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Abstract. In the machine learning community it is generally believed
that graph Laplacians corresponding to a finite sample of data points
converge to a continuous Laplace operator if the sample size increases.
Even though this assertion serves as a justification for many Laplacian-
based algorithms, so far only some aspects of this claim have been rigor-
ously proved. In this paper we close this gap by establishing the strong
pointwise consistency of a family of graph Laplacians with data-dependent
weights to some weighted Laplace operator. Our investigation also in-
cludes the important case where the data lies on a submanifold of Rd.

1 Introduction

In recent years, methods based on graph Laplacians have become increasingly
popular. In machine learning they have been used for dimensionality reduction
[2], semi-supervised learning [12], and spectral clustering (see [11] for references).
The usage of graph Laplacians has often been justified by their relations to the
continuous Laplace operator. Most people believe that for increasing sample size,
the Laplace operator on the similarity graph generated by a sample converges
in some sense to the Laplace operator on the underlying space. It is all the
more surprising that rigorous convergence results for the setting given in ma-
chine learning do not exist. It is only for some cases where the graph has certain
regularity properties such as a grid in Rd that results are known.
In the more difficult setting where the graph is generated randomly, only some
aspects have been proven so far. The approach taken in this paper is first to
establish the convergence of the discrete graph Laplacian to a continuous coun-
terpart (“variance term”), and in a second step the convergence of this contin-
uous operator to the continuous Laplace operator (“bias term”). For compact
submanifolds in Rd the second step has already been studied by Belkin [2] for
Gaussian weights and the uniform measure, and was then generalized to gen-
eral isotropic weights and general densities by Lafon [7]. Belkin and Lafon show
that the bias term converges pointwise for h → 0, where h is the bandwidth of
isotropic weights. However, the convergence of the variance term was left open
in [2] and [7].
The first work where, in a slightly different setting, both limit processes have
been studied together is Bousquet et al. [3]. Using the law of large numbers



for U -statistics, the authors studied the convergence of the regularizer Ωn(f) =
〈f, Lnf〉 for sample size n → ∞ (where f ∈ Rn and Ln is the unnormalized
graph Laplacian on n sample points). Then taking the limit for the bandwidth
h→ 0 they arrived at a weighted Laplace operator in Rd. The drawback of this
approach is that the limits in n and h are not taken simultaneously.
In contrast to this work, in [11] the bandwidth h was kept fixed while the large
sample limit n → ∞ of the graph Laplacian (normalized and unnormalized)
was considered. In this setting, the authors show strong convergence results of
graph Laplacians to certain limit integral operators, which then even imply the
convergence of the eigenvalues and eigenfunctions of the graph Laplacian.
The goal of this paper is to surpass the limitations of previous approaches. We
study the convergence of both bias and variance term, where the limits n→∞
and h → 0 are taken simultaneously. The main achievement of this paper is
Theorem 3, where the strong pointwise consistency of the normalized graph
Laplacian with varying data dependent weights as introduced in [4] is shown.
The limit operator is in general a weighted Laplace-Beltrami operator. Based on
our analysis we argue against using the unnormalized graph Laplacian.
We would like to mention that after submission of our manuscript, we learned
that a result related to a special case of Theorem 2 has been proven indepen-
dently by Belkin and Niyogi in their parallel COLT paper [1] and has been
announced in [8] (see Section 4 for a short discussion).
Theorem 3 is proven as follows. In section 2 we introduce general graph Lapla-
cians. Then in Section 3, we establish the first step of Theorem 3, namely the
convergence of the bias term in the general case where the data lies on a sub-
manifold M in Rd. We prove that the difference between the weighted Laplace-
Beltrami operator and its kernel-based approximation goes to zero when the
bandwidth h → 0. Then in Section 4 we show that the variance term, namely
the difference between the normalized graph Laplacian and the kernel-based ap-
proximation, is small with high probability if nhd+4/ log n→∞. Plugging both
results together we arrive at the main result in Theorem 3.

2 The graph Laplacian

In this section we define the graph Laplacian on an undirected graph. To this
end one has to introduce Hilbert spaces HV and HE of functions on the vertices
V resp. edges E, define a difference operator d, and then set the graph Laplacian
as ∆ = d∗d. This approach is well-known in discrete potential theory and was
independently introduced in [13]. In many articles, graph Laplacians are used
without explicitly mentioning d, HV and HE . This can be misleading since there
always exists a whole family of choices for d, HV and HE which all yield the
same graph Laplacian.
Hilbert Space Structure on the vertices V and the edges E: Let (V,W )
be a graph, where V denotes the set of vertices with |V | = n, andW is a positive,
symmetric n×n similarity matrix, that is wij = wji and wij ≥ 0, i, j = 1, . . . , n.
We say that there is an (undirected) edge from i to j if wij > 0. Moreover, the
degree function d is defined as di =

∑n
j=1 wij . We assume here that di > 0, i =
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1, . . . , n. That means that each vertex has at least one edge. The inner products
on the function spaces RV resp. RE are defined as 〈f, g〉V =

∑n
i=1 fi gi χ(di)

and 〈F,G〉E = 1
2

∑n
i,j=1 Fij Gij φ(wij), where χ : R∗

+ → R∗
+, φ : R∗

+ → R∗
+, and

R∗
+ = {x ∈ R|x > 0}. By our assumptions on the graph both inner products are

well-defined. Let H(V, χ) = (RV , 〈·, ·〉V ) and H(E, φ) = (RE , 〈·, ·〉E).
The difference operator d and its adjoint d∗: We define the difference
operator d : H(V, χ)→ H(E, φ) as follows:

∀ eij ∈ E, (df)(eij) = γ(wij)(f(j)− f(i)),

where γ : R∗
+ → R∗

+. In the case of a finite graph (i.e., |V | < ∞) d is always a
bounded operator. The adjoint operator d∗ is defined by 〈df, u〉E = 〈f, d∗u〉V ,
for any f ∈ H(V, χ), u ∈ H(E, φ). It is straightforward to derive

(d∗u)(l) =
1

2χ(dl)

n
∑

i=1

γ(wil)φ(wil)(uil − uli).

