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UNIQUENESS, DEFINABILITY AND INTERPOLATION

KOSTA DOSEN AND PETER SCHROEDER-HEISTER !

This paper is meant to be a comment on Beth’s definability theorem. In it we shall
make the following points.

Implicit definability as mentioned in Beth’s theorem for first-order logic is a
special case of a more general notion of uniqueness. If a is a nonlogical constant,
T, a set of sentences, a* an additional constant of the same syntactical category as
o and T, a copy of T, with a* instead of a, then for implicit definability of a in T,
one has, in the case of predicate constants, to derive a(xy,...,X,) < o*(xy,...,X,)
from T, u T,., and similarly for constants of other syntactical categories. For
uniqueness one considers sets of schemata S, and derivability from instances of
S, U S, in the language with both « and o*, thus allowing mixing of « and a* not
only in logical axioms and rules, but also in nonlogical assumptions. In the first
case, but not necessarily in the second one, explicit definability follows. It is crucial
for Beth’s theorem that mixing of « and a* is allowed only inside logic, not outside.
This topic will be treated in §1.

Let the structural part of logic be understood roughly in the sense of Gentzen-
style proof theory, i.e. as comprising only those rules which do not specifically
involve logical constants. If we restrict mixing of « and o* to the structural part of
logic which we shall specify precisely, we obtain a different notion of implicit
definability for which we can demonstrate a general definability theorem, where o is
not confined to the syntactical categories of nonlogical expressions of first-order
logic. This definability theorem is a consequence of an equally general interpolation
theorem. This topic will be treated in §§2, 3, and 4.

Finally, in §5 we shall show that under certain conditions, which in particular
obtain in the case of implicit definability in the usual first-order case, the mixing of «
and o* in logic can be reduced to their mixing in the structural part of logic, which
makes Beth’s definability theorem a consequence of our general definability
theorem.
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§1. Implicit definability and uniqueness. Let L, be the set of formulae of a first-
order language including a nonlogical constant a; let L,. differ from L, by having
instead of « the nonlogical constant a* of the same syntactical category as «; and let
L, be the set of formulae of the first-order language with both « and a*. By PC(L,)
we shall denote the axioms and rules of the first-order predicate calculus in the
language of L,, and similarly for PC(L,.) and PC(L,,). Let T, be a set of sentences of
L,,and let T,. be obtained from T, by uniformly substituting a* for «. Furthermore,
let A(x) be a formula of L, in which « may occur, and let A(a*) be obtained from A(«)
by uniformly substituting a* for a. Then we introduce the following definitions:

DEerINITION 1. The constant a is implicitly definable in T, iff for every A(a), from
PC(L,,) v T, u T, we can prove A(x) «> A(x*).

DEFINITION 2. The constant a is explicitly definable in T, iff for every A(«) thereis a
formula B in L, without a such that from PC(L,) u T, we can prove A(x) < B.

Beth’s definability theorem states that these two notions of definability are
equivalent, i.e., a is implicitly definable in T, iff « is explicitly definable in T,. That
explicit definability implies implicit definability is rather trivial. The proof of the
converse usually proceeds via Craig’s interpolation lemma, which implies the
following: If from PC(L,,.) we can prove 4 — B*for Ain L, and B* in L., then there
isa Cin L, n L, such that from PC(L,,.) we can prove 4 — C and C — B*.

In Definition 1 we could have written only A(x) - A(a*)instead of A(x) « A(a*).
Itis clear that if we have A(x) — 4(x*) we have also its converse. Furthermore, since
we have standard theorems for replacement of equivalents and identicals at our
disposal, we might have restricted A(a) above to

X, =a if o is an individual constant,
X = a(Xy,...,X%—;) if o is a functional constant,
o if o is a sentence constant,
oU(Xgyeees Xg) if o is a predicate constant,

where x4,..., x, are individual variables. Next, we might have assumed that B has no
individual variables foreign to A(x). For suppose that the individual variables
Vis---» Y, foreign to A(a) occur in B. Then from A(x) « B we easily obtain
A(a) & dy,---3y,B.

What we have called implicit definability seems to correspond closely to
uniqueness: Intuitively, a constant a is unique iff any constant a* formally char-
acterized as o is synonymous with a. We shall now give a more precise definition
of uniqueness.

Let S, be a set of axioms or axiom-schemata without free individual variables
in L,, and let S,. be obtained from S, by uniformly substituting o* for a. Then we
have:

DerFINITION 3. The constant a is unique in S, iff for every A(a), from
PC(L,p) U S, U S,« we can prove A(x) «> A(a*).

This definition should be taken in the following sense: if in S, there are axiom-
schemata, then these axiom-schemata can be instantiated by formulae in L,.. That
is, an instance of an element of S, or S, may contain both a and a*. Implicit
definability is just a particular case of uniqueness when S, is a set of sentences T,.
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If S, is a set of axioms or axiom-schemata, let T,(S,) be all the sentences in L,
which are instances of S,. It is not difficult to show that if « is implicitly definable, i.e.
unique, in T,(S,), then it is unique in S,. But not necessarily the other way round, as
the following example shows. This example makes clear that in the proof of
uniqueness we might need to instantiate the schemata of S, in L.

Let L, be the set of formulae of the language of first-order formal arithmetic with
0, s (successor) and +. Let S, consist of:

(P1) —13x(sx = 0),

(P2) VxVy(sx = sy - x = y),

@) (B(0) A Vy(B(y) — B(sy))) = VxB(x),

(+1) Vx(x + 0= x),

(+2) VxVy(x + sy = s(x + y)).

In S, we have four axioms ((P1), (P2), (+1) and (4 2)) which are sentences, and
one axiom-schema (I). In S,. we shall have (P1), (P2), (I), (+*1) and (+*2), the last
two axioms being obtained from (+ 1) and (+2) by substituting uniformly +* for
+. In S, ;. we shall have (P1), (P2), (I), (+1), (+2), (+*1) and (+*2). Then we can
show the following:

PROPOSITION 1. The constant + is unique in S, .

