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Judgements of Higher Levels and Standardized Rules for

Iogical Comnstants in Martin-Léf's Theory of Logic

Peter Schroeder-Heister

The aim of these notes is to carry over some of whet I did in

my thesis to the frasmework of Martin-Lof's logicel theory, in
particulsr the idea of rules of higher levels (which in Martin-
L6f's non-formalistic approach will become hypothetical judge-
ments of higher levels) and the general scheme for introduction
and eliminetion rules for logical constants (which will have to
be extended to a schema containing formation and detraction
rules). I make no claims to originality. Concerning Martin-I1&f's
system I mainly rely on his Siena lectures of 1982. In the first
part, I shell deal with propositionsl logic, and in the second
part I shall try to show how the results extend to logical con-
stents of any arity, leaving out, however, the theory of expressions
which is an integral part of Mertin-Ldf's logical theory, but
which is not immediately necessary for the understanding of the

logiceal rules.

1. Propositionel Logic

2) Cetegorical and hypothetical judgements

Propositional logic is that part of logic which deals with closed
expressions snd certsin n-ary constents to be defined as logicel
operators. According to Martin-Lof, it does not deal with "propo-
sitions" which 2re given as 2 domain of discourse from outside.
Whether a closed expression is & proposition is something that

is to be established within the theory. Otherwise the theory would

loose its formsl character ("formzl" = independent of the content)
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or would become a formal system ("formal" = syntactically defined)
which is interpreted from outside.
Therefore Martin-L6f's theory distinguishes two forms of catego-
rical judgements, A is 2 proposition (A prop) and A is true
(A true) which are expleined in such a way that the latter pre-
supposes the former.

More precisely, A prop and A true are explained by telling
what it means to know them, i.e. whzt it means to have proved
them. Proof, as well as judgement, is understood as an act, not
as & formel object. A proof of az judgement is the act which
makes this judgement evident, i.e. known, to someone. So judge-
ments 2re not justified independently of the subject who makes
the judgement. This does not mean that formal proofs are no longer
gllowed. Once I have seen that s certain inference step leads
me from a judgement which is evident to me to another ome which
is evident to me, I can later on use this step as a formal rule
of inference, relying on the evidence for this step which I
had and which I can reproduce if I want. However, the basic con-
cept of proof with respect to which formel rules are justified,
is the subject-dependent one,

The explenations of A prop and A true run as follows:

To know A prop means to know what one must do in order to
verify A, i.e. what counts ss 2 verification of A. So if I heve
grasped what ¢ verification of A looks like, I have proved L prop.
For example, if I know the procedure which would verify an obser-
vation statement A, I have proved A prop. It is obvious thet this
diverges from the usual notion of proof. The explanation of a
verification procedure, provided it is understood, alresdy consti-
tutes the proof of a judgement. (There is no dichotomy in principle

between explanation and demonstrstion.)
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A true is expleined only under the presupposition that A prop
hzs been proved. So suppose A prop is known. Then to know A true
means to know how to verify A, i.e. to be able to produce a
verification of A, i.e. to produce something of which one knows
what it looks like because of the presupposition A prop.

According to these explesnations, A prop is zlways a judgement
(perheps an unjustified one), whereas A true is a judgement only
under the condition that A prop has been proved. This has to do
with what Martin-Lof cells the intentional character of proposi-
tions, following Heyting =nd Eolmogorov. If propositions are in-
tentions, and verifications are fulfilments of intentions, then
in order to be in a position to verify A one must first know what
counts as & verificetion of A, since an intention (even if it is
not successful) is possible only on the basis of knowledge of what
is intended.

Note that to verify A is not the same as to prove A true.
Otherwise A true could not have been explained by reference to
verification. Verification is & basic notion which is used to ex-
press the intentionelity connected with propositions. Of cocurse,
if I have verified A, I know how to verify A and thus have proved
A true. But conversely, if 1 have proved A true, I only know how
to verify A: therefore the further step of executing this know-
ledge is necessary to obtein & verification.

Similar to A true, most cases of hypothetical judgements
will be explained under the presupposition thst certain other
judgements (which are already explained) hsve been proved. In the
following, if R is to be explained 2s & judegement, by D(R) I
chall denote those judgements which must hzve been exmlained be-

fore and which =are supposed to be known (= proved). So in generzl
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ean explsnation of R will tske the form:

. Suppose D(R) has been proved. Then to know (= to have proved)
&2 R means ....
In the case A prop, oD(A prop) is empty (so there is no presuppo-
sition), and the dots zre to be replasced by the above explanstion
of A prop. In the case A true, (A true) is A prop, and the
dots are to be replaced by the above explanation of A true.

