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IN THIS PAPER we shall try to show that the notions of conserva-
tiveness and uniqueness are in a certain sense dual to each other.
These notions are analogous to the notions considered by Belnap in
[1], and similar notions are also mentioned in requirements which it
is customary to connect with mathematical definitions (cf., for
example, [11], Chapter 8).

In Section 1, after introducing preliminary definitions and nota-
tion, we shall state what we understand by conservativeness and
uniqueness. The first of these notions is fairly well known in math-
ematical logic (Belnap claims in [1] that it stems from Post), where-
as the second seems to be less well known, and we shall make a few
historical remarks on it. Next, in Section 2, we shall introduce
examples of expressions which are not conservative but unique, and
the other way round, and we shall state what intuitively induces us
to think that duality can be found. After that, in Section 3, we shall
make precise a certain limited context in which two special notions
of conservativeness and uniqueness can be shown dual to each
other. Still, we assume this context and the notions involved are
general enough to be of interest. It is possible that in contexts where
our results are not applicable an analogous duality between conser-
vativeness and uniqueness can be established. At the end of this
paper, in Section 4, we shall consider this possibility.

1

Let L be a language in which a constant «, of an arbitrary syntactic
category, does not occur, and let S be a formal system formulated in
L with a set of postulates, 1. e. axioms, axiom-schemata and rules.
The system S, will be obtained by extending I with a, and by
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adding to the postulates of § some postulates in which « occurs. The
system S is as general as possible: we even leave open the possibility
that the set of postulates of 5 1s empty, and hence that there are no
thecorems in S. But we assume that S, properly extends S and that
there are theorems in S, in which a occurs. If §,is a given system in
L with «, then S,. will be the system in L with a* obtained by
replacing everywhere a by a* in the postulates of § . (Of course, a
and o are of the same syntactic category, and differ only “graphi-
cally™.)

We shalluse A, B, C, ... A,,. .. as schematic letters for formulae
of L, or L. with a. Schemata of the form A(a) will be used for those
tormulae of L with o in which « occurs at least once. Expressions of
the form k A will mean that A is a theorem ot S. Capital Greek

letters will be used for sets of formulae. Expressions of the form &k

A will mean that A is provable in the system obtained from § by
taking the formulae in @ as additional axioms, whereas expressions
of the form @& KW will mean that for every A in W we have Ok A,
When {A}, or @ U {A}, or ® U W, occur on the left or right-hand
side of § we shall write respectively A, or @ A, or ®.W. It is casy to
check the following properties of k:

(i) Dl D
(ii) DRY = O ITEWY

(iii) (DEW and [LW k 2) = [1,0 KX
(iv) [0 h) Y = h'“ Wy

(v) DW= D W

where @* and W* are obtained from ¢ and W respectively by
substituting uniformly a* for a.

As a matter of fact, k described as above is not the only relation
which we could use to present the results of this paper. Other
relations would do as well. For example, we can require that & A
holds only if in the derivation of A some primitive rules of S are not
applied to formulac which depend on the hypotheses in & (this is
the way Universal Generalization can be restricted in first-order
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logic). However, it is essential that these other relations satisty
(i) —(v).

If we want to claim that the postulates of S, in which o occurs
give a certain kind of definition of «. 1. e., a characterization of «,
and not also of something in the old language L, it is natural to
require that:

(n The system S, is a conservative extension of S, 1. ., for
every Ain L, if Kk A, then k4.

And if by “characterization” we mean “‘complete characterization™,

it is also natural to require that:

(2) The constant a is unique in S, 1. e., if we extend S, with
the postulates of §_., we must be able to show that in

the resulting system S,,- in the enriched language with

o’

both a and a*, the constants a and a™ are synonymous.

N. B. For the schematic letters of an axiom-schema, or of a rule of
S,, we can substitute in S . the expressions of the language with
both a and a*.