The two terms in the right hand side of Equation (1) can be interpreted as the
outgoing resp. ingoing flow.
The general graph Laplacian: The operator ∆ : H(V, χ)→ H(V, χ) defined
as ∆ = d∗d is obviously self-adjoint and positive semi-definite:

〈f,∆g〉V = 〈df, dg〉E = 〈∆f, g〉V , 〈f,∆f〉V = 〈df, df〉E ≥ 0.

Using the definitions of the difference operator d and its adjoint d∗ we can
directly derive the graph Laplacian:

(∆f)(l) = (d∗df)(l) =
1

χ(dl)

[

f(l)
n
∑

i=1

γ(wil)
2φ(wil)−

n
∑

i=1

f(i)γ(wil)
2φ(wil)

]

.

The following operators are usually defined as the ’normalized’ and ’unnormal-
ized’ graph Laplacian ∆nm resp. ∆unm:

(∆nmf)(i) = f(i)− 1

di

n
∑

j=1

wijf(j), (∆unmf)(i) = dif(i)−
n
∑

j=1

wijf(j).

We observe that there exist several choices of χ,γ and φ which result in ∆nm

or ∆unm. Therefore it can cause confusion if one speaks of the ’normalized’ or
’unnormalized’ graph Laplacian without explicitly defining the corresponding
Hilbert spaces and the difference operator. We just note that one can resolve
this ambiguity at least partially if one not only asks for consistency of the graph
Laplacian but also for consistency ofHV . Unfortunately, due to space restrictions
we cannot further elaborate on this topic.

3 The weighted Laplacian and its approximations

The Laplacian is one of the most prominent operators in mathematics. Never-
theless, most books either deal with the Laplacian in Rd or the Laplace-Beltrami

3



operator on a manifold M . Not so widely used is the weighted Laplacian on a
manifold. This notion is useful when one studies a manifold with a measure,
in our case the probability measure generating the data, which in the following
we assume to be absolutely continuous wrt the natural volume element of the
manifold4. In this section we show how the weighted Laplacian can be approx-
imated pointwise by using kernel-based averaging operators. The main results
are Theorem 1 and Corollary 1.
Approximations of the Laplace-Beltrami operator based on averaging with the
Gaussian kernel have been studied in the special case of the uniform measure on
a compact submanifold without boundary in Smolyanov et al.[9, 10] and Belkin
[2]. Belkin’s result was then generalized by Lafon [7] to general densities and to a
wider class of isotropic, positive definite kernels. Whereas the proof of Theorem
1 in [7] applies for compact hypersurfaces5 in Rd, a proof for general compact
submanifolds using boundary conditions is stated in [4]. In this section, we will
prove Theorem 1 for general submanifolds M , including the case where M is not
compact and without the assumptions of positive definiteness of the kernel nor
with any boundary conditions6. Especially for dimensionality reduction the case
of low-dimensional submanifolds in Rd is important. Notably, the analysis below
also includes the case where due to noise the data is only concentrated around
a submanifold. In this section we will use the Einstein summation convention.

Definition 1 (Weighted Laplacian). Let (M, gab) be a Riemannian manifold
with measure P , where P has a density p with respect to the natural volume
element dV =

√
det g dx and let ∆M be the Laplace-Beltrami operator on M .

Then we define the s-th weighted Laplacian ∆s as

∆s := ∆M +
s

p
gab(∇ap)∇b =

1

ps
gab∇a(p

s∇b) =
1

ps
div(ps grad). (1)

In the family of weighted Laplacians there are two cases which are particularly
interesting. The first one, s = 0, corresponds to the standard Laplace-Beltrami
operator. This notion is interesting if one only wants to use properties of the
geometry of the manifold, but not of the data generating probability measure.
The second case, s = 1, corresponds to the weighted Laplacian ∆1 = 1

p
∇a(p∇a).

This operator can be extended to a self-adjoint operator7 in L2(M,p dV ), which
is the natural function space on M given P = p dV .
Let us introduce the following notations: Ck(M) is the set of Ck-functions on

M with finite norm8 given by ‖f‖Ck(M) = sup∑

m
i=1 li≤k, x∈M

∣

∣

∣

∂
|

∑m
i=1 li|

∂(x1)l1 ...∂(xm)lm
f(x)

∣

∣

∣
.

4 Note that the case when the probability measure is absolutely continuous wrt the
Lebesgue measure on Rd is a special case of our setting.