Furthermore we introduce the following terminology: We call
a candidate R for the explanation as a judgement a potentisl
Judgement. A potentizl judgement R is called a judgement if !3(R)
has been proved. This terminology is justified by the fact thsat
if D(R) has been proved, then the explanation (*) of R can be
applied to R saying what it means to know R, i.e. explaining R
as a judgement. For example, A prop is 2 potentiasl judgement for
any A 2nd at the same time a judgement since D (A prop) is empty,
i.e. A prop is explazined without any precondition. A true is =
potential judgement for sny A and a judgement if D (A true)

(= A prop) has been proved, for then the explanation of A true
can be spplied.

The full apparatus of hypothetical judgements is introduced
by the following definitions: A prop and A true are potential
judgements for any closed expression A. If Rq,...,Rn.R are poten-
tial judgements, then so is (Rq,...,Rn)=>R. Potential judgements
different from A prop and A true are potentisl hypotheticsl judge-
ments. Lists of potential judgements are of the form (Rq"°'1Rn)
or @ (empty list), the Ri being called elements if the list.

u, v, W, X, Y, Z denote lists of potential judgements, R and R'
(with and without indices) potentiel judgements. (X,Y) or (X,R)
etc. are understood as usual. In the notstion of lists we usually

omit outer brackts. Single potential judgements are considered
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to be limiting cases of lists. Our task now is to define <D(R)
and to give an explsnation of the form (*) for each R.
The msain idea is that to know (Rq,...,Rn)=>R mesns to have

a hypothetical proof of R from Rq,...,R yswWhich in turn means

n
that one has a proof of R which is uniform in Rq,...,Rn. "Uniform
in Rﬂ""‘Rn" means that after supplementation by proofs of the
Rﬂ""'Rn one immedistely obtains & proof of R (proof here under-
stood in the primary, categorical sense). To have & hypotheticel
proof of R from R,y...,R constitutes a new single act of know-
ledge, it is not an infinite collection of proofs of R, one for
each list of proofs of the Rﬂ""’Hn' This is why I used the term
"uniform". "Schematic" would be another term to express this fact.
Hypothetical proofs result from categorical proofs by a similar
kind of abstraction as do general proofs (i.e. proofs with free
variables). Assumptions in hypotheticel proofs can be viewed like
varisbles to be instantisted by their proofs.
It is an essentisl feature of Martin-1&f's system that the

supplementastion of R1,...,R in a hypotheticel proof of R from R,,...

n
Rn by proofs of Rﬂ""'Rn is not considered to be performed in

one step, but may be done stepwise, i.e. by first supplementing

R, by its proof, then supplementing R2 by its proof, and so on.
This makes & great difference in the presupposition under which
mq,...,Rn)=}R is explained. According to the spproach where the
Rﬂ""'Rn are considered to be replaced by proofs simultsneously,
one would require (1) that =all Rq!""Rn be judgements, and

(2) that R be a judgement provided all Rq,...,Rn have been proved
(since it is not until the Rﬂ""’Rn heve been proved that R

needs to be explsined as a judgement). So ZK(Rq,...,Rn):}R} would
be defined as @(R,),..., D(R )y (Ryy.-eyR )P D(R). According to
Martin-L5f's approach, R2 need not be explained as a Jjudgement

until R,1 hes been proved, E. not until R,1 and R? have been proved,
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etc. This leads to the following definition of & , where Q assigns
lists of potential judgements to lists of potential judgements:
D (A prop) = @
D (A true) = A prop
D(XSR) = D(X),XpD(R) (not (D(X),X)=»D(R) !)
D (X,R) D(X),X = D(R).

Here the implicit convention is used that X2 @ is identified with
@ and X -=}(R1,...,Rn) with the list X#R,,...,X=3R . For example,

%

n'b((ﬁx,1 true,A; true,i; true)® A prop) = u-'2>(4&,1 true,A, true,A; true)

D (A, true,A, true),(A, true, A, truf:):‘,»A5 prop

n

@ (A, true}h, true A, prop, (A, true,A, 1:.::‘uue)=>4ﬂ,5 prop

= A, prop,A, truesA, prop, (A, true,A, true)nyufn5 prop.
For ;.l"a"((ﬂ,1 true, 4, true,A5 true)2 A true) one would have to add
(}‘x,1 true,A, t::*ue,;ﬂL3 true)=>A prop.

It follows from the definition of @ that D((X,Y)=3R) =
D (X=>(Y=>R)), which is quite natural and which would not holid
in the non-stepwise conception, save one would define @ (R) to
be just the list of those A prop for which A true occurs in R.
This would make = potential hypothetical judgement a hypotheticsal
Jjudgement only if it is built up from categoricel judgements.