PrROOF. Let B(y) be Vx(x + y = x +* y). Then using (+ 1) and (+*1) it is easy to
prove B(0), and using (+2) and (+*2) it is easy to prove Yy(B(y) — B(sy)). Hence, by
(I) we obtain VxVy(x + y = x +*y), from which it follows that from PC(L, ..
US4 U S, for every A(+) we can prove A(+) «> A(+*). O

PROPOSITION 2. The constant + is not unique in T,(S.,).

PRrROOF. Let M = (D, 0, s, + > be a nonstandard model of arithmetic. The domain
D of M has an initial segment H,, isomorphic to the natural numbers, and after H,,
we have the blocks of nonstandard numbers: ..., H,,..., Hj,..., where i, j,... are
indices of these blocks. Let M* = (D, 0,s, +*), where +* is defined as follows:

ifa,be Hy,thena +*b=a + b;
ifaeHyand be H;,thena+*b=a+bandb+*a=>b+ a;
if ae Hyand b e H;,thena +*b = (a + b) — s0.
Let f: M — M* be defined as follows:
if a e Hy, then f(a) = a;
if a e H;, then f(a) = a + 0.
Itis not difficult to check that f is an isomorphism. Hence for every sentence A(+ ) of
L, wehave M = A(+)iff M* = A(+*). Since M is a model of T,(S, ), we have that
M*is a model of T,.«(S;+). So {D,0,s, +, +*> isamodel of T,(S,) U T,«(S,.). But
in this last model for ae H; and be H; we have a + b # a +*b. Hence x + y
=z e x +*y = zis not provable from PC(L,,.) U T.(S,) U Ty (S4s). O
In second-order logic the schema (I) can be replaced by the sentence
VP((P(0) A Vy(P(y) = P(sy))) > VxP(x)).

Let S2 be the result of replacing (I) in S, by this sentence. Then, after extending
Definitions 1-3 to second-order logic, we would obtain that the uniqueness of + in
S2 amounts to implicit definability.
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What we can conclude from our example with + is that uniqueness in S, and
T.(S,) need not coincide because in the first case, but not in the second, we can
instantiate S, in the mixed language L,.. Roughly speaking, with implicit
definability the “mixing” of « and a* is confined to logic (where we may use
PC(L,,), not only PC(L,) U PC(L,.)), whereas with uniqueness in general it might
extend to the nonlogical assumptions (i.e., we may use T,.(S, U S,), not only
T.(S,) v T.(S,+). Beth’s definability theorem shows that uniqueness implies explicit
definability if we confine this mixing to logic in the proof of uniqueness.

Our purpose in the sequel is to make this talk of mixing a and a* in logic more
articulate, and to show how Beth’s theorem depends on mixing being confined to
logic. More precisely, we shall consider restricting the mixing of « and a* in the
axioms and rules governing the logical constants, whereas mixing in the structural
part of logic will always remain unrestricted. This will permit us to carry over the
notions of definability and uniqueness to constants of other syntactical categories,
in particular to logical constants.

Take, for example, Gentzen’s sequent-calculus for intuitionistic logic, and add to
this calculus rules for A* and v*, formally analogous to rules for conjunction (A)
and disjunction (v ). Then we have the following derivations:

A A -A’%t—j—Thinning Z—%Thinning
AABFA A,BF—AA*BCut
__BFB AnB B4 A*BPermutation
AAB-B B,AABFA /\*Bcut
ArBAANBFA A*BContraction
AABHAA*B
and
A A B+ B
A A V*B B+—AVv*B
Av BHA v*B.

So,both A and v may be called unique in Gentzen’s calculus. But note that we have
derived 4 A B A A* Bwithout mixing A and A*in therules governing A and A*:
they were mixed only in applications of Cut, Permutation and Contraction. On the
other hand, v and v* are mixed in the application of the rule for introducing v on
the left, by which we have obtained A v B+ 4 v* B, and this mixing seems to be
unavoidable. So, we might conclude that A is implicitly definable in intuitionistic
logic, whereas v is not. This is reflected by the fact that A is explicitly definable, in
the sense that 4 A B is equivalent to the sequence 4, B on the left of the turnstile,
whereas for v no such sequence exists. This is in accordance with a general form of
the interpolation and definability theorems which we are going to prove. The
structural part of logic will be captured by a certain consequence relation, closely
related to notions introduced by Tarski.

The idea that deductive systems specify consequence relations or consequence op-
erations, and that one can study these systems abstractly by considering axiomatic
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theories for these relations or operations, stems from [2] (III-V). Our work here
might be conceived as such an abstract study of definability and interpolation
(88 3 and 4), and the application of the results obtained to first-order deductive
systems (§5).

§2. Consequence relations. In Tarski’s [2] one can find axiom systems for a con-
sequence operation Cn. Our approach differs from Tarski’s conception in at least
two respects. First, we consider not only compact but also noncompact consequence
relations. This gives our approach a greater generality which proves useful when
applying our notions to certain logical constants (cf. the example of the universal
quantifier in w-arithmetic at the end of §3). Second, we deal with consequence
relations between formulae and not only between sentences. This is essential if we
want to interpret Craig’s interpolation lemma, which is formulated by explicit
reference to free variables, in a framework based on consequence relations.

Let L be a set of formulae of an arbitrary language, andlet X, Y,Z, U, V, W, ...,
X', ...besubsetsof L,and 4,B,C, D, ..., A, ... members of L. Then we introduce
the following definitions:

DEFINITION 4. A consequence relation over L is any relation - between subsets of
L on the left and members of L on the right (i.e., any subset of 2% x L) which
satisfies:

(F1) {A}+ A,

(F2) XFA=X U YHA4,

(F3) (VAe Y)XHF A& YU VEB)=XuVHEFB.