The notion of synonymity invoked in (2), which should corre-
spond to intersubstitutability salva provability, can be defined in
various ways. In the following definition, and also later, A(a*) will
be the result of substituting everywhere o* for a in A(a):

The constans o and o are synonvmous in §_ . iff for
every A(a) we have A(u)lgw A(a®).

aa®

It is easily seen that if for every A(a) we have A(a)k A(a*), then
for every A(a™) we have A(a™)k A(a).

Other notions of synonymity need not involve uniform substitu-
tion as ours does. With nonuniform substitution instead of A(a)k

A(u*) we can use the weaker condition k; A(a) = K A(a*)—with

uniform substitution this last implication is trivial. (Although our
notion of synonymity is based on uniform substitution, the effect of
nonuniform substitutions can in many contexts be obtained by
uniform ones. If a variable B of the syntactic category of « is
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available, and if some other natural conditions are satisfied, in
order to obtain A(a. a)k A(a, o) we could use A(B. a)k AP,

a*), and then substitute « for fi.)

A notion of uniqueness similar to ours was considered by Belnap
in [1], and also by Smiley in [10]. Smiley does not use the term
“uniqueness’’, but “functional dependence’. He shows that in the
Heyting propositional calculus conjunction (as well as disjunction
and negation) is functionally dependent, whereas implication is
functionally independent. This functional independence. i. e.. non-
uniqueness, of implication is connected with the failure of the
Deduction Theorem in the Heyting propositional calculus extended
with —* and postulates for —*. Let S be a standard Hilbert-type
axiomatization of the Hevting propositional calculus based on —,
A, v and 7, with axiom-schemata, and modus ponens as sole rule
(see, for example, [6], pp. 82, 101). If S . is the extension of § |
with the postulates of § .. we have A="B Ak B and A-B,
Al B, but neither A="Bfy  A—Bnor A—=Bk  A—"B, as can
be shown using the matrices of [10], p. 430 (note that here k
coincides with the usual relation of deducibility from hypotheses).
In an attempted proof of the Deduction Theorem for —, the step
that would be blocked would be the one from (DFS.__‘.AH(B@*C)

and @ A—Bto &k A-C. Similarly, it 5_ is a standard

Hilbert-type axiomatization of the classical propositional calculus
based on — and —, with axiom-schemata. and modus ponens as sole
rule, with the help of the matrices

i
*
—_
S
%)

4 -
11234 14
211133 201
311212 301
411111 411

where 1 is designated, we can show that — is not unique in § , and
that the Deduction Theorem fails in § ..
In formal systems where an analogue of the Deduction Theorem
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is assumed as primitive. like in Gentzen-type sequent-systems or
natural deduction systems, intuitionistic and classical implication
can easily be shown unique ([3], §9, [5]).

Smiley does not seem to take uniqueness as a desirable property
tor a constant in a system. He proposes uniqueness as a counterpart
to Padoa’s criterion for dependence. From [8] one can get neces-
sary, but not sufficient, conditions for definitional dependence
(i. e., sufficient, but not necessary, conditions for definitional inde-
pendence). and necessary and sufficient conditions for functional
dependence (or independence). This view is also expressed by
McKinsey in [7]. To show that a constant is unique means to show
that it is somehow dependent on the system in which it occurs.
Smiley demonstrates that this does not mean that i1t is explicitly
definable in terms of other expressions of the system. Roughly
speaking, if in 8 the constant « is synonymous with a [ from L,

then a and a® will be synonymous in S .. provided a remains

o™

synonymous with  in S So. explicit definability gives unique-

[FTE

ness. But if oo and a* are synonymous in S__., this does not mean

[(lehn
that there must be a  from L synonymous with o in S, as the
analogy with Beth’s Detinability Theorem might induce us to think.
Various notions of synonymity and uniqueness, like those men-
tioned in (2) and in the comments after (2), were also studied and
compared in [2] (§§22, 76-85). What seems to come out of this work
is that in many contexts and for many purposes all these notions will
give equivalent results. In [2] (§85) it was briefly suggested that
conservativeness and uniqueness are somehow dual.