5 A hypersurface is a submanifold of codimension 1.
6 Boundary conditions are hard to transfer to the graph setting.
7 When M is compact, connected and oriented and for any f, g ∈ C∞(M) vanishing
on the boundary, by the first Green identity, we have

∫

M

f(∆sg) p
sdV =

∫

M

f
(

∆g +
s

p
〈∇p,∇g〉

)

psdV = −
∫

M

〈∇f,∇g〉 psdV. (2)

8 We refer to Smolyanov et al.[9] for the technical details concerning this definition.
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B(x, ε) denotes a ball of radius ε. To bound the deviation of the extrinsic distance
in Rd in terms of the intrinsic distance in M we define for each x ∈ M the
regularity radius r(x) as

r(x) = sup{r > 0
∣

∣ ‖i(x)− i(y)‖2Rd ≥
1

2
d2
M (x, y), ∀ y ∈ BM (x, r)}. (3)

Assumption 1 – i :M → Rd is a smooth, isometric embedding9,
– The boundary ∂M of M is either smooth or empty,
– M has a bounded second fundamental form,
– M has bounded sectional curvature,
– for any x ∈M , r(x) > 0, and r is continuous,
– for any x ∈ M, δ(x) := inf

y∈M\BM (x, 1
3

min{inj(x),r(x)})
‖i(x)− i(y)‖Rd > 0 , where

inj(x) is the injectivity radius at x 10.

The first condition ensures thatM is a smooth submanifold of Rd with the metric
induced from Rd (this is usually meant when one speaks of a submanifold in Rd).
The next four properties guarantee that M is well behaved. The last condition
ensures that if parts ofM are far away from x in the geometry ofM , they do not
come too close to x in the geometry of Rd. In order to emphasize the distinction
between extrinsic and intrinsic properties of the manifold we always use the
slightly cumbersome notations x ∈M (intrinsic) and i(x) ∈ Rd (extrinsic). The
reader who is not familiar with Riemannian geometry should keep in mind that
locally, a submanifold of dimension m looks like Rm. This becomes apparent if
one uses normal coordinates. Also the following dictionary between terms of the
manifold M and the case when one has only an open set in Rd (i is then the
identity mapping) might be useful.

Manifold M open set in Rd

gij ,
√
det g δij , 1

natural volume element Lebesgue measure

∆s ∆s =
∑d

i=1
∂2f
∂(zi)2

+ s
p

∑d
i=1

∂p
∂zi

∂f
∂zi

The kernels used in this paper are always isotropic, that is they can be written
as functions of the norm in Rd. Furthermore we make the following assumptions
on the kernel function k:

Assumption 2 – k : R+ → R is measurable, non-negative and non-increasing,

– k ∈ C2(R+), that is in particular k and ∂2k
∂x2 are bounded,

– k, |∂k
∂x
| and |∂2k

∂x2 | have exponential decay: ∃c, α,A ∈ R+ such that for any

t ≥ A, f(t) ≤ ce−αt, where f(t) = max{k(t), | ∂k
∂x
|(t), |∂2k

∂x2 |}.

Also let us introduce the helpful notation11 kh(t) = 1
hm

k
(

t
h2

)

, where we call
h the bandwidth of the kernel. Let us now define our kernel-based averaging

9 i.e. the Riemannian metric gab onM is induced by Rd, gMab = i∗g
Rd
ab , where g

Rd
ab = δab.

10 Note that the injectivity radius inj(x) is always positive.
11 In order to avoid problems with differentiation the argument of the kernel function

will be the squared norm.
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operators similar to Lafon [7]12. We define the h-averaged density as:

ph(x) =

∫

M

kh
(

‖i(x)− i(y)‖2Rd
)

p(y)
√

det g dy.

Note that the distance used in the kernel function is the distance in the ambient
space Rd. In this paper we use a family of measure-dependent kernels parame-
terized by λ ≥ 0 introduced in [4] defined as:

k̃λ,h
(

‖i(x)− i(y)‖2Rd
)

:=
kh
(

‖i(x)− i(y)‖2Rd
)

[ph(x)ph(y)]
λ

.

Let d̃λ,h(x) =
∫

M
k̃λ,h

(

‖i(x)− i(y)‖2Rd
)

p(y)
√
det g dy.

Definition 2 (Kernel-based approximation of the Laplacian). We intro-
duce the following kernel-based averaging operator Aλ,h:

(Aλ,hf)(x) =
1

d̃λ,h(x)

∫

M

k̃λ,h
(

‖i(x)− i(y)‖2Rd
)

f(y)p(y)
√

det g dy (4)

and the approximation of the Laplacian ∆λ,hf := 1
h2 (f −Aλ,hf) .

A very useful tool in the proof of our main theorems is the following Proposition
of Smolyanov et al.[9], which locally relates the extrinsic distance in Rd with the
intrinsic distance dM (x, y) of the manifold.

Proposition 1. Let i : M → Rd be an isometric embedding of the smooth m-
dimensional Riemannian manifold M into Rd. Let x ∈M and V be a neighbor-
hood of 0 in Rm and let Ψ : V → U provide normal coordinates of a neighborhood
U of x, that is Ψ(0) = x. Then for all y ∈ V :

‖y‖2Rm = d2
M (x, Ψ(y)) = ‖(i ◦ Ψ)(y)− i(x)‖2Rd +

1

12
‖Π(γ̇, γ̇)‖2TxRd +O(‖x‖5Rm)

where Π is the second fundamental form of M and γ the unique geodesic from
x to Ψ(y) such that γ̇ = yi∂yi .

The volume form dV =
√

det gij(y)dy of M satisfies in normal coordinates

dV =

(

1 +
1

6
Riuvi y

uyv +O(‖y‖3Rm)

)

dy

in particular (∆
√

det gij)(0) = − 1
3
R , where R is the scalar curvature (i.e.,

R = gikgjlRijkl).

The following proposition describes the asymptotic expression of the convolution
parts in the averaging operators Aλ,h. This result is interesting in itself since it
shows the interplay between intrinsic and extrinsic geometry of the submanifold
if one averages locally. The proof is similar to that of [10], but we now use general
kernel functions, which makes the proof a little bit more complicated. We define
C1 =

∫

Rm k(‖y‖2)dy <∞, C2 =
∫

Rm k(‖y‖2)y2
1dy <∞.

