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Abstract

Logical inferences are investigated within the context of structural frameworks,
in which structural features of deductive systems are separated from logical ones. It
is claimed that introduction and elimination inferences operate at different levels.
While introduction inferences express logical rules in the genuine sense, elimination
inferences are more like structural inferences. This distinction is blurred by certain
features of intuitionistic logic, but becomes obvious when systems with restricted
structural postulates (substructural logics) are considered.

1 The idea of a structural framework

According to Gentzen [14], in a sequent-style system of logic, we have to distinguish
between structural and logical inference schemas. The latter govern the logical content
of formulas whereas the former do not refer to logical form. An example of a structural
inference schema is that of contraction:

X, A, A, YC
X,A,YFC

an example of a logical inference schema is that of V-elimination

X+AVB Y,AFC Y,BFC
Y, X+C ’

where A,B and C denote formulas and X and Y denote lists of formulas. This distinction
applies to sequent calculi with introductions on both sides of the turnstile (often referred
to as “Gentzen-systems” ') as well as to sequent-style natural deduction with introduction
and elimination inferences for logical constants only on the right side of the turnstile (as

*Draft of a paper which appeared in: G. Huet & G. Plotkin (eds.), Logical Frameworks, Cambridge
University Press 1991, pp. 385-403
lalthough Gentzen investigated natural deduction too.



considered in Gentzen [15]). This paper deals mainly with sequent-style natural deduc-
tion with a single formula on the right of the turnstile. Only in the final section systems
with introductions on the left of the turnstile are considered in connection with compu-
tational aspects of deduction. For conceptual simplicity, our investigations are restricted
to propositional logic. We also do not deal here with systems with multiple formulas on
the right of the turnstile nor with problems of negation.

The idea of “structural frameworks” (see [30]) is twofold: Firstly to extend the notion
of structure, and secondly to treat all logical content of formulas by means of a database
of rules.

Ad 1: The extension of structural means of expression concerns particularly the intro-
duction of a structural implication — which is to be distinguished from logical implication
D. It is to supplement structural conjunction which is already present in Gentzen in the
form of the comma (to be distinguished from logical conjunction &). Another structural
extension (that we are not dealing with in this paper) concerns structural generaliza-
tion which is to be distinguished from (logical) universal quantification. It is implicit in
Gentzen’s usage of free variables. This does not mean that at the structural level we
are duplicating things which are available at the logical level. Rather, these additional
features increase the expressive power of the structural level so as to cover various logical
systems in a philosophically plausible and technically uniform way. Apart from that, not
every logical constant has a structural analogue (e.g., disjunction has not, at least not in
the single-conclusion case). What one would need in a full system is structural conjunc-
tion, implication and generalization (of all types), which logically corresponds to a certain
fragment of a simple theory of types. In a certain sense, our structural level corresponds
to the judgemental level in Martin-Lof’s theories.

Ad 2: Instead of considering various logical inference schemas we just consider a single
inference schema of rule application. The rules themselves form a database, which is
independent of the structural framework itself and may vary. In this way the content-
independent inference machinery is separated from the variety of logical systems it may
be used to incorporate. One even becomes independent from the logical character of
the database: the framework may be used for arbitrary databases of non-logical rules as
well, which makes it useful for extensions of logic programming (see [31]). Again, the
distinction between inference schemas and rules is a conceptual feature - it is not denied
that rules can be replaced by certain inference schemas as in Gentzen.

An example of a structural framework for intuitionistic propositional logic can be
given as follows: Structural atoms are formulas of propositional logic (letters: A, B, C).
Structural implications are structural atoms or are of the form (F—G@) for structural
implications F' and G (letters: F,G,H). Structures are lists of structural implications
(letters: X,Y,Z). Sequents are of the form X+F, rules are of the form X=A, i.e.,
sequents have arbitrary structural implications as succedents, whereas rules only have
structural atoms as conclusions. Structural inference schemas are the following:



X,F,G,YrH

(Reflexivity) Jaa (Permutation) X.G EYFH
. X, F,F,Y-H L X+H
(Contraction) X.FYFH (Thinning) X FFH
X, FFG XFF  YFF-=G
D) i oe (=E) Y, XrG
XiFFy .0 X, FF,

(F=) X, XA if Fy,...,F,=A is in the database
The schema (=) also covers the limiting case where the database rule has no premisses
and the upper sequents of the inference are lacking.

