a//Sia,,....ay,)— A(a,a,....a,) (5.10)

be given, where @ ,(a,q,,...,a,) fulfils our restrictions. Then (5.9) is obviously
equivalent to

a’/Stay, ....a,) = VbA(b,A,...,A,)~ A'@a,...,a,)) (5.11)

where @' (a,q,, ... ,a,)is the result of substituting b for the considered occurrence of
S(A,, ..., 4,)in @(a,a,,...,a,). This equivalence contains at least one occurrence
of $,(A,,...,A,,) less than (5.9). By repeated application of this procedure we can
eliminate from @(a,a,, . ..,a,) each operator different from S and arrive at a proper
inferential definition in our sense. This reduction only uses the above mentioned
principles postulated for /. This is, however, only a proof sketch. For the inductive
proof one has to choose an induction value which takes into account also the com-
plexity of §,(A,,...,4,,).

The most serious objection to the proposed definition of a logical operator is that
it takes for granted the distinction between logical and non-logical operators in the
metalanguage when we require that the right hand side & (a,q,, ... ,a,) of an infer-
ential definition (5.1) may contain besides / only logical operators. We could avoid
this circularity if we did not speak of ‘logical operators’ in general, but of specific
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operators, e.g. ¥, =, & and ~; our requirement would then be that (a,qa,,....a,)
may contain besides / only these specific operators. Here the term ‘logical operator’
no longer appears. There would be no circularity if we used certain operators (e.g. =)
in the metalanguage to state the conditions an operator of the object language (e.g. >)
has to fulfil in order to be logical: we may use the metalinguistic sign = to formulate
an inferential definition for the sign > of the object-level. In doing so we would not
employ the distinction between logical and metalogical signs on which the conditions
for inferential definitions rest.

This is what Popper seems to have in mind when he emphasizes that the use of
logical expressions in the metalanguage does not conflict with the definitions of the
corresponding signs in the object language, since they are signs of another language
(1947a, 288-289; 1947h, 233-235; cf. Kneale /948, 158). The argument is quite
correct, but it holds only as long as we do not want to justify why we choose this
metalogical definition of logicality referring to these specific operators and not
another one allowing other signs. And it is this justification which requires the dis-
tinction between logical and non-logical signs.

So we have reached the point at which we must give positive reasons why the pro-
posed definition of logicality explicates what we mean intuitively with this concept.
Popper himself says nothing on this important point. We have to argue that the defi-
nition of logicality transmits the idea of topic-neutrality usually connected with the
concept of logicality.” That means in the present context, where we take the meaning
of a sign to be given by certain deducibility relations, that the validity of these rela-
tions does not depend on properties specific to some context; or at least that the
operator considered is uniquely determined already (up to interdeducibility) by
deducibility relations which can be described without reference to any ‘material’
context. This is exactly what an inferential definition does: It describes the deductive
meaning of an operator by purely logical concepts and requires that this meaning is
determined uniquely.*' That is, the definition of logicality preserves the idea of logic-
ality because the metalinguistic operators which inferential definitions contain
besides / are purely logical. So not the formulation but the justification of the defi-
nition of logicality has to use the distinction between descriptive and logical signs.
Thus we arrive at a circle which is not a circle of definition but a circle of justification:
even if we define the logicality of a sign of the object language not by using the term
‘logical sign of the metalanguage” but by referring to certain signs of the metalan-
guage leaving open whether they are logical or not, in the justification of the defi-
nition we have to argue that they are logical. (This seems to be the point of the argu-
ment of Shaw and Lyons 1977.)

20 The term ‘topic-neutral” seems 1o have been introduced by Ryle /1954, 115116, as cited in Dunn /963.

21 So the uniqueness condition implicit in inferential definitions is of great importance. If an inferential
definition could be fulfilled without guaranteeing the unigueness of the operator considered we could
extend the meaning of that operator by empirical conditions without affecting the fulfilment of the
inferential definition. The uniqueness condition means that no ‘real’ extension of the meaning of an
operalor, as given by deducibility relations which are described in logical terms, is possible, i.c. that
the meaning of the operator is in some way maximalized. Negation in Johansson's minimal calculus,
for example, lacks this uniqueness and can thus be shown to be non-logical in the sense of our defi-
nition (see below).
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Now this circularity is not such a catastrophe as it might at first glance appear,
since we do not always have to use the logical constant in question in the metalingu-
istic inferential definition for a certain logical constant. If we look at the inferential
definitions for conjunction, implication, classical negation and disjunction (2.6) or
(2.10), (2.7), (2.8) and (2.9), we see that they use only the positive logical constants
V. & and —, and this remains true even if we consider quantifiers (see section 6), and
also for other types of negation such as the intuitionistic one. This shows that at least
a reduction of the question of logicality to the set { ¥, &, —} of constants is possible:
once we have a justification of these three constants as logical ones we can justify
many other constants as logical ones by means of Popper’s criterion.