12 But note that we do not require the kernel to be positive definite and we integrate
with respect to the natural volume element.
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Proposition 2. Let M and k satisfy Assumptions 1 and 2. Furthermore let P
have a density p with respect to the natural volume element and p ∈ C3(M).
Then for any x ∈ M\∂M , there exists an h0(x) > 0 for any f ∈ C3(M) such
that for all h < h0(x),

∫

M

kh
(

‖i(x)− i(y)‖2Rd
)

f(y)p(y)
√

det g dy = C1p(x)f(x)

+
h2

4
C2

(

p(x)f(x)
[

−R+
1

2

∥

∥

∥

∥

∥

∑

a

Π(∂a, ∂a)

∥

∥

∥

∥

∥

2

Ti(x)Rd

]

+ 2(∆M (pf))(x)
)

+O(h3),

where O(h3) is a function depending on x, ‖f‖C3 and ‖p‖C3 .

Proof: See appendix. ¤

Now we are ready to formulate the asymptotic result for the operator ∆λ,h,
which extends the result of Lafon mentioned before.

Theorem 1. Let M and k satisfy Assumptions 1 and 2. Furthermore let k now
have compact support on [0, R2]13 and let P have a density p with respect to
the natural volume element which satisfies p ∈ C3(M) and p(x) > 0, for any
x ∈ M . Then for any λ ≥ 0, for any x ∈ M\∂M , there exists an h1(x) > 0 for
any f ∈ C3(M) such that for all h < h1(x),

(∆λ,hf)(x) =−
C2

2C1

(

(∆Mf)(x) +
s

p(x)
〈∇p,∇f〉TxM

)

+O(h2)

= − C2

2C1
(∆sf)(x) +O(h2), (5)

where ∆M is the Laplace-Beltrami operator of M and s = 2(1− λ).

Proof: The need for compactness of the kernel k comes from the fact that the
modified kernel k̃ depends on ph(y). Now we can use the Taylor expansion of
Proposition 2 for ph(y) only for h in the interval (0, h0(y)). Obviously it can
happen that h0(y) → 0 when we approach the boundary. Therefore, when we
have to control h0(y) over the whole space M , the infimum could be zero, so
that the estimate holds for no h. By restricting the support of the kernel k to a
compact set [0, R2], it can be directly seen from the proof of Proposition 2 that
h0(y) has the form h0(y) = ε(y)/R, where ε(y) = 1

3 min{r(y), inj(y)}. Now h0(x)
is continuous since r(x) is continuous by assumption and inj(x) is continuous on

the compact subset B(x, 2ε), see [6][Prop. 2.1.10]. Therefore we conclude that

since h0(y) is continuous on B(x, 2ε) and h0(y) > 0, h1(x) = inf
y∈B(x,2ε)

h0(y) >

0. Then for the interval (0, h1(x)) the estimate for ph(y) holds uniformly over

the whole ball B(x, ε). That is, using the definition of k̃ as well as Proposition 2

13 That means k(t) = 0, if t > R2.
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and the expansion 1
(a+h2b)λ

= 1
aλ
−λ h2b

aλ+1 +O(h4) we get for h ∈ (0, h1(x)) that
∫

M

k̃λ,h
(

‖i(x)− i(y)‖2
)

f(y)p(y)
√

det g dy

=
1

pλh(x)

∫

B(x,ε)

kh
(

‖i(x)− i(y)‖2
)

f(y)

[

C1p(y)− λ/2C2h
2(p(y)S +∆p)

Cλ+1
1 p(y)λ

+O(h3)

]

√

det g dy (6)

where the O(h3)-term is continuous on B(x, ε) and we have introduced the ab-

breviation S = 1
2 [−R+ 1

2 ‖
∑

aΠ(∂a, ∂a)‖2Ti(x)Rd ]. Using f(y) = 1 we get

d̃λ,h(x) =
1

pλh(x)

∫

B(x,ε)

kh
(

‖i(x)− i(y)‖2
)

[

C1p(y)− λ/2C2h
2(p(y)S +∆p)

Cλ+1
1 p(y)λ

+O(h3)

]

√

det g dy (7)

as an estimate for d̃λ,h(x). Now using Proposition 2 again we arrive at:

∆λ,hf =
f −Aλ,hf

h2
=

1

h2

d̃λ,hf − d̃λ,hAλ,hf

d̃λ,h

=− C2

2C1

(

∆Mf +
2(1− λ)

p
〈∇p,∇f〉

)

+O(h2)

where all O(h2)-terms are finite on B(x, ε) since p is strictly positive. ¤

Note that the limit of ∆λ,h has the opposite sign of ∆s. This is due to the fact
that the Laplace-Beltrami operator on manifolds is usually defined as a negative
definite operator (in analogy to the Laplace operator in Rd), whereas the graph
Laplacian is positive definite. But this varies through the literature, so the reader
should be aware of the sign convention. From the last lines of the previous proof,
it is easy to deduce the following result for the unnormalized case. Let

(∆′λ,hf)(x) =
1

h2

(

d̃λ,h(x)f(x)−
∫

M

k̃λ,h
(

‖i(x)− i(y)‖2
)

f(y)p(y)
√

det gdy

)

. (8)

Corollary 1. Under the assumptions of Theorem 1, for any λ ≥ 0, any x ∈
M\∂M , any f ∈ C3(M) there exists an h1(x) > 0 such that for all h < h1(x),