2

Now we shall give examples of constants which are nonconservative
and unique, and the other way round. Let § be a standard Hilbert-
type axiomatization of the classical propositional calculus based on
—, A, v and 71, with axiom-schemata, and modus ponens as sole
rule (see, for example, [6], p. 82), and let S, be § enlarged with the
axiom-schemata
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BL.1. A—(ABB) B1.2. B—(ABB)
B2.1. (ABB)—A B2.2. (ABB)—B.

The connective  behaves like disjunction in 1.1 and 31.2, and like
conjunction in 2.1 and P2.2. It is in this respect analogous to
Prior’s connective “tonk™ of [9]. It is easy to show that S is not a
conservative extension of § (A— B is provable in S, and hence Sgis
not only nonconservative, but also inconsistent). On the other
hand, B is unique in Sy (A(B)—A(p") is provable in §;.. since this
system is also inconsistent).

Let now S be as above, and let S be § enlarged with the axiom-

schemata

Y1, (C>A)=((C—B)—(C>(AYB)))
v2. (A= C)—=((B—C)—>((AyB)—O)).

The connective v behaves like conjunction in y1, and like disjunc-
tion in ¥2. It is easy to show that Sy is a conservative extension of §
(interpret y as conjunction, or as disjunction). On the other hand. v
is not unique in S, (show that pyg k.. py*q does not hold by

interpreting v as disjunction, and y* as conjunction). Note that
these examples with 3 and v don’t depend essentially on S being an
axiomatization of the classical propositional calculus: § could as
well be an axiomatization of the Heyting propositional calculus.

So neither Sy, nor S, give a characterization of the constants they
introduce. For a characterization we should require both conserva-
tiveness and uniqueness, as Belnap in [1] has done in answering
Prior.

What seems to come out of a consideration of the constants {3 and
v is that the requirements of conservativeness and uniqueness are
somehow dual to each other. This is not at all clear from the
definitions alone of these two notions. Roughly speaking, our ex-
amples with § and y show that if the sufficient conditions in the old
language for a formula with the new constant are strictly weaker
than the necessary conditions in the old language for this formula,
then the constant in question is nonconservative and unique. This 1s
the case with 3, which has sufficient conditions for disjunction and
necessary conditions for conjunction. On the other hand, if the
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sufficient conditions are strictly stronger than the necessary condi-
tions—this is the case with v, which has sufficient conditions for
conjunction and necessary conditions for disjunction—then the con-
stant in guestion is conservative and nonunigue.
The constant  above is trivially unique in S

osince S 08
inconsistent. An example of uniqueness with nonconservativeness,
which does not fall into inconsistency, is provided by the following.
Let S be a standard Hilbert-type axiomatization of the Heyting
propositional calculus based on —, A, v and =, with axiom-
schemata, and modus ponens as sole rule, and let §; be the exten-

sion of § with the axiom-schemata

0l. (A—5A)—0A
02. 0A—=(AvA).

The unary connective O is unique in S, since in S,,. we have
5A—d*A and 8*A—dA, and S,;. is closed under replacement of
equivalents. The system S, is not a conservative extension of §, but
it is a consistent system (interpreting dA by A—A, it becomes
classical propositional logic). As before, we can interpret this exam-
ple by saying that the sufficient conditions for 8A4 in the old lan-
guage are strictly weaker than the necessary conditions for 0A in
the old language (Av—A implies A—A, but not the other way
round).

Let S be again the Heyting propositional calculus, and let §,be §
enlarged with the axiom-schemata

el. (AvA)—eA
e2. eA—(A—A).

(It is clear that €2 is redundant, since it follows from B—(A—A).)
The system S, is a conservative extension of § (interpret €A as
A—A), but ¢is not unique in S, (show thateA k &*A does not hold
by interpreting €A as A— A, and e*A as Av—1A). Now the sufficient
conditions for €4 in the old language are strictly stronger than the
necessary conditions.