DEFINITION 5. X | Y <4 (VAe V)X - A.

DEFINITION 6. Cn(X) =4 {A|X - A}.

It is easy to show that |- satisfies:

(F1) X |-X,

(F) XIFZ=X0vY|-Z

(F3) (VAe V)X |H{A} & YU VIFZ)= XU VI|-Z,
and that Cn satisfies:

(Cnl) X < Cn(X),

(Cn2) X € Y = Cn(X) < Cn(Y),

(Cn3) Cn(Cn(X)) € Cn(X).

If we start from || as a primitive relation satisfying (|-1)—(|-3) and define - and
Cn as follows:

XEA<eyX|H{A}, Cn(X) =4 {A| X H{A}},
we obtain (F1)—-(F3) and (Cn1)—(Cn3). (Note that (|-3) can be replaced by
XFY&YUV|IZ)=XUVI|Z,
(VAe V)X [-{4} = X | Y,
but not by the first principle alone.)

If we start from Cn as a primitive operation satisfying (Cn1)—(Cn3) and define
and |- as follows:

X A <4 AeCn(X), X |FY <4 Y < Cn(X),
we obtain (F1)-(F3) and (|F1)-(]F3).
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For further applications it is useful to remember the following properties of |-
YeX=X|Y,
XY < (MVZcY)X|-Z,
(V)X Y= X U, Y.

Let Xy, Yein, - . - be finite subsets of L. Then we introduce the following definition:

DEFINITION 7. A consequence relation is compact iff it satisfies

(F4) XFA =Xy, € X)X, F A

If we define |- and Cn in terms of a compact consequence relation -, then we
obtain:

(F4) X IF Yin = (3Xgin = X) Xiin I Yeins

(Cnd) Cn(X) € Uy, e x Cn(Xin),
and as before we could start with a primitive |- or Cn satisfying (|-4) or (Cn4) and
obtain (F4). Note that in the presence of (4), we can replace (-3) by

(F31) XHFA&{A} uVEFB)=XUVFB
or by

(F32)(X+FA&{A} U X+B)= X+ B)

If instead of (Cn4) we assume Cn(X) = | J Xeime x C(Xiin); as in [2, pp. 31, 64], then
(Cn2) becomes derivable.

Let L, and L, be two sets of formulae which are subsets of L, and let L, n L,
= L,. Weshalluse X,, Y}, Z;, U;, V;, W,,..., X],...for subsets of L,, and A4,, B,
C,,Dy,...,A},... for elements of L,; and we use analogous notation with 2 and 0
instead of 1. If (X), =4 X N L,, it is easy to check that (X,), = X, (X,), = X;,
(X1)2 = (X1)o and (X3); = (X2)o.

Let now H; be a consequence relation over L,, and -, a consequence relation over
L,. We define ||, |-, Cn,, and Cn, as before. An extension of -, over L is any
relation R < 2L x L such that X, 4, = X, RA,. We proceed analogously to
define extensions of I,. There are always consequence relations which extend both
- and +,, since the trivial relation which holds between any X and any A4 is a
consequence relation, which is evidently compact. Let - be a consequence relation
over L which is an extension of both - and -,,and let X -, A4 <4 (Vi)X +' A. Then
we can easily check the following lemma:

LeEMMA 1.1. The relation t, is the minimal consequence relation over L which is an
extension of the consequence relations b= and —,. [J

If - and -, are compact, and -/ is a compact consequence relation over L which
is an extension of both i and ,, then

X b A <y (X, € X)) XpnH A

It is again easy to check the following lemma:

LemMMA 1.2. The relation . is the minimal compact consequence relation over L
which is an extension of the compact consequence relations - and —=,. [

The relationship between the axioms for compact consequence relations and the
structural rules in Gentzen-style proof theory is obvious. If one takes the left-hand
side of a sequent to be a set rather than a sequence of formulae, the structural rules in
the standard sequent calculi are just the axioms 4 F A4, Thinning and Cut, which
obviously correspond to (F1), (F2) and (F3.1) if X, Y and V are finite. Thus
compact consequent relations are a slight generalization of this idea, allowing for
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infinite sets on the left of the turnstile, as in the standard semantic first-order
consequence relation (which is compact). Arbitrary consequence relations (which
are not necessarily compact) are a further generalization which may be useful, e.g., in
the consideration of infinitary systems.

What at the end of §1 was loosely called “the structural part of logic”, we shall
from now on identify with -, and .. As a matter of fact, , and . could more
appropriately be called “the minimal (compact) structural logic extending two given
consequence relations”; so, when we say “the structural part of logic”, this should be
understood in a specific way.

§3. Interpolation and definability. First we introduce the following definitions:
DEFINITION 8. A relation R < 2% x L satisfies the set-interpolation property with
respect to b and -, iff

X{RA, = Y (X | Yo & Yo, A4,),
X,RA; = Y(X, |, Yo & Yo b A4y).

If Y, is finite, we have the finite set-interpolation property, and if Y, is a singleton, we
have the formula-interpolation property with respect to k- and ;.

DEFINITION 9. A relation R < 2 x L is conservative with respect to F (or ) iff
X,RA; = X, A, (or X,RA, = X, I, A,).

Our aim in this section is to show that if we assume for -, and +, that

(0) Xot1 Ag < X3 Ao,

i.e., that H and -, agree on L, then I, satisfies the set-interpolation property and is
conservative with respect to - and -, . For compact consequence relations +; and
t~, we shall show that +_, satisfies the finite set-interpolation property and that it is
conservative with respect to - and ,. With some additional assumptions we shall
show that - also satisfies the formula-interpolation property.

