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Sand 13, 72076 Tübingen, Germany
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The theory of definitional reflection provides a novel framework for studying logical features of
circular, and especially paradoxical reasoning. Definitional reflection originated from reading
clauses for atoms as definitions, thereby extending ideas concerning elimination rules in natural
deduction [2, 3]. In the simplest (propositional) case, given a definition for an atom a of the

form D :


a ⇐ ∆1

...
a ⇐ ∆n

, the rule of definitional reflection (D`)
{Γ,∆i `C}i

Γ, a`C
is associated

with a as a left introduction rule. If individual variables are present, and for computational
purposes, the rule becomes more complicated [3, 5]. (D`) is considered as introducing an
atomic assumption a according to its definitional meaning given by D. This is the specific way
of introducing a as an assumption, which is distinguished from the unspecific way by means
of an initial sequent (a` a). As in logic programming, D may contain arbitrary atoms, even
a itself, without any well-foundedness requirement. Unlike definite Horn clause programming,
the definientia ∆i of a are not restricted to lists of atoms but may include, e.g., implications.
This enables us to study, besides circular reasoning based on clauses like a⇐a, also paradoxical
reasoning using clauses like a⇐¬a (i.e., a⇐(a→⊥)). Considering the definition D := {a⇐¬a},
which may be regarded as an “abridged” form of a logical or set-theoretical paradox, we can
distinguish three possible strategies, each of which blocks the derivation of absurdity (`⊥).

(1) We expect a derivation of absurdity to be direct (i.e., normal or without cuts). There
is no such derivation, as all derivations of absurdity we can produce from D are indirect. This
was discovered by Hallnäs [2] and is related to Ekman’s paradox [1].

(2) We allow for assumptions to be introduced in an unspecific way only if no specific way
of introducing them is available, i.e., if there is no appropriate definitional clause in D. This
corresponds to the requirement often made in the sequent calculus that initial sequents must be
atomic. (Note that “atomic” in the logical sense corresponds here, where we are only dealing
with atoms, to the fact that no definitional clause is available.) This idea is due to Kreuger
[4, 6].

(3) We prohibit the identification of assumptions of the same shape but of a different kind
(i.e., of assumptions introduced in an unspecific way vs. assumptions introduced by definitional
reflection). This can be done by globally forbidding contraction, corresponding to the dealing
with paradoxes in the tradition of BCK logic (Fitch, Curry, Ackermann, Grishin), or, preferably,
by a more sophisticated procedure which keeps track of the origin of assumptions.
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