The examples above involve propositional connectives. However,
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the results on the duality between conservativeness and uniqueness
of the following sections, apply to constants of an arbitrary syntactic
category, and not only to connectives.

3

In the rest of this paper we shall try to make precise, in a certain
limited context, this duality between conservativeness and unique-
ness. The first limitation of our context is brought by not working
with conservativeness and uniqueness as introduced by (1) and (2),
but with two more restricted notions, which we proceed to define:
(1.1) The svstem S, is a strictly conservative extension of § iff
for every @ and W which are sets of formulae of L. if
©r W, then W
(1.2) The constant a is strictly unique in S, iff for every A(a)
there is a set @ of formulae of L such that A(a) ;@ and

DK Ala).

It is clear that strict conservativeness entails conservativeness in the
sense of (1). The converse would also hold with a kind of Deduction
Theorem, or something similar, guaranteeing first that for every A
of W there is a B in L such that & A implies k B, and second that
kB implies ® KA.

To show that strict uniqueness entails uniqueness in the sense of
(2), we use the fact that @k A(a) implies, by (v), @k A(a*), which
with A(a) k @, (iii) and (iv) gives A(a) k A(a*). To see that
uniqueness does not always entail strict uniqueness consider the
tollowing counterexample. We can show that = is unique in the
classical propositional calculus 5 . On the other hand, it is not
strictly unique in S, since for no set @ of formulae whithout = we
can have ® & pa—p (a set of formulae without —1 is always satisfi-
able by assigning truth to every propositional letter). Although
uniqueness and strict uniqueness differ, in many natural cases the
notion of uniqueness we shall have to deal with will be strict
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uniqueness. Quite often, we shall reach A(a)k A(a”) by “interpo-
lating” some formulac @ of L between A(a) and A(a™), since in
S - we don’t necessarily assume postulates connecting a and a*. (If
in S, there are schemata in the postulates in which o occurs, then it
might be possible to connect « and «* in S . by substituting o™ in

these schemata: still, this need not absolve us from looking for an
interpolated set @.) Strict uniqueness corresponds to an abstract
notion of definability (cf. [4]).
Next we give the following definitions, in which I', A, & and W
are sets of formulae of L, and A is a formula in which a occurs:
G,={T'TkA and VO(D A = PKI)}
D, = {A Ak A and VO W (D, Ak W = O ARWY)}.

Intuitively ( , is the set of weakest sutficient conditions in L for A,
and D, is the set of strongest necessary conditions in L for A. Here
“weakest” and “strongest” arc understood with respect to §. The
slight asymmetry between  , and D, which consists in having both
® and W for D,, and only & for G, should be ascribed to the
asymmetry between premises and conclusions in deductions: there
arc possibly many premises, but only one conclusion. It is easy to
check that alternatively we could have introduced G, and D, as
follows:

(;A
D A

(T VD(dDE A < D L)}
(AIVO, W(D AW < O AW)).

I

Roughly speaking, a I' replaces A in S as a conclusion, and a A
replaces A in § as a premise.

In the following lemma we show that the members of G, or D,
are interdeducible:

Lemma: (a) (VI TeG) (KD and THkD).
(b) (YA, AseD,) (AkAs and AskA,).

Proof: Suppose I'y, I, G,. Then we have that (I A and (1K A
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= I,k ') and (I A and (I''k A = T'|KI,)), from which (a)
follows. For (b) we proceed analogously.

For the duality results which follow we assume that for every A in
which a occurs, (G, and D, are not empty. This assumption limits

the context where our results are applicable.

Theorem [ The system S_ is a strictly conservative extension of § iff
for every A in which a occurs (Ve ,) (VAeD ) KA.