The database may contain logical rules such as

A, B=A&B A—B=A>B

A=AVB B=AVB

However, in principle this approach is not confined to logic; the database may contain
extra-logical rules also. For logical elimination inferences see §3 below.

In contrast to previous descriptions based on “higher-level rules” (see [29, 30]), this
paper strictly distinguishes between structural implications F'—(G, which are obtained by
iterating — to the left and to the right, and rules X=-A, which have atoms as conclusions.
The concept of “higher-level rules” mixed these two things up by using = both as a sign
for structural implication and as the rule arrow. It is essential for a computational inter-
pretation of database rules that they may contain structural implications as premisses,
but themselves are different from structural implications. Rules have a normative (def-
initional) meaning governed by (F=-) (and by the dual principle (I P) discussed in §4).
They define the “world” one is dealing with. Structural implications have a declarative
(descriptive) meaning governed by (—1) and (—F). They make assumptions or assertions
about this world (see [28] for further general remarks on that topic).

Our approach gives a natural view of logic programming, if one takes atomic formulas
as atoms and considers database rules Fi, ..., F,=A as program clauses. Such a logic
programming language permits structural implications in the bodies of clauses and thus
extends definite Horn clause programming (see [20]).

2 Structural frameworks for substructural logics

Substructural logics are logical systems in which certain structural principles which are
standard in the intuitionistic case are not available.? Examples are BCK-logic, in which

2The term “substructural” was proposed by Kosta Dogen.

3



Contraction is lacking, relevant logics, in which Thinning is dropped, linear logic, which
has neither Contraction nor Thinning, or the Lambek calculus which is without Permu-
tation and which in one of its versions does not even have associativity of antecedent
formulas. The interest in such systems is increasing, partly due to applications of these
logics in computer science and theoretical linguistics. For an overview see [11].

Structural frameworks corresponding to substructural logics can be developed by im-
posing the restrictions mentioned on the structural inference schemas and by extending
the notion of a structural implication so as to incorporate these modifications. The logical
principles themselves would, as before, be formulated as database rules. In what follows,
frameworks for some prominent logics will be considered as examples, without any claim
to completeness: the associative Lambek system and relevant systems without distribu-
tion as pure single-family systems, relevant logic with distribution as a pure two-family-
system and BCK-logic and linear logic as single-family systems which in addition allow for
structure-independent rule-application. Following Belnap’s [3] classification, single-family
and two-family-systems are based on one or two, respectively, structural associations in
the antecedent of a sequent. In the single-family case, we denote it, as usual, by the
comma, which is understood as a multi-ary structural connective. In the two-family case
we use the semicolon for the second structural connective. By “structure-independent”
rule application we mean an inference schema for rule application which (unlike (F=))
does not refer to a particular structural association within the antecedent of a sequent
(this will become clear from the examples below). Belnap speaks of “families”, since in his
framework there are, for each structural association, corresponding logical conjunctions,
disjunctions, negations, implications and constants. We borrow this terminology, but ba-
sically consider conjunctions and implications only. For the systems we are interested in,
we need not treat the comma or the semicolon as a binary structural connective.

2.1 Pure single-family-systems: Relevant logic without distri-
bution, Lambek calculus

Here we consider frameworks where, as in the intuitionistic case, there is exactly one way
of associating structural implications to form a structure, which is denoted by the comma.
A structural framework for relevant logic without distribution results from the framework
for intuitionistic logic by taking away the postulate of Thinning; i.e., Permutation and
Contraction are still available. So, as before antecedents of sequents may be viewed
as finite sets. This system of relevant logic is investigated among other single-family
systems in [8]. It is not the system of the mainstream of the relevant logic tradition,
which rather favours systems in which the distribution law A&(BVC)F(A&B)VC holds.
This distribution law cannot be obtained by just dropping Thinning in the structural
framework. The proof-theoretically most elegant way is to consider a two-family structural
framework (see §2.3 below).