@ has the following property:

Lemmz 1 If R' is an element of VD(R), then each element of
D (R') is an element of @P(R). That is, elementwise epplication
of & to 2(R) does not yield anything new (whereas 2 (D(X)),
which is not defined elementwise, cen yield something new).
[I do not reproduce any proofs of lemm2s or theorems in these
notes. ]

Now the precise explsnation of & hypotheticzl judgement
(Rq,...,Rn)#R is the following: Suppose all elements of

:b((}?,.l,...,Rn)#oR) have been proved. Then to know (R,y...,R )R
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means to have a hypothetical proof of R from Ryy-e-sBy in the
sense that 1t becomes a proof of R by stepwise supplementation
by proofs of H4,...,Rn.
We must convince ourselves that this is a genuine explanation.
If we measure the complexity of a potential judgement R' by the
pair (number of occurrences of A true in R', number of occurences
of A prop in R'), then each element of & (R') is of lower com-
plexity than R'. Furthermore, according to Lemma 1, & (R') con-
tains 211 presuppositions of the explenations of its elements,
so that it mskes sense to assume all of them to be proved. Thus,
when ordered according to their complexity, sll potentizl hypo-
thetical Jjudgements are covered by the explanation in & non-
circular way. Moreover, becsuse of the presupposition of the ex-
planation, it can be considered explained what it means to have

proofs of Ry,...,R  and of R depending on R,,...,R : Since 2(R,)

n

belongs to.&((Hq,...,Rn)qﬁih R, is explained. Since for each

i<n, (R,,,...,Ri}'—‘lnz’(RiH) belongs to D((R,y...,R )R),

Ri+1 is explained provided Rﬁ“"’Ri have been proved. That is,

the Rﬂ""'Rn can be considereal explained step by step, provided

in each step the previous judgements heve been proved, which is

all that must be required fr a stepwise supplementation by proofs

of Ryy...,R . Since (Rq,...,Rn}#'Q(R) belongs to R ((R,y...,R )R

R is explzined provided Rﬂ""‘Rn have been proved which is all

that is necessary for a hypothetical proof of R from Rﬂ""’Rn'
Therefore the above explsnation, together with the explesna-

tions of A prop and A true,explains each R as 2 judgement pro-

vided D (R) has been proved. Hence we can, as slready proposed,

cell R a judgement if D(R) has been proved. As an extension of

this mode of speach, we shall call a list of potentizl judgements

X & system of judgements, if D(X) (i.e. each element of (X)) has

been proved. In 2 system of judgements, esch element is a judge-
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ment provided the previous elements have been proved. In Martin-
Lof's fremework, the assumptions of hypothetical proofs are
systems of judgements in this sense (for which order is importent),
and not just finite sets.

Theorem 1 For any list of potential judgements X, D(X) is

a system of judgements, and therefore also &J(X),X.

b) General rules of inference

Rules of inference lead one from judgements which are known (= proved
to another judgement which is known. So the Jjustification of =

rule of inference must show that if I hsve proofs of the premisses

I also obtain & proof of the comnclusion. Now the proofs in guestion
may themselves be hypothetical proofs, and it is useful to mszke

the assumptions of such hypothetical proofs explicit using the
notetion X:R for e hypothetical proof of R from X (where @:R de-
notes the limiting case of a categorical proof). So the genersal

form of a rule of inference is

X‘T:R‘1 e Xn:Rn

X:R &

to be read as: if bypotheticsl proofs of R’”‘"'Rn from X,{,...,Xn,
respectively, are given, one obtains a hypotheticsl proof of E
from X. Unlike Martin-ILof's, this notation also mentions those
assumptions which ere not discharged by the application of the
rule. For example, instead of

(A true)

B true

ADB true

we write

X, A true: B true

X : ADE true .
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The reason is that in the present fresmework the assumptions of
a hypothetical proof form & more complicated structure than in
usuzl nstural deduction proofs. In particular, order is im-
portant, as the example

A true, X : B true

X : ADB true
shows, which is not in general a valid rule of inference.

The proposed notation allows one to formulate rules of in-
ference whose justificetion is based only on the explanations of
categorical and hypothetical Jjudgements and is still independent
of the introduction of logical constznts. I call these rules,

which correspond to Gentzen's structural rules, general rules

of inference, in contradistinction to special rules of inference

which govern the logical constants.
Note that I use the colon as a specific sign to express hypo-
thetical proofs which is different from =, i.e., I distinguish
a ceztegorical proof of X=»R (expressed by @ : X=R) from a hypo-
thetical proof of R from X (expressed by X:R). This is justified
since the notion of s hypotheticel proof is the primary notion
with respect to which the notion of & hypothetical judgement is
explained. Establishing X=*R, given a hypotheticszl proof of R
from X, i1s an extre inference step, even if it is an immediate
one (based on the explanation of hypothetical judgements).
However, this is not a matter of principle. Everything
that follows remains valid if one replaces the colon by =». The
difference is thet when using the colon & rule of inference is
conceived ac something that leads one from hypothetical proofs to
a hypothetical proof (where something may be changed in the assump-

tione, e.g. assumptions mey be discharged), whereas when using =,
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g Tule is viewed as leading from hypothetical judgements (or
categorical proofs thereof) to hypothetical judgements (or ca-
tegorical proofs thereof). Which interpretstion one prefers de-
pends on whether one wants to make the step of reflection, which
lies between proofs of hypothetical judgements and hypothetical
proofs,explicit in the notation of rules of inference.