Proof: For the only if part we proceed as follows. Let A be a

formula in which « occurs. Then (VI'e&,) 'k A and (VAe D)) Ak

A. Hence, using (iii), we obtain (Ve G,) (VA€ D) T A. If now
we suppose that S is a strictly conservative extension of S, it follows
that (VTI'e(G ) (YAe D ,) I'kA. For the if part, suppose ® and W are
sets of formulae of L such that @k W. According to our assump-
tions about S, there is an A in which a occurs such that & A. Using
(ii) we obtain @, Al W. But this means that (VAe D) &, AW
Now assuming that (VI'eG,) (VAeD,) 'k A, and using the non-
emptiness of D, and (iii), we obtain (VI'eG,) @, I't; W. Next we
show that ¢ e G 4 Since FS A, we have ¢ I_—SMA, and V&b ((I){—S-“A =
®LP) is trivially satisfied (its consequent is always true, viz., if Be @,
then @ £B. So, ® kW, and the Theorem follows.

Theorem 2: The constant a is strictly unique in §, iff for every A in
which o occurs (VI'eG,) (VAeD ) AKT.

Proof: For the only if part we proceed as follows. If « 1s strictly
unique in S, then for every A in which a occurs there is a set @ of
formulae of L such that Ak ® and ®f A. But this means that
(VAeD,) Ak® and (VIeG,) K[, which, using (iii), gives
(VI'eG,) (VAeD,) AKT. For the if part we have the following. Let
A be a formula in which « occurs. Then (VIeG,) I'kA and
(VAeD,)Alg A. Now assuming (VI'e G ,) (VAeD ;) AKT, and using
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the nonemptiness of G, and D, (i) and (iv), we obtain that for
some ' in G, both AR T and I'k A (also for some A in D . we

obtain Ak A and Ak A). From this the Theorem follows.

Note that the nonemptiness of &, and D was used only for the if

parts of Theorems 1 and 2. In fact, for the if part of Theorem | we
used only the nonemptiness of D, for at least one theorem A of §,

Theorems 1 and 2 accord rather well with the intuitive consider-
ations on the duality of conservativeness and uniqueness we had in
Section 2 in connection with [} and y. In the example with f3, the
system S is inconsistent; therefore, if & is the set of all formulae of
the propositional calculus, for every A([3) we have that ¢E Gy pand
®eD . Since it is not the case that @ &, whereas @ (@, we
obtain that S, is not a strictly conservative extension of §. and that {3
is strictly unique in S, In the example with vy, there are more
difficulties in defining for each A(y) the representative members of
G4, and D, if there are any. But {p—pleD . . and so
Theorem 1 holds. Since it is easy to show that Sv IS a strictly
conservative extension of §, we can conclude that for every A in
which vy occurs (VI'eG,) (VAeD ) T'kA. Next., we can show that
{prgqielG,, and {pvgie D, For {prgieG, .

k pYd and YO(D h\f{)yq = DR pnag) (to pass from Pk pyg to Ok

we have that pag

pAgq just substitute everywhere A for v in the derivation of pyg
from @), and for {pvg}eD,  we proceed analogously. Since it is
not the case that pvg k pag, we have that for some A in which v
occurs it is not the case that (VI'e G ) (VAeD ) AKI'. For the only
if part of Theorem 2 we did not assume the nonemptiness of & , and
D,. and so it follows that v is not strictly unique in S, . In consider-
ing the examples with 6 and ¢ in the light of Theorems 1 and 2 we
proceed similarly.

It might be difticult to determine for each A(a) whether G

.Hu)and

D

difficult to determine what their representative members are, and
what relations hold between these members. But we are not sug-

A(w are nonempty. When they are nonempty. it might still be
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gesting that Theorems 1 and 2 give practical criteria for determining
conservativeness and uniqueness. The purpose is just to show that
there is a certain duality between these notions.