In the Lambek calculus as first described in [22] none of the structural postulates of
Permutation, Contraction and Thinning is available. This means, we have associativity
of antecedent formulas, i.e., we can write structures as lists, but do not have any further
structural postulate in the traditional sense apart from Reflexivity. In the sense of our
structural frameworks we do have, of course, further postulates, namely those governing



structural implications and the application of rules.® Due to the fact that Permutation
is lacking, two structural implications are available, which are here denoted by —+ and

—l>, i.e., non-atomic structural implications may be of the form F-5G or F5G. The
structural inference schemas governing — and L are the following:

1) X, FrG (5E) X+F  YFFSG
XFFSG Y, XFG
.« F XFG . XFF  YRFSG
N —= = E
ST ENE R (e

Based on these two structural implications, it is possible to include in the database
introduction rules for Lambek’s two logical implications / and \:

ALB=B/A ALB=A\B .

It is obvious that the postulates of the structural framework are essential for which
logical constants can be defined in the database. So it is not only the database of logical
rules which makes the difference between logics, but the structural apparatus governing
this database. This gives rise to criteria of logicality according to which one may dis-
tinguish between mere extensions of logical systems obtained by adding rules for further
constants to an existing database and rival systems obtained by changing the structural
postulates for an existing system.*

2.2 Pure two-family-systems: Relevant logic with distribution

In order to obtain a Gentzen-type system for relevant logics in which the distribution law
A&(BVC)F(A&B)VC holds, Dunn [13] proposed to use two structural conjunctions for
associating antecedent formulas: an extensional one denoted by the comma and an inten-
sional one denoted by the semicolon, with Thinning holding for the comma but not for the
semicolon.> To develop a structural framework based on this idea, we first introduce an
additional operator - for forming structural implications. Then we distinguish between
extensional and intensional structures. Every structural implication is both an extensional
and an intensional structure. Eztensional structures are of the form (X, ..., X,,) for inten-
sional structures X7, ..., X, whereas intensional structures are of the form (Xy;...; X,,)
for extensional structures Xy, ..., X,. Furthermore, for n = 0 we have the empty exten-
sional structure (), and the empty intensional structure §); as limiting cases. A structure

3In the even weaker non-associative Lambek calculus introduced in [21] one would have to treat the
comma as a binary operator, as done in the uniform treatment of various systems in [3]. Despite the fact
that Contraction is lacking, we treat the Lambek calculus as a single-family system as in the original
source [22]. One may of course add structure-independent rule application, yielding a system of the type
of §2.3.

4This idea is closely related to Dogen’s [6] view of logical constants as punctuation marks, although
Dosen’s structural apparatus is somewhat different from ours.

SFor later applications and philosophical discussions of this approach see [3, 5, 16, 24, 26, 32].



is an extensional or an intensional structure. So extensional and intensional associa-
tions may be nested within a structure. Sequents are of the form XFF for structures X
and structural implications F. Rules are either of the form F3,..., F,,=A (extensional
rules) or of the form F;...; F,,= A (intensional rules) for structural implications F; and
structural atoms A with limiting cases ),=A and ();=A. When we use a notation like
X, F,(Y; Z)FG for a sequent, the commas and semicolons in the antecedent denote ei-
ther concatenation of equal-type structures or structure-forming operations, whichever is
applicable.® Then the structural inference schemas include all schemas of the intuition-
istic case as given in §1 (but now with X, F and G read as structures and structural
implications in the present sense), and furthermore

(P tation:) X, F,G;YFH (Contraction; ) X;F,F;YFH
ermutation; X G F. Y H ontraction; X FYFH
. X, FFG ) XHFF  YFFSG
=) vwrrsa (=F) Y; XFG
X\FF ... X,FF,

(F=;) ¥ XA if Fy;...; F,=A is in the database
1,..., n

Here the limiting cases for n = 0 of (=) and (F=-;) permit to infer P.-A or (;FA,
depending on whether an extensional or an intensional rule is applied.

This means that that we have corresponding principles for the comma with the as-
sociated structural implication — and for the semicolon with the associated structural
implication —, with the exception that for the comma, but not for the semicolon, Thin-
ning is available.

Introduction rules for logical constants of relevant logics may be the following database

rules
A, B=A&B A—-B=ADB 0=t

A; B=AoB AB=A->B 0=t

to define extensional conjunction (&), implication (D) and truth (t.) as well as intensional
conjunction (fusion, o), intensional (relevant) implication (->) and intensional truth (%;).