This reduction is not unimportant, in particular with respect to negation. It shows
that negation, often considered to be a very ‘problematic’ constant, is only of second-
ary significance for this point; the main problem is that of justifying the ‘less prob-
lematic’ signs V¥, & and — as logical signs.™

The fact that in his consideration of constants of modal logic Popper uses meta-
linguistic disjunction, and that further signs perhaps require negation in the formu-
lation of their inferential definitions (cf. 1947¢, 570) does not affect the primacy of
V", & or —. Since we can establish the logicality of disjunction and negation with
respect to ¥, & and —, we may use them in the next step to justify certain other signs
as logical and so on. The picture we obtain of the range of logical signs within
Popper’s framework can thus be described as follows: The basic logical signs are V,
& and —. They cannot be justified as logical signs within the framework itself. By
means of ¥, & and — the logicality of other operators, especially disjunction, nega-
tion in various versions, existential quantification and equality can be established.
The additional use of these operators may justify further operators as logical, and so
on. In this way we obtain a hierarchy of logical signs whose basis consists of V', & and
— and in which the ‘lower’ operators may be used to justify the ‘higher’ operators as
logical. There is no reason to suppose that this hierarchy is of a definite height since at
each stage we obtain new means of expression which may be incorporated in infer-
ential definitions for logical signs.* This destroys a conception, held in particular by
Kant and his followers, that a complete account of all logical constants is possible
(see Lenk /968).

In this way we obtain a plausible interpretation of Popper’s theory not based on
circular argumentation. It must of course be supplemented by a justification of V', &
and — as logical constants. Since we are here concerned with a reconstruction of

22 Popper does not emphasize very strongly the principal importance of this reduction to certain basic
signs and only says that ‘this fact may be interesting for some reason or other” (/947h, 235); he
mentions, however, in /947c, 563, how few logical means are needed in the metalanguage. Carnap
1942, 5960, points out that the solution of the problem of demarcation for logical operators within
general semantics might be solved if the problem is solved for the metalanguage, but he does not take
into consideration the possibility of a reduction to certain central logical operators.

21 This does not contradict the result sketched above at (5.6)—(5.11) thatimproper inferential definitions
containing signs already introduced can be turned into proper ones containing no operators; it con-
cerned only operators of the object language but not the logical signs of the metalanguage which are
considered here.
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Popper’s theory, we shall give only a short and rather tentative sketch of the direction
in which such a justification might lic.

First, however, we present an example of an alleged logical sign which is in fact
not a logical sign according 1o our definition. This shows that not cach sign whose use
can be described by rules as a logical sign in the proposed sense; it is not enough
simply to encode the intuitions one has about a certain sign into the form of rules in
order to get a logical sign. We choose the negation sign of Johansson's 7937 minimal
calculus and reconstruct a proof given by Popper that it is not a logical sign (cf.
Popper 1948b, 116 -118). We have to modify Popper’s proof somewhat since we do
not assume the equivalence between characterizing rules and inferential definitions.

The negation sign considered, which we note as <=, is characterized by the single
rule

(ab/c & a b/ “=c)—a/ <=b (5.12)
(constructive ‘reductio ad absurdum’).”™ We suppose furthermore the generalized
rules of reflexivity and transitivity to be given. To show that <= is not a logical sign
we have to show that <= does not fulfil

a// <= b < Aa,b) (5.13)

for any A(a,b) satisfying our conditions. Now consider the one-place operator +
characterized by the rule

a/ +b. (5.14)
+ is a logical operator since it fulfils the inferential definition
a’//+b <~ Velb/a <~—c/a),
or shorter
a// + b Ve(e/a).