Our proof proceeds as follows. First we introduce two auxiliary relations ', —"
< 2% x L by use of certain set operations P, and P,. The relation ' is defined in
such a way that it is easy to show that ' satisfies the set-interpolation property
and is conservative with respect to t and +, (Lemma 3.1), and furthermore that
' 1is a consequence relation over L (Lemma 4.1). It can then be proved that ' is an
extension of - and -, provided (0) holds (Lemma 5.1). This immediately yields the
desired result for -, (Theorem 1.1), since +, as the minimal consequence relation
over L which extends F; and F, (cf. Lemma 1.1), a fortiori satisfies the set-
interpolation and conservativeness properties obtained for . The proof for
starting from " proceeds parallel to the one for |,. .

The auxiliary notions P, P,, ' and " mentioned above are defined as follows:

P(X) =4 {Y; | Y I (X)1 & (Cny(Y))o 2 (X)2 ),

Py(X) =4 { Y2 | Y2 -2 (X), & (Cnyp(Y))o -1 (X)y ],
X H A<y (P(X) € Pi({A}) & P (X) < P,({4})),
XH'"A <4 (3AXg, € X)X H A

Intuitively, the set operation P, may be viewed as defining a relation between sets Y;
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and X such that some kind of conservativeness with respect to |-, holds when X is
restricted to L, and some kind of set-interpolation property holds when X is
restricted to L,, and analogously for P, with the indices “1” and “2” interchanged.
The definition of ' is then chosen in a way that makes both of these relations
hereditary in some sense with respect to . This kind of heredity is used in particular
when we prove transitivity, i.e., property (F3), for -’ (see Lemma 4.1 below).

Next we prove the following easy lemma:

LEMMA 2. For any X, and X, we have X, € P,(X,) and X, € P,(X,).

PRrOOF. Since (X,), = X,, we have X, | (X,),. And since X; = Cn,(X,), we have
(X1)o € (Cny(Xy))o. Using (X;)o =(X;),, and properties of [ we obtain
(Cny(X1))o 2 (X1),. We proceed similarly with 2. [J

Then we can show the following:

LEMMA 3.1. The relation V' satisfies the set-interpolation property and is
conservative with respect to the consequence relations - and +,.

PROOF. Suppose X, ' A,. This means that P;(X;) = P,({4,}). Using Lemma 2
we obtain X; € P,({A,}), which implies (Cn,(X,)), |, {A,}. It follows from the
properties of |- that X, | (Cn,(X,)),. Proceeding analogously with X, - 4, we
obtain set-interpolation. Now suppose X; H’ A4,. Again, by Lemma 2, X, € P, ({4, }),
which yields X, |, {4;}. Proceeding analogously with X, 4, we obtain
conservativeness. []

Quite analogously we can prove the following lemma:

LEMMA 3.2. The relation " satisfies the finite set-interpolation property and is
conservative with respect to the compact consequence relations - and ;.

PRrOOF. Suppose X, " A4,. Then Xy, H' A, for X, < X,. Thus by Lemma 3.1
thereis a ¥, such that X, |- Y and Y, 4,. By (JF2), X{;, can be replaced by X,
and since I, is compact, Y, can be chosen finite. Arguing similarly for X, " A4,, we
obtain finite set-interpolation. Suppose X; =" A,. Then X, H A, for X, = X;;
thus, by Lemma 3.1, X;, H A;. Therefore, by (|2), X; b 4,. Arguing similarly for
X, " A,, we obtain conservativeness. []

Next we prove the following lemmata:

LEMMA 4.1. The relation V' is a consequence relation over L.

ProoF. For (1) we have P,({A}) < P,({4}) & P,({4}) < P,({4}). For (2),
suppose X H' 4, i.e., P,(X) < Py({A}) and P,(X) = P,({A4}). Then it is easy to check
that (X v Y)< P(X) and P,(X u Y) < P,(X), which immediately yields
XuYHA

For (F-3), suppose (VA e Y)XH Aand YU VB, ie,

(1 (VA € Y)(P(X) = P,({A}) & Po(X) = P,({A})),
@ P(Y U V)< Pi({B}) & P,(Y U V) < P5({B}).

Then we can easily check the following properties of P;:
@) Aﬂy P ({A}) = P(Y),

(ii) P(X)sP(Y)=P (XU V)csP(YUV).
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Then, using (i), from (1) we obtain P,(X) < P,(Y), which by (ii) yields P,(X u V)
< P,(Y v V). Proceeding similarly for P,, and using(2), weobtain X v V+'B. []
LEMMA 4.2. The relation =" is a compact consequence relation over L.
PRrROOF. To show that " satisfies (1), (F2) and (F4) is quite easy. We shall only
demonstrate that it satisfies also (F3.1), which as we have said above can replace
(F3) in the presence of (F4). So suppose X =" A and {A} U V"B, ie,

3) (IxX¢in € X)(P1(Xpin) € PL({A}) & Po(X(in) S Po({A})),
4) (3Zgin = {A} U V)(Pi(Zgi,) € Pi({B}) & Py(Zg;,) = P5({B})).

Let Vi =4 Zgin N V. Since Zg;,, = {4} U V, weeasily obtain that Zg;, < {4} U Vy,.
Using the fact that for any Y and W we have P,(Y U W) < P,(Y), we obtain

(5) Pi({A} U Vo) € Pi(Zgin).

Next, from (3) we have P;(Xy;,) < P,({4}), which together with (ii) of the previous
proof yields

(6) Pi(X¢in O Viin) € Pi({A} U Vin)-

Now, (4), (5) and (6) give P (X, U Vin) S Pi({B}). Proceeding similarly with P,,
and using the fact that X, v Vi, € X U V, weobtain X v V"B, [

LEMMA 5.1. The relation \-' is an extension of the consequence relations - and \—,,
provided \-; and \—, satisfy (0).