6Therefore, if X is an extensional structure, the first and the second comma are appending F and
(Y;Z) to X. If X is an intensional structure, these commas form a three-element extensional structure
out of X, F and (Y;Z). Similarly, if Y and Z are both intensional structures, the semicolon appends
the elements of Z to Y. If Y is intensional and Z extensional, the semicolon appends the extensional
structure Z to Y. If both are extensional the semicolon forms a two-element intensional structure, etc.
If X is an extensional structure, then X, (), is the same as X, otherwise the empty extensional structure
(0. is appended to X, and likewise for X, 0; or X; 0, or X;0;.



2.3 Systems with structure-independent rule application: BCK-
logic, linear logic
In BCK-logic (see [25]) and linear logic (see [17]") one conmsiders a single structure-

sensitive association as in §2.1, but in addition a structure-independent schema for and-
introduction:

X+A XEB
XHFAANB
In our context this corresponds to a general schema of structure-independent rule appli-
cation. Besides rules Fi,..., F,= A, which are applied according to the schema (=),

we consider rules of the form Fi,,...,, F,= A, with premisses divided by double commas,
which are applied as follows:

XFF ... XFF,
XFA

(k=)

if Fy,,...,, F,=A is in the database.

In a structural framework for BCK-logic we have the inference schemas of Reflexivity,
Permutation, Thinning, (—I), (—F), (F=) and (F=,,), i.e., Contraction is lacking as
compared to the intuitionistic case. In a structural framework appropriate for linear logic
Thinning is excluded in addition. In the database we can now include introduction rules
for two conjunctions:

A, B=A&B A,, B=AAB

As for the systems considered before, the structural framework itself is independent of
what kind of rules are available in the database. There is no need for them to be logical
rules.

Mixtures of (F=) and (F=-,,) are also possible, e.g., by permitting rules such as
Fi, (Fs,, F3)=A which would be applied as follows:

X+F YFF, YFF
X,YFA

To avoid a possible misunderstanding: The distinction between structure-sensitive and
structure-independent rule application is no particular feature of weak substructural log-
ics, but exists for intuitionistic logic too. However, in the presence of Contraction and
Thinning, these cases can be mutually reduced to each other.

"By “linear logic” we mean what Girard calls “rudimentary linear logic”, i.e., we are just considering
the propositional fragment without exponentials. For a treatment of the structural features of linear logic
within the framework of display logic see [4].

8By “structure-independent” as opposed to “structure-sensitive” we mean that the lower sequent of
an inference schema does not refer to a particular way of structuring the antecedent as does a schema
like

XA YFB XA YFB
or .
X, YHA&B X;YFAoB

For the case of conjunction, Girard’s terminology is “additive” versus “multiplicative” ([17]) or “alterna-
tive” versus “cumulative” ([18], Appendix B).



One may, of course, add structure-independent rule application to a two-family system,
yielding, e.g., a relevant logic with conjunctions &, o and A. More generally, one may
develop the idea of a universal structural framework that would allow to make all the
distinctions mentioned so far. Such a meta-framework would have to provide facilities for
defining structural postulates themselves in a uniform way. Dosen’s [9] idea of sequents
of higher levels and of horizontalizing inference schemas into such sequents may become
fruitful in that respect. This approach might also lead to a conceptually perspicuous
treatment of modal logics within structural frameworks. The idea of such a general
structural framework goes in a different direction than do most logical frameworks, since
it comprises a whole world of systems even at the propositional level. Present-day logical
frameworks normally start with problems of higher types and quantification and take the
structural postulates of intuitionistic logic for granted.

3 The problem of elimination rules

So far the examples of logical rules have been only introduction rules. In the structural
framework considered in §1 with unrestricted structural postulates, elimination rules can
be added to the database as well. The V-elimination rule would read

(VE rule;) AVB,(A—C),(B—C)=C

(the index ¢ here stands for “intuitionistic”). Following the pattern of the V-elimination
rule, in [29] the following general schema for introduction and elimination rules for an
n-ary sentential operator s was proposed:

(sI rules) Xi=s(Ay,...,A,) ... Xp,=s(A,...,A4,)

(sE rule) s(Ai,...,An), (X1—=0),..., (X,—C)=C .

Here the X; stand for structures (lists of structural implications), in which only formulas
built up from Ay, ..., A, by means of logical operators already defined occur. For example,
in the case of s being implication, we have n = 1 and X; = (A;—A4,); in the case of
disjunction we have n = 2 and X; = A;, X9 = Ay; in the case of equivalence we have
n=1and X; = ((4;—A4s), (A2—A,;)), etc. It can be shown that in all cases (sE rule)
is equivalent to the “standard” elimination rule. For example,

(DE) ADB,((A—-B)—0C)=C

is equivalent to modus ponens
ADB,A=B .