In the following formulation of the general rules of inference
we use the convention that X:Y means X:R, ... X:R if Y is the

list Ry,...,R and that X:Y is empty if Y is empty.

n‘

X,R,Y,R : R' X,Y : R' X : D(R)
(Contr) ——————nr (Thin)

X,R,Y : R' X,R,Y : R

. A
(Ass) E_;_EEEE; (where X must be empty if
e X,R : R ®(R) is empty)

Xz RysevsaB J®R X' : Ry wse X : R

X« R

X : YR

Note that zaccording to the formulation of (Ass), R can be intro-
duces ass an asamption only if R is z judgement (i.e., o (R) has
been proved). Hence R:R is not ir. gemeral Jjustified. Since A prop
is always a2 judgement (i.e. (A prop) = @), A prop can always
be assumed, i.e. A prop : A prop 1is Jjustified.

These rules cen be justified in the following sense.
Theorem 2 Let

Xq:Rq T Xn:R11

X:R
be one of the rules in question. If for eech premiss, (Xi,Ri) is 8

svstem of judegements (i.e., SD(X;,Ri) hzs been proved) and =
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hypothetical proof of Ri from Xi is given, then one obteins a
proof of ;D(X,R) (i.e., (X,R) is a system of judgements) snd a
hypothetical proof of R from X.

This theorem is proved by reflection on the explanation of
the forms of judgement. [Again, I omit the detailed proof herel.
Roughly spesking, the theorem says that if the premicses are
explained and proved then so is the conclusion. The Jjustification
of & rule of inference includes showing that the conclusion is
explained before showing that it is proved, since to spesk of =
hypothetical proof of R from X mskes sense only if (X,R) is =
system of judgements, i.e. if a proof of ;’)(X,R) is given. The
latter may depend itself on the proofs of the premisses of the rule.

Having justified certain rules of inference, we may consider
the formal cslculus we obtain if we tazke the genersl rules of in-
ference to be formsl rules which allow one to produce sequences of
signs from sequences of signs slreesdy produced. In that cace, we
shell speesk of formal provability and formal proofs, as distinguished
from proofe as acts which mske something evident. The formsl cal-
culus has proof-theoretic properties which correspond in a2 cer-
tain sense to properties which have to do with non-formal proofe.
This is not surprizing since the justification of the generzl rules
of inference may be viewed as 2 demonstration of the soundness
of the correcsponding formzl system.

Theorem > Consider the cslculus bssed on (Comntr), (Thin),
(Ass), (Hyp) snd (=) as formal rules of inference.
(i) For each X, both (X)) : ®(X) end A(X),X : X are

formally provable.
(ii) If X:R is formally provsble, then @: D(X,R) is formally

provsble.
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(i) corresponds to Theorem 71, (ii) in part to Theorem 2.
Note that from (i) we may conclude that there are proofs in the
non-formel sense of the elements of D(X) from (X) and from
the elements of X from &(X),X. Just take the formal proofs end
combine the Jjustifications of the inference rules which are
used. (ii) does not have an immediate non-formal reading, since
for heving & hypothetical proof of R from X (in the non-formsl
sense) it is already presupposed that a proof of &(X,R) is at
one's disposal. The significance of (ii) lies in the fact that,
though it is possible to speak of a formal proof of X:R without
any presupposition, the presupposition of the non-formal case
has a formal analogue in the formal provability of @: D(X,R).
If we had not made assumptions explicit and thus had not formu-
lated the generel rules of inference, we would at least heave lost
this nice correspondence between results of non-formal reflections
and proofs in & certain formasl system. The structural rules of
this formasl system are not as simple as in the case of ordinary
natural deduction, where explicit mentioning of assumptions and
structural rules can well be avoided as in Gentzen's first and
in Prawitz's presentation.

There zre of couse further general rules of inference which

can be justified, e.g. the following ones:

(Ass') X : &(Y) (Where X must be empty
= XY : Y if &(Y) is empty)

X :
X,Y : R X : D(2) X : YR

(Thin') o P o

X,2,Y : R X,Y : R

(Contr') Z,R,Y,R,2 ¢ R _—— X,R;,R0,Y ¢ R X : D(Ry)

Z,R,Y,2 ¢ R X,RQ,R,‘,Y 2 R .