PROOF. Suppose X; - 4,. Next suppose Z, € P;(X,). It follows immediately that
Z, |, X, which together with X, i A, using (F-3) gives Z, - 4,, i.e.

™) Zy |k ({4

This means that A4, € Cn,(Z,), ie. {4;} < Cn(Z,), which yields that ({4,}), =
(Cny(Z,))o. Then (Cny(Z))o - ({A4;}),, which together with (7) implies Z, €
P({A}).

Now suppose Z, € P,(X,). It follows immediately that (Cn,(Z,)), |-, X;, which
together with X, - A; using (F3) gives (Cn,(Z,))o -y 4;, ie.

@®) (Cny(Z,))o I+ ({Al})l'
If A, € Ly, using the assumption (0) X, H; 4, < X, b, 4y, we obtain
&) (Cny(Zy))o 2 ({41 )2

If A; ¢ Ly, then ({4, }), isempty and (9) is trivially satisfied. Since Z, ||, (Cn,(Z,))o,
with (9) using (|--3) we obtain Z, |-, ({4, }),. This together with (8) implies that Z,
€ P({4,}).

Hence, from X b A, it follows that Py (X;) < P,({A4,})and P,(X,) < P,({A4,}).i.e.
X, " A,. We proceed analogously with X, -, 4,. [

LEMMA 5.2. The relation " is an extension of the compact consequence relations -,
and b, , provided - and \, satisfy (0).

ProoF. If X, b A, then X, - A4, for some Xy, < X, since  is compact. Then
Xiin ' Ay by Lemma 5.1, which means that X, - A,. We proceed analogously with
X, A4,. O

Now we can prove the main results of this section.
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THEOREM 1.1. The consequence relation =, satisfies the set-interpolation property
and is conservative with respect to the consequence relations -, and t,, provided
and -, satisfy (0).

ProoF. By Lemmata 1.1, 4.1 and 5.1, we have that X - 4 = X ' A4, and then it
suffices to apply Lemma 3.1. [J

THEOREM 1.2. The compact consequence relation b, satisfies the finite set-
interpolation property and is conservative with respect to the compact consequence
relations b and b, provided \-; and \-, satisfy (0).

ProOOF. By Lemmata 1.2,4.2. and 5.2, we have that X . 4 = X " A, and then it
suffices to apply Lemma 3.2. []

The consequence relations ' and F" are not identical with +, and +,
respectively, as one might perhaps suppose. For example, X ' 4 and X " 4 hold
for arbitrary X if L, v L, # Land A ¢ L, u L,, whereas &+, 4 and J+, A4 do
not necessarily hold. But evenif A € L, u L,, the following counterexample can be
constructed: Assume L = {p,q,r}, L, = {p,q) and L, = {r}; thus L, = F. Let b
and +, be given by {p} p, {4} 4, {p.a} 1 p, {p.q} 1 q and {r} ,r. Then
(Cn,y({p.a})o = (Cny({r}))o = B thus P,({p,r}) = P({p.7}) = &, and therefore
{p,r} + qand {p,r} F" q. However, we do not have {p,r} g and {p,r} b~ g, since
k. (which equals ) can be given by X, 4, = X; u X, .4, and X, H, 4,
= X, U X, A,, and neither {p} kg nor {r} k- q holds for i = 1 or 2.

Now suppose that in L, we have a conjunction connective A and a sentence
constant T for which it holds that

{Ao,Bo} F Ao A By, {Ao A By} Ao, {Ao A By} F By, FHT,

and analogously with . Then as a corollary of Theorem 1.2 we have the following:

THEOREM 1.3. If in Lo we have A and T, then b, satisfies the formula-interpolation
property and is conservative with respect to the compact consequence relations b, and
b, provided - and \, satisfy (0). [

Now let L, differ from L, only in having a constant «, of an arbitrary syntactical
category, where L, has a constant a* of the same syntactical category as a, and vice
versa. Let - and F, be consequence relations over L; and L,, respectively, which
upon uniform substitution of a for a*, and vice versa, become identical. Then we can
prove the following theorem:

THEOREM 2 (DEFINABILITY THEOREM). If A(®) € L,, then

{A@} = A(*) i 3Y({A)} I Yo & Yo by A(@).

If 1 and b=, are compact, then the same holds for - and finite Y,. If moreover L
contains A and T as above, Y, can be chosen as a singleton.

PROOF. Assume {A(a)} . A(a*). It is easy to check that b~ and -, satisfy the
assumption (0). So we can use Theorem 1.1 to obtain

IV ({A@)} |- Yo & Yo b A(e*)),

from which the right-hand side follows. If now we assume the right-hand side, we
obtain that there is a Y, such that {4(«)} |l Y, and Yy, A(¢*). Then using
Lemma 1.1 we obtain {A(a)} |- Y, and Y, -, A(«*), and apply (-3). The results for
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compact H and F, follow analogously by use of Theorem 1.2 and Lemma 1.2,
and for a singleton Y, from Theorem 1.3. []

It is clear that under the assumptions of this theorem, we could have written on
the left-hand side {A(ax)} . A(a*) & {A(a*)} , A(x): if we have one of these
conjuncts we also have the other, because o and o* are exactly parallel.

Our definability theorem is an analogue of Beth’s definability theorem which
makes fewer assumptions about logic, and leaves the syntactical category of a quite
undetermined. In particular, it captures the case of logical constants which are now
considered explicitly definable by sets of formulae, provided they are implicitly
definable. For example, the universal quantifier /\ in arithmetic with the w-rule is
explicitly definable by

{/\ B(X)} Ik {B(1), B(2), BQ),...} & {B(1), B(2), B(3)...} - /\ B(x),

where H; denotes derivability in this theory.