According to this view, both introduction and elimination rules are part of the database
of logical rules, the elimination rules being generated in a uniform way from the introduc-
tion rules. However, this becomes problematic when substructural logics are considered.
The idea that the general schema (sE rule) for elimination rules can be taken to be the
same in all structural frameworks (see [30]) turns out to be infeasible.



We take the V-elimination rule (VE rule;) as an example. Applying this rule is
equivalent to using the following inference schema:

XFAVB Y, AFC  Z,BHC

(VE schema;) X.v.ZC

In the intuitionistic structural framework this is equivalent to

X+AVB Y, ArC  Y,B-C
Y, X+C '

(VE schema)

However, in the absence of Thinning and Contraction these two schemas are not equiva-
lent, and (VE schema) is more appropriate than (VE schema;), since otherwise desirable
results cannot be obtained. In systems without Thinning (VE schema) permits normal-
ization of proofs whereas (VE schema;) does not. To see that, suppose X+AV B is inferred
from XFA, and (VE schema;) is applied in the next step. Then the standard contrac-
tion of this redex yields Y, X+C (the conclusion of (VE schema)) rather than X,Y, Z+C
(for which Thinning would be needed). In a system without Contraction replacement of
equivalent formulas becomes problematic with (VE schema;). For example, suppose that
Y, AVBFC and A HFA" have been proved. Then Y, A'=C and Y, BFC' can be inferred,
from which by (VE schema;) Y,Y, A'VBFC rather than Y, A'VBFC is obtained.’.

However, this does not necessarily speak against elimination inferences as rules. By
using the mixture of structure-sensitive and structure-independent rule application men-
tioned in §2.3 one may obtain the effect of (VE schema) by means of the rule

(VE rule) AVB,((A—C),, (B—C))=C .

In all systems where one can treat structures as multisets, i.e., where one has Permutation,
(VE rule) would be appropriate.

However, in a Lambek-style system, where Permutation is lacking, or in a two-family
system with the possibility of a nested structuring of antecedents, the situation becomes
different. In both cases the V-elimination schema has to be formulated as

XFAVB  Y[AFC  Y[BJFC
Y[X]FC ’

(VE schema)

where the square brackets denote the occurrence of a certain formula within a struc-
ture. This includes (VE schema) as a special case. In a Lambek-style framework, due to
the fact that Permutation is lacking, Y[A]FC does not necessarily imply Y, AFC| so that
(VE schema) is strictly weaker than (VE schema'). This again means that (VE schema’)

cannot be expressed by the database rule (VE rule) (with — understood as — or —l>) A
similar argument applies to two-family-systems, since an A in a context Y [A] cannot nec-
essarily be extracted and moved out of the context. For example, a sequent (Ay; A), Ao-C
is not normally equivalent to some X, AF-B or X; A-B.

9In particular, without Contraction, (VE schema;) does not guarantee the full uniqueness of disjunc-
tion in the sense that X, AVBFC is always equivalent to X, Av*B-C', with V* being a duplicate of V with
the same rules. Uniqueness is dual in a way to conservativeness, which again is related to normalization
(see [10, 12]).



There seems to be a way out of this problem, namely by allowing structural implica-
tions and not just structural atoms to be conclusions (heads) of rules. The V-elimination
rule could then be formulated as

(VE rule') AVB,((A—F),,(B—F))=F

which has the effect of (VE schema'). For example, in the two-family system of §2.3,
(Aq; A), AoFC is equivalent to A-A;(A;—C). So from XFAVB and (A;; A), Ao-C and
(A1; B), Ao-C we obtain XFA;—(Ay;—C') by applying (VE rule'), which is equivalent to
(A1; X), Ao-C'. A similar example can be given for the Lambek-style system: suppose we
have XFAVB and A, A, AoF-C and Ay, B, A;-C. Then we obtain AI—A1—1>(A21>C) and
BI—Al—l>(A2i>C) and thus Xl—Al—l>(A2i>C’) by applying (VE rule'), which is equivalent
to Al; X, AQ"C

In the single-conclusion case, this approach (which was followed in [30]) has a simi-
lar effect as Belnap’s [3] use of an involutive structural negation in a multiple-conclusion
framework, by means of which formulas can be moved arbitrarily between the two sides of
a sequent. However, this runs counter to the intuitions of structural frameworks, which are
to separate the structural aspects of a system from its logical (database) content. Struc-
tural implication(s) should only be governed by structural introduction and elimination
principles like (—I) and (—FE) and not by rules in the database. Structural implica-
tions in the heads of rules would put material (non-structural) content into structural
implications, making structural implications logical entities.