These rules, read as formal rules, cen be shown to be admissible in
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the calculus based on (Contr), (Thin), (Ass), (Hyp), (=), i.e.

do not extend what is formelly provable in this calculus.

c) Logical operators - special rules of inference

Now we consider n-ary constants S and explain their meaning by
telling what counts as & verificstion of SAq...An. More precise-
1y, we do not give an explanation for specific constants but
give a schemz of an explanation for an arbitrary n-ary constant
S, which, when instantisted appropristely, becomes an explana-
tion of the specific logical constants one wants to have, e.g.
&, v, @ and L . In general this explanation will depend on the
assumption that something has been proved which must have been
explained before. This will be expressed by use of lists of po-
tentiel judgements to be associated with S.

Let pq,...,pn_be additional closed expressions, called propo-
sitional variables, and let ﬁﬂ(pﬂ‘""pn}""'E‘m(pﬂ""'pn)
be lists of potentisl judgements associated with S, whose expressions
ere built up only by use of propositional variasbles and logical
constents which have already been explzined (if there are any),
end which contain potential categorical judgements of the form
"# true" only. The lists may be empty, and we even sllow for m
to be O, in which cese no list (not even the empty one) is asso-
cieted with S. &jﬁﬂq,...,an) is obtained from ﬁj{p1,...,pn)
by simultaneously substituting Aq,...,An for Pqse=-«3Pyy TeESpEC-
tively. I shell azlso write p for DqseeesPps A for Agyeeeyh,
SE for SAj...A , A;(P) for & (Pqye--3Py ), 8nd A, (R) for
Ai(Aq,...,An).

Now the mesning of 5 is expleined as follows: Let X be given.
Suppose Aﬁ(iﬁ is 8 system of judgements for evervy i. Then a
verification of SA consiste of a proof of (the elements of)

A (%) for some i.
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Let us use {_j_]j for . o % (empty if
m=0), where i is anything contzining an index j, and
{_J_li;!j for 4 s -1 ——ge s %

Then the explanation of S immediately leads to the following

rule of inference:

{x: a;EN]T

(S form)
X : SK prop :

Justification: If one knows that (X,-’D(AJ(I))) is a system of
Judgements for every j, one knows in particular that X is a
system of judgements and thus that (X,SA prop) is a system of
Jjudgements. So the conclusion is explained. If one furthermore
has a hypothetical proof of Q(AJ(I)) from X for every j, then
the presupposition of the explanation of SA is fulfilled (provi-
ded X). Thus it is explained what counts as a verification of
SA, i.e. one knows SK prop (provided X). This is exactly what the
conclusion of the rule says.

The inverses of the formation rule are the detraction rules
(the idea of introducing detraction rules was developed jointly

with Roy Dyckhoff, and the term "detraction rules" is due to him).

(8 detr) X : SA prop (Phis is considered to be
_ g list of rules in the
{X : @(AJ(A))B 5 obvious way.)

Justification: (Here and in the following I omit reference to

X, which is a2 list of assumptions common to premiss and conclusion).
If one knows SK prop, one knows what counts &s a verification of
SA, thus one has grasped the explanation of SA, which means that
one must have proved a(Ai(I)) for every i (which is the pre-
supposition of the explanation). This is exactly what the conclu-
sion asserts. (We need not show in addition that the conclusion

is explained, i.e. that for each R in @(Ai(X)) we have a2 hypo-

theticsl proof of R(R) from X. By Lemmz 1, this is contained in
whet we have shown.)
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Martin-Lof does not formulate detraction rules, probably be-
cause he does not need them in the development of his theory.
My reazson for the formulation of these rules is that without
them certsin rules of inference would not be equivalent in the
formal reading although they are equivalent in the non-formal
resding which shows that in non-formsl reasoning detraction rules
are used implicitly. This applies, for exasmple, to the equivalence
between direct snd indirect elimination rules for operators with
only one associated system Aq(ﬁ} (see below) and to the following

two kinds of introduction rules.

X: A.(K) X : SE pro
(S intr) x e (1£€iém)
X : SE true
X: &.X%) X : D(AENDN .
(S intr') < { J B JAL 195 65)
X : SK true

In the presence of (S form) and (S detr) these rules are formally
interderivable (for the proof one has to use Theorem 3(ii), which
extends to the calculus with (S form) and (S detr)): without

(S detr), (8 intr) is the stronger rule. Since we have slready
justified (S form), it suffices to justify (S intr).

Justification: If I know SK prop, SA true is explained as a judge-

ment. According to this explanation, a proof of Ai(I) is 2 veri-
fication of SK. Since I have such a proof, I know how to verify
sk.