(∆′λ,hf)(x) = −p(x)1−2λ C2

2Cλ
1

(∆sf)(x) +O(h2), where s = 2(1− λ). (9)

This result is quite interesting. We observe that in the case of a uniform density
it does not make a difference whether we use the unnormalized or the normal-
ized approximation of the Laplacian. However, as soon as we have a non-uniform
density, the unnormalized one will converge only up to a function to the Lapla-
cian, except in the case λ = 1

2 where both the normalized and unnormalized
approximation lead to the same result. This result confirms the analysis of von
Luxburg et al. in [11], where the consistency of spectral clustering was studied.
There the unnormalized Laplacian is in general not consistent since it has a con-
tinuous spectrum. Obviously the limit operator ∆′λ,h = −p1−2λ C2

2Cλ1
∆s has also a

continuous spectrum even if ∆s is compact since it is multiplied with p1−2λ.
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4 Strong pointwise consistency of graph Laplacians

In the last section we identified certain averaging operators ∆λ,h which in the
limit h → 0 converge pointwise to the corresponding Laplacian ∆s, where s =
2(1− λ). In this section we will provide the connection to the normalized graph
Laplacian ∆λ,n,h with data-dependent weights w̃λ(Xi, Xj) defined as

w̃λ(Xi, Xj) =
k
(

‖i(Xi)− i(Xj)‖2 /h2
)

[d(Xi)d(Xj)]λ
, λ ≥ 0 (10)

where d(Xi) =
∑n

r=1 k(‖i(Xi)− i(Xr)‖2 /h2). Note that the weights are not
multiplied with 1/hm, as it was usual for the kernel function in the last section.
There are two reasons for this. The first one is that this factor would lead to
infinite weights for h → 0. The second and more important one is that this
factor cancels for the normalized Laplacian. This is very important in the case
where the data lies on a submanifold of unknown dimension m, since then also
the correct factor 1

hm
would be unknown. Note also that for the unnormalized

Laplacian this factor does not cancel if λ 6= 1
2 . This means that for λ 6= 1

2 the
unnormalized Laplacian cannot be consistently estimated if the data lies on a
proper submanifold of unknown dimension, since the estimate in general blows
up or vanishes. Therefore we will consider only the normalized graph Laplacian
in the following and for simplicity omit the term ’normalized’.
The graph Laplacian is defined only for functions on the graph, but it is straight-
forward to extend the graph Laplacian to an estimator of the Laplacian for
functions defined on the whole space by using the kernel function,

(∆λ,h,nf)(x) =
1

h2
(f −Aλ,h,nf) (x) :=

1

h2

(

f(x)− 1

d̃λ(x)

n
∑

j=1

w̃λ(x,Xj)f(Xj)

)

,

(11)

where d̃λ(x) =
∑n

r=1 w̃λ(x,Xi). The factor 1
h2 comes from introducing an 1

h
-

term in the definition of the derivative operator d on the graph. It is natural to
introduce this factor since we want to estimate a derivative. Especially interesting
is the form of the second term of the graph Laplacian for λ = 0 where the
weights are not data-dependent. In this case, this term can be identified with
the Nadaraya-Watson regression estimate. Therefore, for λ = 0 we can adapt the
proof of pointwise consistency of the Nadaraya-Watson estimator of Greblicki,
Krzyzak and Pawlak [5] and apply it to the graph Laplacian. The following
Lemma will be useful in the following proofs.

Lemma 1. Let X1, . . . , Xn be n i.i.d. random vectors in Rd with law P , which
is absolutely continuous with respect to the natural volume element dV of a
submanifold M ⊂ Rd satisfying Assumption 1. Let p denote its density, which
is bounded, continuous and positive p(x) > 0, for any x ∈ M . Furthermore
let k be a kernel with compact support on [0, R2] satisfying Assumption 2. Let

x ∈M\∂M , define b1 = ‖k‖∞ ‖f‖∞ , b2 = C ‖k‖∞ ‖f‖
2
∞, where C is a constant
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depending on x, ‖p‖∞ and ‖k‖∞. Then for any f ∈ C3(M),

P
(
∣

∣

∣

1

n

n
∑

i=1

kh(‖i(x)− i(Xi)‖2)f(Xi)−
∫

M

kh(‖i(x)− i(y)‖2)f(y)p(y)
√

det g dy
∣

∣

∣
≥ ε
)

≤ 2 exp

(

− nhmε2

2b2 + 2b1ε/3

)

Now the proof of pointwise consistency in the case λ = 0 is straightforward.

Theorem 2 (Weak and strong pointwise consistency for λ = 0). Let Xi ∈
Rd, i = 1, . . . , n be random vectors drawn i.i.d. from the probability measure P
on M ⊂ Rd, where M satisfies Assumption 1 and has dimM = m. Furthermore
let P be absolutely continuous with respect to the volume element dV with density
p ∈ C3(M) and p(x) > 0, ∀x ∈M , and let ∆0,h,n be the graph Laplacian in (11)
with weights of the form (10), where k has compact support on [0, R2]. Then for
every x ∈M\∂M and for every function f ∈ C3(M), if h→ 0 and nhm+4 →∞

lim
n→∞

(∆0,h,nf)(x) = −
2C1

C2
(∆2f)(x) in probability.

If even nhm+4/ log n→∞, then almost sure convergence holds.