The fact that (VE schema') and not (VE schema) is the correct representation of
V-elimination reveals in general, quite independently of our notion of a structural frame-
work, a deep asymmetry betwen introduction and elimination inferences, more precisely,
a difference in the notion of discharging assumptions. Whereas in (VE schema’), one has
to consider arbitrary embeddings of formulas in structures (denoted by square brackets),
this is not the case with introduction schemas. For example, in the Lambek calculus the
schema for \-introduction has to be formulated as

A, XFB
XFA\B

with A at a specified (namely leftmost) place on the left side of the turnstile and not as

X[A}-B
XFA\B

with A arbitrarily embedded in a context. Otherwise, under certain natural conditions,
the structural law of Permutation could be proved by applying principles for logical
implications.!?

This is blurred in the intuitionistic system with its simple structural assumptions and
also in weaker systems which can be based on multisets as assumption-structures. From

10This asymmetry between introduction and elimination rules will be treated in more detail in [27]. It
also applies to sequent systems with more than one formula in the succedent. The failure of conserva-
tiveness of the wrong implication law over the structural law of Permutation was observed by Wansing

[33].
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the standpoint of a general structural framework, such structural assumptions are just
limiting cases and cannot be taken as universal: two-family systems and systems without
Permutation cannot be excluded without giving up the conceptual unity of structural
frameworks with different structural assumptions. Conclusions to be drawn about struc-
tural frameworks in general therefore also apply to the intuitionistic case. This means
that elimination-inferences cannot be properly treated as database rules but have to be
given a different role.

4 Elimination inferences as structural inferences

If elimination inferences cannot be incorporated into the database, how else can they be
treated? To formulate them in the ordinary way as inference schemas like (VE schema')
and add them to the structural inference schemas would destroy the idea of a structural
framework, in which the structural part is kept apart from the content (logical or other)
which is put into the database.

A way out is indicated by the fact that the elimination inferences follow a general
pattern. This general pattern can be formulated as

Xts(ay,...,a,)  Y[Xq]FC ... Y[X,|FC
Y[X]FC ’

(sE schema)

if the introduction rules for s are given by (sI rules). Unlike (sE rule), which turned out
to be problematic with restricted structural postulates (at least with two-family systems
and systems without Permutation), (sE schema) would be appropriate for all structural
frameworks without structure-independent sI-rules. So we are not putting specific log-
ical inference schemas into a structural framework, but one general schema. By further
generalizing it we can even make it entirely independent of the specific form of rules for
logical constants. In this way we obtain a general structural principle which applies to
any database of rules, databases of logical introduction rules just being a special case.

More precisely, we formulate a general elimination or inversion principle for arbitrary
structural atoms, not only for logically compound formulas. Given a database of rules,
define

D(A) := {Z : Z=-A is a substitution instance of a database rule}.

Then the general elimination schema is formulated as

XFA  {Y[Z]C: Z € D(A)}
YIX]FC

(IP)

It is obvious that in the case of logical constants with (sI rules) as introduction rules,
(sE schema) is a special case of (IP). However, (IP) is general enough to be counted
as a structural postulate as opposed to database rules which govern contents. This does
not mean that (I P) has to be an ingredient of any structural framework. As with every
structural postulate, one may discuss what happens if it is present and if it is lacking,
obtaining various systems that way. In the case of logic, it represents a way of dealing
uniformly with elimination inferences for systems weaker than intuitionistic logic. In the

11



case of other databases, it represents a way of treating arbitrary rules as introduction
rules for atoms, allowing to invert these rules in a certain way. This is why we call (IP)
an “inversion principle”!!.

It may be noted that (I P) becomes an infinitary schema if D(A) is infinite. However,
natural restrictions can be formulated that make D(A) finite when (IP) is applicable.'?
In the case of logical constants, D(A) is finite due to the restrictions on introduction rules
(such as the one that the premisses X; in an introduction rule X;=s(A4,...,A4,) should
contain no formulas except Ay,..., 4,).