4

In some natural cases it might happen that G, is empty. For
example, if S, is a standard Hilbert-type axiomatization of the

Heyting propositional calculus based on v, —, A and 71, then G,

is empty. Otherwise, for some I'in G, we would have I't; pvg

pvg
and pk T and gk T, from which we obtain I't; pvg and pvgf T
But this is impossible, since it would follow that pvq is definable in
terms of the connectives of §. However, D, _is not empty. since A
= {B|Bis in L and pvqk B} belongs to D, . To show that,
suppose @, pvg k W; then, by the Deduction Theorem. for every B
in W we can find a C such that pvglk C. But CeA, and hence, Ak
C: so, ®, AKW. In general, whenever we have a Deduction Theo-
rem, or something similar, enabling us to reason as above, D, will
not be empty.

If G, and D, are empty, it is not possible to show the duality of
conservativeness and uniqueness in the sense of Theorems 1 and 2.
There is a possibility to overcome this limitation, but only at the
price of introducing another assumption. We shall now investigate
this possibility.

Consider the following definitions. in which ITis a set of formulae
of L. B is a formula of ., and A is a formula in which a occurs:

P, = {I[MK A}
X, = {B Ak B}.

A
Intuitively, P, is the set of all sufficient conditions in L for A, and
3, is the maximal necessary condition in L for A. The set P, could

possibly be empty in some cases, but the nonemptiness of this set is
not assumed for the results which follow. The set X, will never be

empty if § has at least some theorems; but again, its nonemptiness is
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not essential. What we must assume. it seems, is a kind of Deduc-
tion Theorem for k . or something similar, in order to be able to

show that conservativeness implies strict conservativeness. We have
mentioned the possibility of this assumption after the definition of
strict conservativeness in Section 3, but in contradistinction to what
we have here, we didn’t make this assumption for Theorems 1 and
2. The simplest way to formulate our assumption is to say that we
assume that conservativeness implies strict conservativeness. Then
we can show the following theorems:

Theorem 3: The system S, is a (strictly) conservative extension of S
iff for every A in which « occurs (VIleP,) I1 K 2.

Proof: For the only if part we use (iii), 1 k. Aand A K. z, to get
[Tk X,, which by (strict) conservativeness gives I X, For the if
part, suppose that for a B in L we have k B, and take an A in which
a occurs such that hA For this A we have that ¢EP4 and BeX .
Hence, from (VI1e P,) IT 52, we obtain ¢k X, and so, k B.

Theorem 4: The constant a is strictly unique in S iff for every A in
which o occurs (3[1eP,) Z, KT1.

Proof: For the only if part we proceed as follows. Suppose that for
any A in which o occurs there is a ® in L such that A ® and &k
Ajthen @ = 2, and ®eP,. So, using (i), and perhaps (ii), we have
(FMeP,) Z, KII. For the if part, suppose that for some [1in P, we
have X,k IT. Then by (iv) we obtain X, k TT. which with A5 X and

(i1) gives Afg T1. Since we also have ITf A, the Theorem follows.

With Theorems 3 and 4 we have still not lifted all limitations on our
results, and it might be interesting to see it there are other ways to
make the duality between conservativeness and uniqueness more
general. It might also be interesting to find a certain duality be-
tween conservativeness and uniqueness in a natural deduction
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framework, where, roughly speaking. the role of the members of
G, would be taken by the premises of introduction rules, and the
role of the members of D, by the conclusions of elimination rules.

The results of this paper were all of a syntactical nature. Howev-
er, if we interpret Ik semantically, they can also suggest analogous
results of a more semantical nature. A somewhat different kind of
duality between conservativeness and uniqueness, which bears on
semantics, was already suggested by Belnap in [1]. If we assume
that S is sound and complete, to establish that S is conservative
amounts to showing that there is at least one a. So, the conservative-
ness of S, should correspond to its soundness. On the other hand, to

establish that « is unique in S, amounts to showing that there is ar

most one o, and this seems to bear on questions related to the
categoricity and completeness of § .

Received on November 10, 1953,
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