Logic represented by ., or k, in our definability theorem is reduced to its
structural part. So the notion of implicit definability of ain b as {A(a)} F, A(x*) or
{A(a)} k.. A(a*) for every A(o) is stronger than the one used in Beth’s Theorem for
first-order logic, where “mixing” of a and «* in proofs of implicit definability is
allowed in any rule of logic. Therefore, our definability theorem is not simply a
generalization of Beth’s theorem in the sense that the latter is a trivial corollary of
the former. It can however be shown that under certain conditions Beth’s theorem
follows from our definability theorem, since the mixing of a and a* in the
“operational” part of logic involving the logical constants can in many cases be
dispensed with, as we shall try to show in the last section.

First, however, we show that much more information about _ is available if the
language under consideration contains at least an 1mp11cat10n connectlve obeying
certain standard principles.

§4. Explicit characterization of . in the presence of implication. In §2 we
characterized , [ .. ] as the minimal [compact] consequence relation over L which
is an extension of the [compact] consequence relations k- and -, (cf. Lemmata 1.1
and 1.2). In the case of ., an explicit characterization can be given, provided a
connective of implication is at one’s disposal. It can be motivated as follows. By
Theorem 1.2 we know already that if X, k-,  A,, then (Cn,(X;))o - 4,, i.e., what is
essentially needed of X, to obtain A, as a F-consequence of X, are the -
consequences of X, in L, (and then it suffices to continue with -, alone). Lemma 6
below then says that this also holds if additional assumptions from L, are present,
ie,if X, u X; A, then X, U (Cn,(X,))o > 4,, and similarly for A4,. Since by
Lemma 6 also the converse holds, one obtains a characterization of .

Let b and F, be compact consequence relations which fulfill condition (0). Let
them contain an implication connective — in the sense thatfori = 1,2, A; — B;isin
L, for every A; and B;, and the following principles hold:

(MP) {Ai, A;— B} B,

(DT) X; v {4;} B, = X; A, - B,.

For -, we can now give the following characterization:
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LEMMA 6. If Ae L, U L,, then X A iff
(*) (X)1 © (Cna((X)2))o I ({AD1 & (X)2 L (Cny (X))o -2 ({4},

We shall prove this lemma in steps. First we demonstrate the following auxiliary
lemma:

LEMMA 6.1. The following statements are equivalent:

(1) Xy v Wo U (Cny(Y; U Wo))o 1 By,

(2) X1 U (Cny(Y; v Wo))o b By,

() X, U Wy U (Cny(Y3))o b By

Proor. The equivalence of (1) and (2) follows from the fact that W, =
(Cny(Y, U Wy))o. Now suppose (1). If W, = &, we immediately have (3). If W,
# (J, then using (F4) there is a nonempty W, < W, and a nonempty Z;,
S (Cny(Y, U W), such that X, U Wy, v Zg b B, If Zy, = {D§,D3,...,D%},
thenfor alli, 1 <i<m, Y, U Wy, Di; hence, by (-4) and (-2), Y, u W}, F, D}
for some Wi, < W,. Let Wk, =Wy, u Wk, u---u Wr,. Then, by (F2),
X, oWk uZyH B and Y,u WE D for all i, 1<i<m If W§ =
{46, A5,..., Ak} let Vo =4 {A§ > (A5 —> - > (A5 > D§) )| 1 < i < m}. Itis easy
to show using (DT) that V, < (Cn,(Y3)),. It is also easy to show using (MP) that
Wi, v Vol Zg,, which together with X, U Wk, U Z;, - B, by (F3) gives
X, v WE, U Vo By, From this last statement we obtain (3) by (-2), since W,
<€ W, and ¥, < (Cn,(Y;))o. Now suppose (3). Since (Cn,(Y;))y S (Cny(Y, U We))o,
we obtain (1) by using (F2). O

Quite analogously to Lemma 6.1 we can prove the following lemma:

LEMMA 6.2. The following statements are equivalent:

(1) X5 v Wy L (Cny(Y; U Wy))o b, By,

(2) X, U (Cny(Yy U Wy))o 2 B,

() Xz v Wy U (Cny(Yy)ot,B,. O

Let XRA be an abbreviation for (x). Then we prove the following lemmata:

LEMMA 6.3. The relation R is an extension over L of the compact consequence
relations - and .

PRrOOF. Suppose X, - A4,. Then the first conjunct of X; RA, follows by using (-2).
The second conjunct either is trivial if 4, ¢ L,, or 4, € (Cn,;((X,),))o,and we obtain
this conjunct again by using (-2). We proceed analogously with X, —, 4,. [

LEMMA 6.4. The relation R is a compact consequence relation over L.

PROOF. It is quite easy to show that R satisfies (1) and (+2). For (-4) assume
that XRA. Using (-4) for -, we obtain that for some Y, < (X), and Z,
S (Cny((X),))o the following holds: Y, U Zg, | ({4}),. By (H4) for +,, for
some Vi, < (X), we have that Z;,, < (Cn,((V§ia)2))o- Therefore

Yiin U (Cna(Viin)2))o I ({4 )
Proceeding analogously with I—,, we obtain, for some Y, = (X), and V¢, < (X),,
Yiin © (Cny(Viin) 1))o 2({A4})2-

Taking X;;, to be Y, U Vi, U Yi, u Vi, which is a subset of X, we obtain
XrinRA.
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It remains only to demonstrate that R satisfies (-3.2),i.e,(XRA4 & X U {A}RB)
= XRB, which as we have remarked can replace (3) in the presence of (+2) and
(F4). So suppose XRA4, i.e.

(@) (X)1  (Cna((X)2))o I ({4 D1,

(ii) (X)2 v (Cny((X)1))o -2({4})2s

and suppose {4} U XRB, ie.