When structure-independent rule application is available, as in frameworks suitable
for linear or BCK logic, D(A) and (I P) have to be formulated in a more general way. For
example, take the A-introduction rule A,, B=-AAB. The elimination inferences should
comprise the two schemas

XHAAB  Y[AJFC XFAAB  Y[B}FC
Y[X]FC Y[X]FC

rather than the single one
XFAAB  Y[A,BFC

Y[X]-C ’
which would be appropriate for the structure-sensitive conjunction &. In general, let
U be of the form (Fy,...,F,) or (Fi,,...,,F,). Then U is called a premiss structure

(which is not a structure in the genuine sense, since the double comma is not considered
a structure-forming operation that can occur on the left side of I-). A selection function
is a function f operating on premiss-structures such that

fU)=UiU=(F,...,F,)
f(U)=TF,forsomei (1<i<n)if U= (F,...,F,).

Then we define for each selection function f
D/(A) := {f(U) : U=A is a substitution instance of a database rule}.

The generalized inversion principle consists of a set of schemas, one for each selection
function:

(IPyen)

XFA Y[Z]FC : Z € D/(A
{ { [Y[]X]I—C €D (4)} : f selection function }
Obviously, (IP) is a limiting case of (IP,,), if D/(A) is the same for all f, which holds
if there is no structure-independent rule by means of which A can be obtained.
Computationally, the schema (IP) is not well tractable since the A in the left premiss
does not occur in the conclusion. For computational purposes a sequent-style system

UTn fact, (IP) is closely related to Lorenzen’s “inversion principle” (see [23]), a relationship which
cannot be spelled out here.

120ne basically requires that (D(A))c = D(Ac) for any substitution o, and therefore that (IP) is
closed under substitution. For further discussion see [20]).
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with introductions on the left side of the turnstile is more appropriate. To obtain such a
system, we replace in the structural frameworks considered the Reflexivity principle by

AFA

(which refers to structural atoms rather than arbitrary structural implications) and the
(— FE) principle by

X+F  Z GFH

Z,(F—-Q),X+H

Analogous changes apply to cases where several structural implications are available. The

schema (IP) is then reformulated as a schema for the introduction of an atom A on the
left side of the turnstile:

(—=F)

(Y[Z]FC : Z € D(A)}
(=+) Y[AJFC ’

which in a certain sense is dual to (-=). (Here the letter C' may equivalently be replaced
by F', which gives more computational flexibility.) This is exactly the inference schema
which is discussed in the context of logic programming in [19], [20] and [28], upon which
the programming language GCLA is based ([1, 2]). In that context it was called the
“D-rule” or the rule of “local reflection” and was motivated from an entirely different
point of view which had nothing to do with structural postulates and restrictions thereof
but with considerations concerning inductive definitions and treating databases in that
way. The fact that a different approach leads to exactly the same principle confirms its
conceptual significance.

The formulation of (/P) as a computationally meaningful principle for the introduc-
tion of atoms on the left side is another argument against the treatment of elimination
inferences as database rules, even if this is possible as it is in the intuitionistic case. The
structural atom C' in these rules, which unifies with every other structural atom, excludes
any computational reading. When applied according to (F=-), database rules produce
only right-introduction inferences, whereas elimination inferences receive computational
significance by formulating them as left-introduction inferences. The schema (=) carries
out the idea of computationally relevant introductions of (structural) atoms on the left
side of the turnstile in a uniform manner, independently of their specific logical form (if
they have one at all).

The generalized version of (=) corresponding to (IP,) is the following:

(=Fgen) {{Y[Z]}_f/[:A?_ECDf(A)} . f selection function } )

It might be mentioned that for logic programming the combinatorial complexity of (=t gep)
may lead to difficulties, although database rules are most easily understood and handled
as structure-independent rules according to (F=-,,) of §2.3. This is no problem for in-
tuitionistic logic, where Thinning and Contraction is available, but becomes problematic
when evaluation procedures for weaker systems are considered (see [31]).

13



The view we have arrived at is that of a structural framework which, besides the
handling of structural association (of premisses of rules or antecedents of sequents) and of
structural implication, may include inversion principles. In the case of logically compound
formulas, these inversion principles instantiate to elimination inferences. The (logical or
extra-logical) content of formulas is expressed in a database of rules which, in the case of
logical composition, are introduction rules in the ordinary sense.
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