Proof: We rewrite the estimator ∆0,h,nf in the following form

(∆0,h,nf)(x) =
1

h2

[

f(x)− (A0,h f)(x) +B1n

1 +B2n

]

(12)

where

(A0,h f)(x) =
EZ kh(‖i(x)− i(Z)‖2)f(Z)

EZ kh(‖i(x)− i(Z)‖2)

B1n =
1
n

∑n

j=1 kh(‖i(x)− i(Xj)‖2)f(Xj)− EZ kh(‖i(x)− i(Z)‖2)f(Z)
EZ kh(‖i(x)− i(Z)‖2)

B2n =
1
n

∑n

j=1 kh(‖i(x)− i(Xj)‖2)− EZ kh(‖i(x)− i(Z)‖2)
EZ kh(‖i(x)− i(Z)‖2)

In Theorem 1 we have shown that

lim
h→0

(∆0,hf)(x) = lim
h→0

1

h2
[f(x)− (A0,h f)(x)] = −

2C1

C2
(∆2f)(x) (13)

Let hR ≤ inj(x) , then EZ kh(‖i(x)− i(Z)‖2) ≥ K infy∈BM (x,hR) p(y) , where K

is a constant and using Lemma 1 we get with d2 =
‖f‖2

∞

(K infy∈BM (x,hR) p(y))2
, d1 =

‖f‖∞
K infy∈BM (x,ε) p(y)

:

P(|B1n| ≥ h2t) ≤ exp

(

− nhm+4 t2

2 ‖k‖∞ (d2 + t d1/3)

)

,

Note that since p is continuous and p is strictly positive the infimum is achieved
and positive. The same analysis can be done for B2n, where we do not have

10



to deal with the 1/h2-factor. This shows convergence in probability. Complete
convergence (which implies almost sure convergence) can be shown by proving
for all t > 0 the convergence of the series

∑∞
n=0 P

(

|B1n| ≥ h2t
)

<∞ . A sufficient
condition for that is nhd+4/ logn→ +∞ when n→∞ . ¤

Under the more restrictive assumption that the data is sampled from a uniform
probability measure on a compact submanifold we learned that Belkin and Niyogi
have independently proven the convergence of the unnormalized graph Laplacian
in [1]. It is clear from Theorem 1 and Corollary 1 that in the case of a uniform
measure the limit operators for normalized and unnormalized graph Laplacian
agree up to a constant. However, as mentioned before the unnormalized graph
Laplacian has the disadvantage that in order to get convergence one has to know
the dimension m of the submanifold M , which in general is not the case.

Lemma 2. Let Xi ∈ Rd, i = 1, . . . , n be random vectors drawn i.i.d. from the
probability measure P on M ⊂ Rd, where M satisfies Assumption 1 and has
dimM = m. Furthermore let P be absolutely continuous with respect to the
volume element dV with continuous density p(x). Let k(‖x− y‖2) be a bounded
kernel with compact support on [0, R2]. Let λ ≥ 0, x ∈ M with p(x) > 0,
f ∈ C(M) and n ≥ 2. Then there exists a constant C > 1 such that for any

0 < ε < 1/C, 0 < h < 1
C
with probability at least 1− Cne−

nhmε2

C , we have

|(Aλ,h,nf)(x)− (Aλ,hf)(x)| ≤ ε.

Proof: For sufficiently large C, the assertion of the lemma is trivial for ε <
2‖k‖∞

(n−1)hm . So we will only consider 2‖k‖∞
(n−1)hm ≤ ε ≤ 1. The idea of the proof is to

use deviation inequalities to show that the empirical terms, which are expressed
as a sum of i.i.d. random variables, are close to their expectations. Then we can
prove that the empirical term

(Aλ,h,nf)(x) =

∑n

j=1 kh(‖i(x)− i(Xj)‖2)f(Xj)[d(Xj)]
−λ

∑n

r=1 kh(‖i(x)− i(Xr)‖2)[d(Xr)]−λ
(14)

is close to the term (Aλ,hf)(x). Consider the event E for which we have






















































for any j ∈ {1, . . . , n},
∣

∣

∣

d(Xj)

n−1
− ph(Xj)

∣

∣

∣
≤ ε

∣

∣

∣

d(x)
n
− ph(x)

∣

∣

∣
≤ ε

∣

∣

∣

1
n

n
∑

j=1

kh(‖i(x)− i(Xj)‖2)[ph(Xj)]
−λ −

∫

M

kh(‖i(x)− i(y)‖2)[ph(y)]−λp(y)
√
det gdy

∣

∣

∣
≤ ε

∣

∣

∣

1
n

n
∑

j=1

kh(‖i(x)−i(Xj)‖2)f(Xj)

[ph(Xj)]λ
−
∫

M

kh(‖i(x)−i(y)‖2)f(y)

[ph(y)]λ
p(y)

√
det gdy

∣

∣

∣
≤ ε

∣

∣

∣

1
n

n
∑

j=1

kh(‖i(x)− i(Xj)‖2)f(Xj)−
∫

M

kh(‖i(x)− i(y)‖2)f(y)p(y)
√
det gdy

∣

∣

∣
≤ ε

We will now prove that for sufficiently large C, the event E holds with probability

at least 1 − Cne−
nhmε2

C . For the second assertion defining E , we use Lemma 1
(with N = n− 1 and the conditional probability wrt Xj for a given 1 ≤ j ≤ d)
to obtain that for ε ≤ 1,

P
(
∣

∣

∣

1
n−1

∑

i6=j kh(‖i(x)− i(Xi)‖2)− ph(x)
∣

∣ ≥ ε
∣

∣

∣
Xj

)

≤ 2e−
(n−1)hmε2

C .