X : SK true {x, A () : H}J

(S elim)
X : R

(X : SK true {X,A,:(I) : C 1,:\1‘0*{):',;i

X :C
(5 elim')4 prov

X : SE true {X,&_.('K} : C trueg,-

il 1 5

X : C true
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(S elim') is Jjust an instzence of (8 elim). Conversely, (S elim)
can be formally proved from (5 elim') using (='), (Perm), (Thin)
and Theorem 3%(ii). I justify (S elim).

Justification: If one knows SA true, one is able to produce s

verification of SA which according to the explanation of SA con-
sists of & proof of z;i(I) for some specific i. Together with
the proof of R from zﬁi(I) (and X) and its presupposition, =
proof of &(R) from bi(:[) (and X), one obtains proofs of D(R)
and R (from X).

The elimination rules which Martin-Lof formulates follow the
pattern

X : Sk true X,S8K true : C prop {X, AJ(I) ;1 C true& ‘

X : C true ,
and seem to me to be too weak for some purposes. For example,
the following theorem would not hold with them:
Theorem 4 If one adds to the formal calculus considered
in Theorem % (S form), (S detr), (S intr) and (S elim) as for-
mal rules of inference, then Theorem ?*(ii) remains valid, i.e.,
if X:R is formally provable, then so is @: D(X,R).
If only one list A(DP) is sssocisted with S, we formulate
the following alternative introduction and eliminstion rules:
X : A@R)
(8 intr*) —8
X : SE true

X : SA true
(8 elim*) ————

X: A® .
The equivalence between (S intr*) and (S intr) is obvious. To
prove that (S elim) snd (S elim*) are formelly interderivable,
one must have detraction rules st one's disposal. Otherwise one
cannot formzlly prove X: @( A(E)), i.e. show that the conclusion

is explzined. For example,
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X : A&B true

X : A true
is formslly shown to follow from (& elim) in the following

way, where

X : A&B true
represents en arbitrery formal proof of X : A&B true which is

supposed to be given:

X : A&B true
——————— (Theorem 4)

X : A&B prop X : A&B true
————————— (& detr) (Theorem 4)
X : A prop X : A&B prop
(Ass) (& detr)
X,A true : A true X,A true : B prop
] (Thin)
X : A&B true X, A true, B true : A true
(& elim)
X : A true .

Functional completeness of &, v, > ,_L is proved as in my
thesis. This proof uses replacement of (B, true, ... ,Bn true)=B tru
by (Bq&...&En):>B true, so it crucizlly depends on the fact that
the 131(1) do not contain any B prop. The reason for not permitting
B prop in ﬁi(I) is the intentiomzl character of propositions.

In the explenation of SE, the fulfilment of the intention SA&

(= verificstion of SA) is reduced to the fulfilment of the in-
tentions A1""’An’ or more precisely, to certsin relations bet-
ween such fulfilments (expressed by hypothetical Jjudgements of
certein forms). And since only knowledge of B true leads, when
executed, to the fulfilment of the intention B, we cannot per-
mit B prop to occur in Z&i(ﬁ). Knowledge of B prop does not
lead to the fulfilment of zn intention, but is only the presuppo-
sition which is necessary to understand R as zn intention (whose

realizability is established by a proof of B true). (In this sense,

proofs of A prop only have an auxiliary function.)
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This point is of extreme importance. If A(A) may contain

E prop, one could define a one-place constant P with the asso-

ciated list A(p) = p prop. This would lead to the rules

X : A prop
(P form) —88— (P intr) ——
@ : PA prop X : PA true
X : PA true
(P elim) —

X : A true 3
which would represent an internsl definition of the category of
propositions. In en extended system this leads to & contradiction

as shown by Aczel.

I1I. Quantifier Logic

2) General proofs snd general judgements

Hypothetical Jjudgements were explained using the notion of =a

hypothetical proof. A hypothetical proof of R from Rq!""Hm

has the characteristic feature that, when successively applied
to proofs of Rq""'Rm1 it becomes a proof of R. Similarly the
notion of a general proof can be defined, if we consider expressions
with free variables. If Rq,...,Rm and R contain no other free

varisbles than XgyeeenXy,y then 2 general proof of R from Rﬂ""‘Rm

(which in fact is a hypothetico-general proof, if the Rq,...,Rm

are actuslly present,) is defined as something that becomes =

P ¢ ss X

proof of R(*1

X
n/ﬂq---ﬂn} from Rq( 1

n/ ) [—
&q...ﬁn ’ 2

R (Fqmenty s )y if expressions A. of the same arities as x.
m Aq...ﬂn i i

are given. Herel (x"l'”xn/Aq N ) means simultaneous sub-
stitution of the As for the correspgnding X;. This means that

the proof is uniform or schematic in the X i.e., we do not

have en infinite collection of proofs (ome for each list Aq;...,An),
but one single sct of knowledge.