(iii) (AP v (X); U (Cna(X)2 v ({412))o I ({(B)ss
(iv) ({A4})2 v (X)2 v (Cny (X)) v ({AD1)o IF2 (B}

If A € L,, from (iii) and (iv) by applying Lemmata 6.1 and 6.2 we obtain

(AP v (X); U (Cna((X)2))o I ({ B
({A4})2 v (X), U (Cny (X))o -2 ({B})z,

which together with (i) and (ii) by two applications of (-3) yields XRB. If A ¢ L,
and 4 € L,, then

) (X); © (Cn,y((X);))o I+ ({B})

follows from (i) and (iii) by (+3) (note that ({A4}), = &). On the other hand, from (i)
we have

(X)1 v ({4}, = Cny(X); v (Cny((X)2))o),
Cn,((X); v ({4})1) € Cny(Cn((X); v (Cny((X)2))o))s
Cn,((X); v ({4})1) € Cn((X); v (Cny((X)2))o)s
(Cny(X); v ({AD1))o = (Cny((X)y v (Cny((X)2))o))o>
which together with (iv) and (-2), since ({A4}), = &, gives

(X), v (Cny((X), v (Cny((X)2))0)o |2 ({B})z

From this last statement by Lemma 6.2 we obtain

(X)2 U (Cny((X)2))o v (Cny((X)1))o -2 ({B})z-

Since (X); |- (Cn,((X),))o, by (3) we obtain (X), U (Cny((X),))o I ({B}),, which
together with (v) gives XRB.

We proceed analogously in the case A ¢ Loand AeL,. O

From Lemmata 1.2, 6.3 and 6.4 it follows immediately that X .4 = XRA. To
show the converse, suppose X RA. Since k- is an extension of I and I—,, and since
(X1 IFee (Cny ((X)1))o and (X); ee (Cn,((X)5))o, We easily obtain (X), U (X),
e ({4} and (X), U (X); e ({4)),, from which (X), U (X), A follows
because of A€ L; u L,. X A is obtained by use of (2), if necessary. Hence,
XRA = X, A, which proves Lemma 6. [

From Lemma 6 we obtain the following characterization of X F A,:

LEMMA 7. X b=, Ao <> (Cn (X))o U (Cny((X),))o F1 4o-

PROOF. Suppose X . 4,. By Lemma 6, we have that (X), U (Cn,((X)2))o F1 4o»
which implies (Cn, ((X); v (Cn,((X),))o))o F1 Ao- Then using (0) and Lemma 6.2 we
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obtain the right-hand side. For the converse we use (0), (X); |- (Cn;(X)1))o, (X)2
I (Cn,((X);))o, and Lemma 6. [

We know from §3 that Theorem 1.2 holds for ... But with the help of the
characterization of Lemma 6 this can be proved independently and rather more
directly. For interpolation assume X, . 4,. Hence, (X;), U (Cn,(X;))o > 42,
from which we easily obtain (Cn,(X,))ot, A,. For conservativeness assume
X, k.. A;. Hence,

(X1)1 v (Cny((X1)2))o 1 4y

With (X,), = (X,)o and (0), ie. (Cn,(Yy))o = (Cn,(Yy))y, it easily follows that
X, H A4,

What we have proved in this section depends on the assumption that an
implication connective — is obtainable for - and I, such that (MP) and (DT) hold.
That this requirement cannot be dispensed with is shown by the following example:
Let I be derivability in propositional logic with = as the only connective and
modus ponens for o as the only inference rule, I, the same with >* instead of o, L,
therefore having no connective. Then for 4, B, C € L,, from {4,4 > B}, B and
{B,B>*C}H,C it follows by (-3) that {4, A> B, B>*C}F,C, but not
necessarily that {4, 4 > B} U (Cn,({4, B o* C}))o k- C as required by Lemma 6.
(The other conjunct required by Lemma 6, viz. {4, B >* C} U (Cn({4, 4 > B})),
I, C, does hold, since B € (Cn, ({4, A> B})),.)

It is clear that for 4, B€ L, or A, B € L,, the relation - satisfies (MP). We shall
also show that with these assumptions it satisfies (DT):

LEMMA 8. If A,Be L, or A, BeL,,then X U {A}F, . B= X+, A— B.

PROOF. Suppose X U {4, } . B;. Then, by Lemma 6, we have

(1) (X); U ({A D1 U (Cny(X)2 v ({4 D2)o IF ({Bi P1s
(ii) (X)2 v ({A1})2 v (Cny(X)1 Y (A1) 1))o I2({By })a-
If A, € L,, then we obtain by Lemmata 6.1 and 6.2

(X); U {41} U (Cny((X)2))o I+ ({BiD1s
(X), v {Al} U (Cny((X)1))o -2 ({Bl})z,

which together with (DT) for -, and +, yields X A, —» B, (if B, ¢ L,, then
(X); v (Cny (X))o I, ({4, = By}), is trivially satisfied because ({4, - Bi}),
= ). If A, ¢ Ly, then from (i) with the help of (DT) for I, we obtain

(X); U (Cny((X)2))o I ({A; = Bl})l-

Since ({4; = B,}), = &, we have that (X), U (Cny((X),))o I ({4; = By}), is
trivially satisfied. Hence, X+, A, > B;. We proceed analogously with
XU {Az} |_cch' D

§5. Interpolation and definability for first-order logic. Let L now be the set of
formulae of a first-order language which has besides the usual logical constants
arbitrarily many nonlogical constants. The subsets L, and L, of L are obtained by
specifying which nonlogical constants may occur in them. Note that L, U L, is in
general not closed under binary logical functors, and is hence a proper subset of L.
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Let - be the usual relation of deducibility from hypotheses in either classical or
intuitionistic logic. The relation I is a compact consequence relation. We assume
that the deduction theorem holds in the following form:

XuU{A}-B=XFA-B.

This can be achieved by restricting the use of rules like universal generalization in
proofs from hypotheses.