(For the following argument it is not important that + is logical.) From (5.14) we
obtain the rule

(a,b/c & a,b/+c¢)—~a/+b (5.15)
(taking for granted the law 4 — (B — A)in the metalanguage), which is the complete
24 Popper states this rules wrongly as

a, b/ == ¢ —~ a,c/ ==b,

but that does not affect his argument.
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analogue of (5.12). If it were possible to prove (5.13) on the basis of (5.12), it would
also be possible to prove

a//+b~— Aa,b) (5.16)

on the basis of (5.15) and thus (5.14). (5.13) and (5.16) vield, in a system having
(5.12), (5.14), generalized reflexivity and transitivity as rules,

<=b// +b. (5.17)
In the same way we would obtain
<>b//—b (5.18)

for classical negation — (the same would also hold for intuitionistic negation), since
the analogue of (5.12) can be obtained from the rules of classical negation. (5.17) and
(5.18) yield

—b//+ b,
from which
a’b, (5.19)

i.e. the inconsistency of the system, follows. However, consistent systems with both
the operators — and + can easily be construed. (Already (5.17) would yield a contra-
diction, since it implies a/<=b.)

A closer inspection of this argumentation shows that it is the lack of uniqueness
which makes <> a non-logical operator (cf. Curry /948d). The single rule (5.12)
holds both for classical negation — and the trivial operator +, and the uniqueness
requirement which would be contained in an inferential definition of <= would make
them equivalent. This would no longer be possible if we added to (5.12) e.g. an
elimination rule for <= like

a,<=a’b (‘ex contradictione quodlibet’).

But then we would already have an intuitionistic negation.
A case comparable with <> would be an operator . having the single rule

a,b/a.b, (5.20)

i.e. conjunction with the elimination rule omitted. This operator could be preved in
an analogous way not to be logical, since both for conjunction A and a two-place
operator o, characterized by the rule

a’/boc
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and fulfilling the inferential definition
a//boc ~— Vdd/a),
rules
a,b/aob and a,b/an b

analogous to (5.20) would hold. This would, if . were logical and had an inferential
definition,

a//b.c~— A(a,b,c)
vield inferential definitions
a//boc = A(a,b,c)
and
a//bac = Aa,b,c)
which would imply
anb//aob.

From this again (5.19) would follow. Popper (/948b, 116—118) gives further
examples of negations for which no inferential definitions exist.

Finally, I want to sketch roughly what a justification of V, & and — as basic
logical operators could look like. I am not vet clear about these matters, so the
thoughts presented are very preliminary in character. First, it seems that we must
define ‘logicality’ positively and not define ‘descriptivity’ first and then ‘logical” as
‘non-descriptive’ (as Carnap /942, 5758, proposes for ‘special semantics’). That is
because the borderline of ‘descriptive’ is too hazy. Furthermore, it is doubtful
whether ‘descriptive’ and ‘logical” allow a complete division of all expressions: mini-
mal negation <= for example, which was shown to be non-logical, can hardly be
counted as a descriptive sign.

To solve our problem by simply stating certain rules for ¥, & and — and defining
them to be logical rules is by no means satisfactory; what we want to know is whether
and why such rules are logical. From a criterion for logicality in the style of the one
given above we cannot expect more success: It would have, too, to be a criterion
which does not use the operators ¥, &, = or other operators, since we want to justify
the logicality of other operators relative to the logicality of V, & and —. Thus it does
not seem to be promising to look for a ‘theoretical’ criterion, i.e. a criterion which
describes the logicality of an operator by properties of the deducibility relation.
As an alternative 1 want to propose a more pragmatic criterion in order



104 Peter Schroeder-Heister

to explain the topic-neutrality of ¥, & and —. Instead of trying to give such an expla-
nation in terms of the deducibility relation / we could ask what is involved in all
descriptions of the actions which underlie the deducibility concept. And if we could
show that just the three basic operators underlie the description of such actions, their
topic-neutrality would follow from the fact that no special content of action is pre-
supposed.

So we ask what means of expression must be at our disposal if we want to describe
the actions whose results are described metalinguistically by the deducibility relation.
This is a somewhat ‘transcendental’ question: we have chosen as our framework that
the meaning of operators is represented by certain deducibility relations; now we ask
for the means to describe the actions which underlie these deducibility relations. It
such a description were not possible, it would not make sense to assume the frame-
work itself, since it would not have real significance.

The actions underlying the deducibility relations can be characterized as rufe-
governed activities; in ideal form they are present in the production of signs
according to the rules for a formal calculus. This is immediately obvious if deduci-
bility relations are semantically justified via the justification of certain rules, i.e. if
deducibility relations simply describe the result of applying rules. But it holds also for
other semantical frameworks that deducibility relations state which inferences are
allowed, even if the rules themselves are not part of the justification of the deduci-
bility relations.