In the following, when speaking of a proof of R from X, this

is to be understood in the sense of a eeneral proof if X and R
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contain free verisbles. It can easily be seen that none of the
general rules of inference justified in part I need be changed
when read in this way. The explanation of genersl proofs and
of free variables which serve to express the generality of proofs
immedistely Justifies the following genersl rule of
inference:

X : R
20 B ) ;

In order to introduce genersl judgements, we take as an

(Subst)

edditional clause in the definition of potentisl judgementsthe

following: If R is a potentisl judgement, then so is =R for

,.l...J(n

a variable x. %x «++>», (X3R) mey be written as X?x R
The definition of & is ex?ended by z(éxR) = > D(R) (where,
if D(R) has more then one element, this is taken elementwise).
Generel judgements are then explained azs follows: Suppose all
elements of .'Z)(%xﬁ) have been proved. Then to know =;XR mezns
to heve a general proof of R. This justifies the following general
rules of inference:

X : R

(Gen) —mo—ow (x not free in X)

X:#'XR

X : %$_FR
(Spec) ——X—
X : R Py
(Bubst) end (Spec) could be formulated in one rule. However, taking
different rules seems to me to be conceptually clesrer. (Subst)
hes to do with the notion of a (hypothetico-) general proof,
(Gen) and (Spec) with the notion of a (hypothetico-) genersl
Jjudgement as defined from this notion.
Similar to what was remarked in part I, we distinguish
generel proofs (X : R) from proofs of genersl judgements

(2 : X#xq...x R, where X., ...,X, sre the free varisbles of X
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and R). If one does not want to draw this distinction, one may

throughout replesce X:R by X=> x R
SEERE S,

b) Logical constants

We immediately desl with higher-order logic, i.e. with logical
constants of arbitrary arity. Here o is the arity of closed
expressions and (ﬂ:q,-..,nbn) the arity of expressions which,
when applied to expressions of arities o qreeey oy yield a
closed expression. The arity n of propositionsl logic now corre-

sponds to (04...,0). It is a characteristic feature of Martin-
\_._...'.—--_J
n times

Lof's system that on the level of expressions it distinguishes

only arities, starting from the one basic arity of closed ex-
pressions. Whether something belongs to a certain type or catego-
ry cannot be learned from an inspection of the expression but
is a judgement of the theory. This mskes it very closely relsted
to Frege's system, wherezs in presentations of simple type
theory, for example, it is usuasl to categorize expressions from
the very beginning, in particular to start with two basic types
of exprescsione, one for propositions or sentences, and one for
individusls or terms.

So we assume that we have variables of any arity at our dis-
poszl, furthermore constants if we want. Simultsneous substitution

A(xq"'xn/B ) of variasbles x; by expressions B; of corresponding

e
arities ;n exgressions A is defined &s usual, similarly for
potential judgements and lists of potential judgements. We assume
that substitution includes relsbelling of bound varisbles in
such a way thet it is slways defined. Furthermore we zssume
that we have abstraction in the sense that ((xﬁ...xn)ﬁ) is of
arity (M.q,...,uan), if A is of srity o sand each Xy of arity %y

and spplicetion in the sense that CB,...B_ is of arity o if C

n
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is of arity (QU”...,xzn) and esch B, of arity o . If the arities

of A, C, X.

j @and B, are as sabove, ((xq...xn)A)Bq...Bn is considered

A

definitionally equel to A(*1 n/ ¥ and % e X YOK vead® )
q B,«l..-Bn 1 n i Il

to C. This Jjustifies

X: R

(fmd ——
as a general rule of inference, where R' results from R by exchanging
definitionelly equsl expressions in the above sense. In a thorough
trestment of definitional equality between expressions, (/37 )
would be reduced to more basic rules. However, for the present
purposes, where we are mainly interested in hypothetical and
generel judgements and rules for logical constants based on them,
it is enough to have (ﬁyz ).

The above explanation of (hypothetico-) general proofs and
Judgements and the Jjustification of the inference rules based
thereon held for eny arity and was not confined to the arity of
closed expressions.

Now we sketch how to deal with logicel constants S which
msy be of arbitrary arity. The usual V¥ and 3 qusantifiers are
considered to be of arity ((o)), VxA and JxA being abbrevia-
tions of VY ((x)A) end d((x)A). Propositionsl operstors fit into
the present framework as limiting csses.