11



First integrating wrt to the law of Xj and then using an union bound we get

P
(
∣

∣

∣

1
n−1

∑

i6=j kh(‖i(x)− i(Xi)‖2)− ph(x)
∣

∣

∣
≥ ε
)

≤ 2e−
(n−1)hmε2

C and

P
(

for any j ∈ {1, . . . , n},
∣

∣

∣

d(Xj)

n−1
− kh(0)

n−1
− ph(Xj)

∣

∣

∣
≤ ε
)

≥ 1− 2ne−
(n−1)hmε2

C .

Therefore for 2‖k‖∞
(n−1)hm ≤ ε ≤ 1 we have14

P
(

for any j ∈ {1, . . . , n},
∣

∣

∣

d(Xj)

n−1
− ph(Xj)

∣

∣

∣
≤ ε
)

≥ 1− 2ne−
(n−1)hmε2

C .

Similarly we can prove that for 2‖k‖∞
nhm

≤ ε ≤ 1 with probability at least 1 −
2e−Cnh

mε2 , the third assertion defining E holds. For the three last assertions, a
direct application of Lemma 1 shows that they also hold with high probability.

Finally, combining all these results, we obtain that for 2‖k‖∞
(n−1)hm ≤ ε ≤ 1, the

event E holds with probability at least 1− Cne−
nhmε2

C . Let us define



















A :=
∫

M
kh(‖i(x)− i(y)‖2)f(y)[ph(y)]−λp(y)

√
det gdy

Â := 1
n

∑n
j=1 kh(‖i(x)− i(Xj)‖2)f(Xj)

[d(Xj)
n−1

]−λ

B :=
∫

M
kh(‖i(x)− i(y)‖2)[ph(y)]−λp(y)

√
det gdy

B̂ := 1
n

∑n
j=1 kh(‖i(x)− i(Xj)‖2)

[d(Xj)
n−1

]−λ

and let us now work only on the event E . Let pmin = p(x)/2 and pmax = 2p(x).
By continuity of the density, for C large enough and any h < 1/C, the density
satisfies 0 < pmin ≤ p ≤ pmax on the ball BM (x, 2hR). So for any y ∈ BM (x, hR),
there exists a constant D1 > 0 such that D1 pmin ≤ ph(y) ≤ D1

√
2 pmax. Using

the first order Taylor formula of [x 7→ x−λ], we obtain that for any λ ≥ 0 and
a, b > β,

∣

∣a−λ − b−λ
∣

∣ ≤ λβ−λ−1|a− b|. So we can write

∣

∣B̂ − B
∣

∣ ≤
∣

∣

∣

1
n

∑n
j=1 kh(‖i(x)− i(Xj)‖2)

(

[d(Xj)
n−1

]−λ − [ph(Xj)]
−λ
)∣

∣

∣

+
∣

∣

∣

1
n

∑n
j=1 kh(‖i(x)− i(Xj)‖2)[ph(Xj)]

−λ − B
∣

∣

∣

≤
∣

∣

d(x)
n

∣

∣λ (D1pmin)
−λ−1ε+ ε

≤
∣

∣

d(x)
n
− ph(x)

∣

∣λ (D1pmin)
−λ−1ε+ ph(x)λ (D1pmin)

−λ−1ε+ ε

≤ λ(D1pmin)
−λ−1ε+

√
2D1pmaxλ (C1pmin)

−λ−1ε+ ε := C ′ε

Similarly we prove that
∣

∣Â−A
∣

∣ ≤ C′′ε. Let ζ := 1
2

D1pmin

(
√

2D1pmax)λ
. We have B ≥ 2ζ.

Let us introduce ε0 := min{ ζ
C′
, 1}. For 2‖k‖∞

(n−1)hm ≤ ε ≤ ε0, we have also B̂ ≥ ζ.

Combining the last three results, we obtain that there exists D2 > 0 such that

∣

∣

∣

A
B − Â

B̂

∣

∣

∣
≤ |A−Â|

B̂ +A |B−B̂|
BB̂ ≤ C′′ε

ζ
+D2pmax(C1pmin)

−λ C′ε
2ζ2 ≤ Cε.

14 We recall that the value of the constant C might change from line to line.
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Noting that Aλ,hf = A/B and Aλ,h,nf = Â/B̂, we have proved that there exists
a constant C > 1 such that for any 0 < ε < 1/C

|(Aλ,h,nf)(x)− (Aλ,hf)(x)| ≤ Cε

with probability at least 1− Cne−
nhmε2

C . This leads to the desired result. ¤

Combining Lemma 2 with Theorem 1 we arrive at our main theorem.

Theorem 3 (Weak and strong pointwise consistency). Let Xi ∈ Rd, i =
1, . . . , n be random vectors drawn i.i.d. from the probability measure P on M ⊂
Rd, where M satisfies Assumption 1 and has dimM = m. Let P be absolutely
continuous with respect to the volume element dV with density p ∈ C3(M) and
p strictly positive. Let ∆λ,h,n be the graph Laplacian in (11) with weights of
the form (10), where k has compact support on [0, R2] and satisfies Assumption
2. Define s = 2(1 − λ). Then, for every x ∈ M\∂M and for every function
f ∈ C3(M), if h→ 0 and nhm+4/ log n→∞

lim
n→∞

(∆λ,h,nf)(x) = −
2C1

C2
(∆sf)(x) almost surely.