Now any description of such action uses a kind of “if' .. .then’, since it musl
express that if a certain action has been performed, rhen one may perform a certain
other action. Since a new action may depend on the performance of more than one
previous action, we must also have a kind of ‘and’ at our disposal: If actions A, and
A, ...andA, have been performed, then one may perform another action. Further-
more which actions may be performed is usually described only in the sense of certain
types of action and not as concrete actions. This makes it necessary to use V': for all
a,,....a,aoftypes A, ... A, Arespectively,if @, and ...a, have been performed,
we may perform a.

If this is correct, ¥, & and — are topic-neutral, since operators of this kind are
involved in each description of a deducibility concept /, which was the basis of all our
preceding discussions. In other words: If ¥, & and — had a specific material content,
they could not be used for the description of these most general actions presupposed
by any deducibility concept. An elaboration of this approach has to state in detail
which kinds of rules hold for the operators ¥, & and — so justified. The result would
be, as far as I see, the rules of positive logic for these operators, i.e. the usual intro-
duction and elimination rules for them. (This is also mentioned by Popper in /1947b,
235 and 1947¢, 563.)* There is no reason to take the stronger classical rules (which
make e.g. Peirce’s law derivable) and also no reason to choose a ‘relevant’ or related
version of =, It may be that ‘relevant implication” or similar operators can be shown

25 Because of the very restricted metalinguistic use of ¥ and —, Popper draws an analogy to Hilbert’s
programme: ‘Hier liegt in der Tat etwas Ahnliches vor wie in Hilbert’s Programm, eine finite Begriin-
dung fiir einen nicht-finiten Kalkil zu finden’ (personal communication, 1982).
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to be logical at a later stage of the theory and it may be that there are strong semantic
reasons for entailment logic. But the primary logical constants underlying each des-
cription of rule-governed activities seem to be the usual ones of positive logic.*®

6. Appendix: first-order quantifier logic

In order to extend the proposed definition of logicality to (first-order) quantitiers
we first have to state what kinds of operators quantifiers are. One possibility is to say
that they are variable-binding operators which are applied to formulas and yield a
formula. The other possibility is to consider quantifiers to be operators which are
applied to predicate terms and yield a formula. Here a predicate term (I take this
expression from Prawitz /965, 63) is an n-place expression which, when applied to
individual terms 7,, . . . .7, vields a formula. A special case of a predicate term is an
n-place predicate which yields a closed formula, i.e. a sentence, when applied to n
individual terms. This way presupposes an operation of building predicate terms
from formulas (e.g. by A-abstraction); the quantifiers themselves, however, do not
bind variables. According to the first possibility, we obtain the formula A, A(x,y,2)
from the formula A(x,»,z) by universal quantification with respect to x, where xis no
longer free in the resulting formula. According to the second possibility, we obtain
the formula A(Ax.A(x,v,z)) from the predicate term Ax. A(x,v,z) by universal quanti-
fication. Here the operation of binding the variable xis contained in the formation of
Ax.A(x,v,z) from the formula A(x,y,z) and not in the application of the universal
quantifier. The use of A-abstraction and the interpretation of A-terms as predicate
terms obviously presuppose a rule of A-conversion like

(Ax.A)r) = Alx/¢] for all individual terms ¢,

where A[x/(] denotes the result of the substitution of 7 for xin 4.

For the present purpose it seems to be better to choose the second approach. Then
we can dispense with problems arising from relabelling bound variables, from the
definition of an operation of substitution etc., because we need not deal with
A-abstraction explicitly in this context. We only need to have syntactical variables
a'\b'al.bl, ... fori-place predicate termsand t,7,,f,, ... for individual terms, and to
know that a'(r,,...,r;) is a formula for an /i-place predicate term @' and individual
terms f,, . ...4. As a special case we have a”,b", . .. as variables for formulas. We do
not need to determine explicitly how to form predicate terms [rom formulas or how
the application of predicate terms to individual terms works, i.e. we need not refer

26 [tisinteresting that the negation sign plays no basic role. That shows that the central paradigm is that
of deductive reasoning under the aspect of supporting statements by others and not under the aspect of
refutation. According to Popper this means that logic is considered primarily 1o be the *organon of
deduction, or proof” rather than the *organon of rational criticism” (Popper in Schilpp 7974, 1081),
that is. it is considered with respect 1o ‘its use in the demonstrative sciences, that is to say, the mathe-
matical sciences’ rather than to ‘its use in the empirical sciences’ (Popper [970, 18 = 1972, 305).
Although these aspects are closely connected, we may say that in dealing with formal logic Popper
does not (directly) employ the apparatus of his philosophical views developed in particular in his
philosophy of science. Lenk /970 proposes some ideas as a basis for a foundation for logic within the
framework of rational criticism. There, of course, negation becomes a basic sign.
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explicitly to a rule of A-conversion. In particular, it is not necessary to have an opera-
tion of substitution at our disposal. Such an operation would of course appear in a
particular formal system of quantifier logic, but it need not appear in inferential
definitions, i.e. in the conditions on which the logicality of a sign depends. What
remains in the definition of the logicality of signs is the unspecified application of
predicate terms to arguments.