Let ¥V, and V, be chosen in such a way that for every X, and 4, we have
Xou Vi Ay« X, U Vo, Ay. Then we define:

XiH A =g X, vV EA,
X, A, =g X, U VA,
XHFH Ay XU V,ulHA

¥V, and V, need not be sets of sentences. Thus, unlike I, the relations - and -, are
not necessarily closed under replacement of individual variables by terms; this
substitution is not necessary in our framework.

It is easy to check that - and -, are compact consequence relations over L, and
L,, respectively, for which (MP) and (DT) hold. Moreover the assumption (0) is
satisfied for - and F,, and since in L, we have A and T (if T is not primitive it can
be defined as Vx(x = x)), both Theorem 1.2 and Theorem 1.3 hold for .
Furthermore, we have the explicit characterization of _ given in the previous
section.

In general X . A isnot equivalent to X —* 4. Forexample, if V; = V, = ¢F, then
{A; A A,}F+ A, holds, but not necessarily {4; A A,} ., A;. Consider however the
following restricted equivalence of X . 4 and X -* 4:

(Equ) X U{A} L UL, =>(XF*A< XH_A).

We shall show that (Equ) is equivalent to the following Interpolation Property:

(Interp) X, U X, H*A4, = IBy(X, H By & X, U {B,y} -, 4,) and

X, U X,F* A, = 3By(X,, By & X, U {Bo} H A;).

THEOREM 3. (Equ) < (Interp).

PROOF. (=) Assume (Equ) and X, u X, H* 4,. With(F4)and (DT) we can obtain
a B, such that X, H* B,, and then by (Equ) we get X, . B,. Then by Theorem 1.3
thereis a B, such that X i B, and {B,} -, B,. Using (MP) and properties of I, it
follows easily from the second conjunct that X, u {By}+F, 4,. We proceed
analogously with X; U X, H* 4,.

(«<=) Assume (Interp). That X . A implies X H* 4 is shown as follows. The
relation H* is a compact consequence relation extending -, and ,, and we apply
Lemma 1.2. Now assume X U {4} = L, u L, and X *A. From the second
conjunct we have (X), u (X), H* 4. Let A € L,. Then by (Interp) there is a B, such
that (X), B, and (X), U {By}tr,A4. Hence, by Lemma 1.2, (X), B,
and (X), U {By} k. A, which by (F3) gives X . A. We proceed analogously for
AeL,. O

Itis not difficult to show that (Interp) is equivalent to Craig’s interpolation lemma.
As a direct consequence of the first implication of (Interp) we have, for X; = {4, }
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andX2= [/l = V2=Q,
{Al} HA4, = EIBo({Al} FBy & {Bo} = A4,),

whereas from Craig’s interpolation lemma using (DT) and (MP) for - we easily
obtain (Interp).

By proving (Equ) for V; = V, = (& independently of (Interp) we would obtain an
independent proof of Craig’s lemma. Such a proof of (Equ) might proceed as
follows. Using the characterization of Lemma 6, it is possible to prove that
satisfies the rules of a sequent or natural deduction calculus formalizing first-order
logic, if these rules are restricted to formulae of L, U L,, i.e. if no mixing of L, and
L, occurs within formulae. In Lemma 8 this is shown for the rule of —-introduction,
and along the lines of its proof it can be carried out for the other rules as well. If for
this calculus we could demonstrate that

(Norm)
if X U{A} =L, uL,and X+ A is provable, then there is
a proof of X - A in which only members of L, u L, occur,

then we would have that X U {A} = L, UL, and X+ A4 imply X I, A (that
X . A implies X - A follows from Lemma 1.2).

Since a proof of (Norm) would involve a cut-elimination or normalization
procedure, which yields Craig’s lemma more directly and more informatively, we
shall not try to produce such a proof here. The point of this section was not to find
an independent proof of Craig’s lemma, but to demonstrate that with (Equ) Beth’s
definability theorem in a consequence of our definability theorem.

Let L, now be L, of §1,and let L, be L,.. Suppose that « is implicitly definable in
T,, ie. for every A(x) we have T, U T,. U {A(2)} - A(a*). Then if V; = T, and V,
= T, by (Equ) we have {A(x)} .. A(a*). It is not difficult to check that the
conditions of our definability theorem are fulfilled, and hence there is a B, such that
{A(0)} - By and {By} - A(«),ie. T, U A(®) - By and T, U {B,} - A(«). From this
we conclude that « is explicitly definable.

For our definability theorem we did not make any assumption about the
syntactical category of a, whereas in this section, as in Beth’s theorem, o is restricted
to the syntactical categories of nonlogical expressions of a first-order language. This
restriction on « comes in via (Equ), which is equivalent to Craig’s lemma. To prove
Craig’s lemma, we determine L, and L, by their nonlogical vocabulary.

The sets ¥, and V, used for defining - and -, were not necessarily sets of sen-
tences, as T, and T,. are in Beth’s theorem. We could take this freedom with V, and
V,, because we introduce implicit and explicit definability with the clause “for every
A(x)”, and hence need not prove in Beth’s theorem the universal closures of for-
mulae like a(x,,...,x,) <> a*(x,,...,x,) and a(x,,...,x,) < B(x,...,x,). Usually,
implicit and explicit definability are presented with universal closures of such
formulae.

If from the hypotheses T, U T,. U {A(«)} we have deduced A(a*) with the help of
first-order logic in L = L,,., we might have applied logical laws involving logical
constants to formulae with both « and o*. Then (Equ), which guarantees that we also
have {A(a)} k. A(«*), shows that this mixing of « and a* is unnecessary. With (Equ)
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we can reduce the mixing of « and «* in logic, involving possible mixing on the
“operational” level with logical constants, to mixing on the “structural” level only.
This reduction enables us to view Beth’s definability theorem as a consequence of
our definability theorem.
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