Proof: The proof consists of two steps. By Theorem 1 the bias term converges.

lim
h→0

∣

∣

∣

∣

(∆λ,hf)(x)−
[

−
(

2C1

C2
∆sf

)

(x)

]
∣

∣

∣

∣

→ 0. (15)

Next we consider the variance term |(∆λ,h,nf)(x)− (∆λ,hf)(x)| . We have

|(∆λ,h,nf)(x)− (∆λ,hf)(x)| =
1

h2
|(Aλ,h,nf)(x)− (Aλ,hf)(x)| .

Up to the factor 1/h2 this is the term studied in Lemma 2, so that we get under
the conditions stated there:

P
(
∣

∣

∣
(∆λ,h,nf)(x)− (∆λ,hf)(x)

∣

∣

∣
≥ ε
)

≤ C ne−
nhm+4 ε2

C

Then, using the same technique as in Theorem 2, one shows complete conver-
gence for nhm+4/ log n→∞, which implies almost sure convergence. ¤

This theorem states conditions for the relationship of the sample size n and the
bandwidth h for almost sure convergence. It is unlikely that this rate can be
improved (up to the logarithmic factor), since the rates for estimating second
derivatives in nonparametric regression are the same. Another point which can-
not be underestimated is that we show that the rate that one gets only depends
on the intrinsic dimension m of the data (that is the dimension of the sub-
manifold M). This means that even if one has data in a very high-dimensional
Euclidean space Rd one can expect to get a good approximation of the Laplacian
if the data lies on a low-dimensional submanifold. Therefore, our proof provides
a theoretical basis for all algorithms performing dimensionality reduction using
the graph Laplacian. Another point is that one can continuously control the in-
fluence of the probability distribution with the parameter λ and even eliminate it

13



in the case λ = 1. The conditions of this theorem are very mild. We only require
that the submanifold is not too much twisted and that the kernel is bounded
and compact. Note that in large scale practical applications, compactness of the
kernel is necessary for computational reasons anyway.
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A Appendix: Proof of Proposition 2

The following lemmas are needed in the proof of the asymptotics of Aλ,h.

Lemma 3. If the kernel k : R → R satisfies the assumptions in Assumption 2,
∫

Rm

∂k

∂x
(‖u‖2)uiujukuldu = −1

2
C2

[

δijδkl + δikδjl + δilδjk
]

. (16)

Lemma 4. Let k satisfy Assumption 2 and let Vijkl be a given tensor. Assume
now ‖z‖2 ≥ ‖z‖2 + Vijklz

izjzkzl + β ‖z‖5 ≥ 1
2
‖z‖2 on B(0, rmin) ⊂ Rm . Then

there exists a constant C and a h0 > 0 such that for all h < h0 and for all
f ∈ C3(B(0, rmin))

∣

∣

∣

∫

B(0,rmin)

kh

(

‖z‖2 + Vijklz
izjzkzl + β ‖z‖5)
h2

)

f(z)dz

−
(

C1f(0) + C2
h2

2

[

(∆f)(0)− f(0)
m
∑

i,k

Viikk + Vikik + Vikki
])
∣

∣

∣
≤ Ch3. (17)

To prove Proposition 2, let ε = 1
3 min{inj(x), r(x)}15, where ε is positive by the

assumptions on M . Then we decompose M in M = B(x, ε) ∪ (M\B(x, ε)) and
integrate separately. The integral over M\B(x, ε) can be estimated by using the
definition of δ(x) (see Assumption 1) and the fact that k is non-increasing:

∫

M\B(x,ε)

kh
(

‖i(x)− i(y)‖2Rd
)

f(y)p(y)
√

det g dy ≤ 1

hm
k

(

δ(x)2

h2

)

‖f‖∞

Since δ(x) is positive by the assumptions on M and k decays exponentially, we
can make the upper bound smaller than h3 for small enough h. Now we deal with
the integral over B(x, ε). Since ε is smaller than the injectivity radius inj(x), we
can introduce normal coordinates z = exp−1(y) with origin 0 = exp−1(x) on
B(x, ε), so that we can write the integral over B(x, ε) as:

∫

B(0,ε)

kh

(

‖z‖2 − 1
12

∑d

α=1
∂2iα

∂za∂zb
∂2iα

∂zu∂zv
zazbzuzv +O(‖z‖5)

h2

)

p(z)f(z)
√

det g dz

(18)

15 The factor 1/3 is needed in Theorem 1
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by using our assumption that pf
√
det g is in C3(B(0, ε)). Therefore we can apply

Lemma 4 and compute the integral in (18) which results in:

[

p(0)f(0)
(

C1 + C2
h2

24

d
∑

α=1

∂2iα

∂za∂zb
∂2iα

∂zc∂zd

[

δabδcd + δacδbd + δadδbc
] )

+ C2
h2

2
∆M (pf

√

det g)
∣

∣

∣

0
+O(h3)

]

, (19)

where we have used that the Laplace-Beltrami operator ∆M in normal coordi-

nates zi at 0 is given as ∆Mf
∣

∣

∣

x
=
∑m

i=1
∂2f

∂(zi)2

∣

∣

∣

0
. The second term in the above

equation can be evaluated using the Gauss equations, see [10, Proposition 6].

d
∑

α=1

∂2iα

∂za∂zb
∂2iα

∂zc∂zd

[

δabδcd + δacδbd + δadδbc
]

= −2R+ 3

∥

∥

∥

∥

∥

m
∑

j=1

Π(∂zj , ∂zj )

∥

∥

∥

∥

∥

2

Ti(x)Rd

where R is the scalar curvature. Plugging this result into (19) and using from
Proposition 1, ∆M

√
det g

∣

∣

0
= − 1

3R, finishes the proof.
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