Thus we avoid all the problems Popper 1947b has with his concept of substitu-
tion. He states rules for this concept which he takes to be implicit definitions of it
(1947bh, 194, footnote 1). He even uses formulations which suggest that he thinks
substitution to be a logical operation for which an inferential definition can be stated
(1947h, 225). An inspection of his rules shows, however, that they cannot be brought
into the form of an inferential definition of an operator of the object language. If at
all, Popper’s rules can be considered to be an implicit characterization of a meta-
linguistic operation. (In this way substitution is conceived in 1947¢, 563.) Besides this
there are some more other questionable points in his treatment of substitution and
quantification; for instance, his notion of ‘a does not depend on x” (‘a;’) (1947b,
226), and his inferential definitions of quantifiers which do not have the form

]

‘a// ... 0, butta/ /= o fa(l) L

(1947b, 228—-229 and Corrections 69—70). Popper himself saw the problems con-
nected with his concept of substitution, but an improved version of his theory has
never been published (cf. /974a, section 27 and note 198).

Arguments of / are now formulas and not only sentences. That is because we have
to take into account a deducibility concept in which the assertion of quantified formu-
las depends on the schematic derivability (i.e. derivability with free variables) of
certain formulas. This concerns sentential operators too, since they may occur in the
scope of a quantifier. Particularly, individual terms may include individual variables.

With a logical operator §, we have to associate not only a number n of places but
an n-tuple <a,, . ..,a,> of numbers which may be called its rype and means that the
i-th argument of S must be an a;-place predicate term. So we have: for an operator S
of type <a,,...,a,> and n predicate terms 4,,...,4, whose numbers of argument
places are a|, ... ,a, respectively, S(A,,...,A,)is a formula. An n-place sentential
operator now becomes an operator of n-ary type <0, ...,0>.”

As a schema for an inferential definition of an operator S of type <e,,...,a,>0n
which the logicality of S depends we can formulate:

a’//S(ai, .. apn) <= Ad,al, . .Lanm, (6.1)

where A (a",a!, ... ,a2") is characterized as (5.1) with the sole addition that the vari-
ables @, can stand for different kinds of entities. (6.1) includes, as a special case,
schema (5.1) for n-place sentential operators if a; equals 0 for all i (1 < i < n).

27 Ifwe had chosen the above mentioned first possibility and treated quantifiers as operators binding vari-
ables within formulas, each a; within a type <ay, . . . ,a,,> would have to be not simply a number but a
SCQUENCE.X; ...\ X, of variables, which are exactly those variables that become bound in the formula
being the i-th argument of §.
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As examples of inferential definitions of quantifiers we may state for the uni-
versLa] quantifier A (of type <I1>): ’l}]

@ /INDY) — PO /a <~ VH/B'(1))
and for the existential quantifier V (of type <1>):
a//N(B")y =— VA (ViHb'(1)/ ") ~— a’/c’).

More complicated examples are inferential definitions for the quantifier /of type <1,
1>, forming particular affirmative judgments in the sense of traditional syllogistics:

a//1(b' ") < Ve' (Vi(e'(t)/b'(1) & e'(1)/c\(1) &
b'(1),c (/e (1) = Vd (Vie' )/ d") < a°/d"))

or for the quantifier AV of type <2> with the intended meaning AV,

@ //NVB) == Ve' (Vi Ve (Vib*(t,,0)/¢) < e'(1,)/ ")~
Vd'(d°/a® «<— Vi(d/e'(1))).

Finally, we sketch how this kind of analysis can be extended 1o identity. Identity is
an operator which has two individual terms as arguments and has formulas as values.
Its inferential definition can be stated as follows:

a/lt =t == (Vb'(a",b'(1,)/b'(1,)) &
V(W' (c°,b'(1))/b'(15) & ¢ ,b'(1,)/b'(1,)) = ¢"/a")). (6.2)

Rules fulfilling (6.2) are e.g. those given in Hacking 7978, 618.%*
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