If S is of arity (x“""’°cn)‘ let XqgenesXy be distinguished
variables of arities Gﬁq,...,nbn, respectively. As in part I, we
shell use the abbreviation X for XqeeeXp, and eimilarly X for
Aq...An where the elements of K must correspond in arities to the
elements of X. Let sgein lists Aq(f),...,bm(-f) of potential
Judgements be sssociated with S, which besides free variables of
¥ may contain bound varisbles different from X, sdditional free
variables, and logical constants which heve already been explained,

but no other constants. As in the propositionsl case,‘...prop'
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must not occur in them. For example, in the case of ¥V ena 3 4
m is 1 and Aq(xq) is =}>yx,‘_y and XY respectively, where X4
is of arity (o) and y of arity o. b‘i(I) is not defined as
(Ai(i))(;/I)‘ but as (Ai(f))(-ﬁ/i-z—), where y are the free
variables in Ai(f) beyond X, and z are distinct veriables of
the same arities which do not occur in A. Thus t;i(I) includes
relabelling of the additional free variasbles in &i('f) in order
to avoid confusion with the free variables in A.

Now S is explained as follows: Let X be given. Let z consist
of 8ll variables which are free in at least one ﬁi@f) (141 <m)
but not free in K. Suppose =>E Ai(I) is & system of judgements
for every i, that is, ?—z- 3(6i(1)) has been proved. Then a veri-
fication of SK consists of a proof of (é;i(I))(zfﬁ) for some i
and list of expressions C.

It would not suffice just to require that ‘ﬁi(I) be a system
of judgements, i.e. to leave z as free varisbles. For if Sk
is to be proved hypotheticslly from X, this explanation itself
is to be understood under the assumption X, and X mey already
contein some variable of z free.

I just state the special rules of inference - the justifica-
tions are completely along the lines of part Ic), only generality

has to be taken into account in the obvious way.

{x :z;,_i:bczsj@n}j

(8 form)
X : SK prop
X : Sk prop
(S detr)
X i (A (ENE /=) X : SK prop
(5 intr) &5 = (1¢ic¢m)

X : SE true
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Note that if z is not empty (i.e. in a proper quantifier case),
the following rule is not adequate:

X: (8@ {x 5 208;E),

(S intr')
X : SE true

(1€1iem)

If the left premiss is explained, we have a hypothetical proof of
QC(Ai(I))(z/E)) from X, but not necessarily of %zob(ﬂi(x))
from X, which would be required to gusrantee, together with

the right premisses, & hypothetical proof of SK prop from X.

X : SK true i, A. (@) : R}, (z not free in
(S elim) J J £ or R)
X: R :
X : SE true {X, AJ.(I) () pronlj
X : C prop _
(z not free
(8 elim')

- _ in X or C)
X : SK true  {X, AX) : C true SJ

X : C true
If only one A(X) is associated with S, we have direct elimination
rules only if A(X) contzins no free variasbles beyond X (for
example, 3 has no direct elimination rules). In that case
(S intr*) and (S elim*) are to be formulsted as in the proposi-
tional case (the A now being expressions of possibly higher
arity).

Functional completeness of &, v,>,4,¥ ,3 can now be
proved zs in my Aachen pesper. The quantifiers come in by trans-
lating general judgements in Ai(I) by the universal quentifier
and free variasbles besides those in A by the existentisl quanti-
fier.

Since we have immediately dealt with higher-order logic, one
may ask whether Prewitz's result zbout the definability of logi-

cal operztors in terms of V¥ and D can be obtained in this
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framework. The answer is negative. For example, Suppose we Know
AvB prop. Then we cannot prove

(A true 2 x true, B true =>x true) =y X true
from AvB true which would be needed for Prawitz's result. What
one can prove from AvE true is

x prop =, ((A true % x true, B true =$Xx true) = x true),
or, if one uses $pR as an abbreviation for x prop =, R,

(A true =p true, B true 2»p true) =.=',>p p true.
This shows that Prawitz's result crucially depends on the fact
that one considers propositionslly restricted quantification to
be a logical operation. In Martin-Ldf's framework this is not per-
mitted since '...prop' must not occur in the bjﬁid associated
with logical operators. By use of propositionally restricted
quantificastion one could internally define the category of pro-
positicons which would lead to a contradiction. What remains of
Prawitz's result in Msrtin-Lof's framework is that if one knows
Sk prop, then one csn prove

{Aj(?\')% P true}j %p D true
from SEK true and vice versa, but not necessarily C(E) true from
Sk true and vice versa for some C(X) for which SX prop =>,C(X) prop
holds. This shows once sgsin thet in Martin-L&f's system not every
hypothetical judgement of higher level can be translated into & cate-
gorical Jjudgement, so that hypothetical judgements of higher
levels may have useful spplications beyond questions of s standsar-

dized schema for elimination rules and functional completeness.

Peter Schroeder-Heister
June 1985





