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ULF R. SCHMERL, Diophantine equations in afragment of number theory. 
We study the following problem: Given a diophantine equation, is it possible to find out whether or not 

this equation can be proved impossible in the fragment ZO of classical first order arithmetic in 0, S, +,, 

and open induction? 
Using proof-theoretic methods we prove the following: Let r(x1 xn) = s(x1 xn) be a diophantine 

equation in the variables xI,.. ,xn. Then 

Vx xn[r(x1 xn) # s(x1 xX)] is provable in ZO 

3c e N V(:1 * ) E I l) S(** I 1 + N [x1 xn] 
Here I',..X= {0, 1,...Ic-tIxI + c} x x { 0,..,c - 1,xn + c}, 1 + N[x xnJ is the set of poly- 
nomials in x1 xn with coefficients from N and constant coefficient #0, and r(:1 S (: 
1 + N[ ] means that r(x.l , . -s(Q 1 S( k), understood as a polynomial from Z[x1 xn], divides 
some polynomial in 1 + N[x1 . xn]. 

This characterization still holds when the functions P (predecessor), sg, and sg (sign and cosign) are 
added to ZO. 

PETER H. SCHMITT, Model- and substructure complete theories of ordered Abelian groups. 
In his pioneering paper [1] Yuri Gurevich associated with every ordered Abelian group G for every 

n 2 2 a coloured chain (i.e. a linear order with additional unary predicates) Spn(G), called the n-spine of G, 
and proved that G -H if and only if Spn(G) Spn(H) for all n ? 2. 

Thus for every elementary class /& of ordered abelian groups there are theories Tn in the language of n- 
spines, such that 

G e /// if and only if Spn(G) F Tn for all n ? 2. 

MAIN THEOREM. If for all n > 2 Tn is model complete (substructure complete), then ,II is model complete 
(substructure complete) in a certain definitional extension of the language of ordered groups. 

REFERENCE 

[1] Y. GUREVICH, Elementary properties of ordered abelian groups, Algebra i Logika Seminar, vol. 3 
(1964), pp. 5-39; English translation, American Mathematical Society Translations, ser. 2, vol. 46 (1965), 
pp. 165-192. 

P. SCHROEDER-HEISTER, Natural deduction calculi with rules of higher levels. 
Natural deduction calculi, as introduced by S. Jaskowski and G. Gentzen, differ from Hilbert-type 

calculi as well as from sequent calculi in that assumptions may be discharged by the application of 
inference rules. An inference rule in such calculi can be stated as 

F1 F, 

AI . Al 

A 

where the F's are (possibly empty) sequences of formulas indicating the assumptions which may be 
discharged. This concept of a calculus can be generalized in the following way. In the first step one allows 
not only formulas but also rules as assumptions. If a rule R which does not belong to the basic inference 
rules of the calculus considered is used in a derivation of a formula A, then A is said to depend on R. In the 
second step one defines inference rules which allow one to discharge assumptions which are themselves 
rules. This leads to the concept of rules of arbitrary (finite) levels: A level-O rule is a formula, a level-I rule 
is a rule not allowing one to discharge any assumption (like rules in Hilbert-type systems), and a level- 
(m + 2) rule is a rule allowing one to discharge assumptions which are level-m rules. An example of a 
level-3 rule is 

A => B 

AH-B C 

C 

where -- is the implication sign and A => B is a linear notation for the level-I rule A. This level-3 rule is 
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equivalent to modus ponens. With the help of level-m rules for arbitrary (finite) m, a general schema for 
introduction and elimination rules for n-place sentential connectives and quantifiers is definable, thus 
yielding a natural deduction system for logical operators in a generalized sense. Derivations in this system 
are normalizable. Furthermore, the (functional) completeness of the standard intuitionistic operators A, 

v, -+, I, V and 3 can be proved. The system is not suitable for the interpretation of modal calculi without 
modifications. So the meaning of level-m rules is somewhat different from the meaning of sequents of 
higher levels used by K. Dogen (Logical Constants, Ph.D. thesis, Oxford, 1980) for the interpretation of 
various logical systems including modal and relevant logics. 

WILFRIED SIEG, A note on Konig 's lemma. 
Every finitely branching but infinite tree has an infinite branch. That is Kdnig's lemma KL, a most 

useful tool for mathematical and metamathematical investigations. The Heine/Borel covering theorem 
and Gddel's completeness theorem, to mention just two examples, can be proved using KL (over a very 
weak theory; see below). KL can be formulated as an "abstract principle" [2] in the language of second 
order arithmetic: 

KL (Vf)[Y(f)&(Vx)(3y)(lh(y) = x&f(y) = 0) - (3g)(Vx)f( (x)) = 0], 

where g(f) abbreviates that {x I f (x) = 0} forms a finitely branching tree; i.e. 

(Vx)(Vy)(f(x * y) = 0 - f (x) = 0) & (Vx)(3z)(Vy)(f(x*< y>) = 0 -+ y < z). 

Over BT (the second order version of PRA together with the comprehension principle for quantifier-free 
formulas) plus Z?-ACO, KL is equivalent to the full arithmetical choice principle Ho -ACo (see [1]). Thus 
the theory 

(BT + ZO-ACO + KL) [(BT + ZO-ACO + I71 -IA + KL)] 

is equivalent to 

(I7? -ACo) P [(I7? -ACo)] 

and consequently [NOT] conservative over elementary number theory z. 
In the presence of Z?-ACO, i.e. in effect HI-ACo, KL is equivalent over BT to a version in which a 

bound for the size of the immediate descendants of a node is given by a function: 

KLb (Vf)(Vg)[ff( g) & (Vx)(3y)(lh(y) = x & Jf(y) = 0) - (3h)(Vx) f(h(x)) = 0] 

where Y(f, g) now abbreviates 

(Vx)(Vy)(f(x * y) = 0 - f(x) = 0) & (Vx)(Vy)(f(x *< Y>) = 0y ? g(x)). 

Klb is by itself, however, weaker than KL: if (K) is (BT + Z?-ACO + H1 -IA + KLb), then (K) is 
conservative over Z. This is a slight generalization of a result of Kreisel's [2]. For the refined development 
of analysis and metamathematics (see [4]) other results are more significant. 

THEOREM 1. (F):= (BT + ZO-ACO + ??-IA + KLb) is conservative over PRA for I7g-sentences. 
Friedman's theory WKLo is essentially (BT + zl-CA + ??-IA + WKL), where WKL is Konig's 

lemma for trees of sequences of zeros and ones, and it is contained in (F). So we have as a corollary a result 
of Friedman's [4]: WKLo is conservative over PRA for H70-sentences. Note that the examples mentioned 
above can be proved in WKLo; indeed, they are equivalent to WKL (see [4]). 

Minc [3] formulated a theory S+ which is (BT + I70-CA- + I71-IR-); the schemata extending BT are 
available only for formulas without function parameters. (IR is the induction rule.) WKL for primitive 
recursive trees can be proved in S + and (using it) Godel's completeness theorem. Minc showed that S + is a 
conservative extension of PRA for HI-sentences. This fact is an immediate consequence of the following 
stronger result. 

THEOREM 2. (M):= (BT + Z?-AC- + HI-IR- + KLb) is conservative over PRA for HI-sentences. 
The arguments for Theorems 1 and 2 are purely proof theoretic. 
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