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Abstract

Graph clustering methods such as spectral clustering are defined for general
weighted graphs. In machine learning, however, data often is not given in form
of a graph, but in terms of similarity (or distance) values between points. In this
case, first a neighborhood graph is constructed using the similarities between the
points and then a graph clustering algorithm is applied to this graph. In this pa-
per we investigate the influence of the construction of the similarity graph on
the clustering results. We first study the convergence of graph clustering crite-
ria such as the normalized cut (Ncut) as the sample size tends to infinity. We
find that the limit expressions are different for different types of graph, for exam-
ple ther-neighborhood graph or thienearest neighbor graph. In plain words:
Ncut on akNN graph does something systematically different than Ncut on an
r-neighborhood graph! This finding shows that graph clustering criteria cannot be
studied independently of the kind of graph they are applied to. We also provide
examples which show that these differences can be observed for toy and real data
already for rather small sample sizes.

1 Introduction

In many areas of machine learning such as clustering, dimensionality reduction, or semi-supervised
learning, neighborhood graphs are used to model local relationships between data points and to build
global structure from local information. The easiest and most popular neighborhood graphs are the
r-neighborhood graph, in which every point is connected to all other points within a distance of

and thek-nearest neighbok{NN) graph, in which every point is connected to thelosest neigh-

boring points. When applying graph based machine learning methods to given sets of data points,
there are several choices to be made: the type of the graph to construet-(eeilyhborhood graph

or kNN graph), and the connectivity parameterof &, respectively). However, the question how
these choices should be made has received only little attention in the literature. This is not so severe
in the domain of supervised learning, where parameters can be set using cross-validation. However,
it poses a serious problem in unsupervised learning. While different researchers use different heuris-
tics and their “gut feeling” to set these parameters, neither systematic empirical studies have been
conducted (for example: how sensitive are the results to the graph parameters?), nor do theoretical
results exist which lead to well-justified heuristics. Our goal in this paper is to address the theoretical
side of this question in the context of graph based clustering.

In this work, we consider clustering in a statistical setting: we assume that a finite set of data
points has been sampled from some underlying distribution. Ultimately, what we want to find is a

good clustering of the underlying data space. We assume that the quality of a clustering is defined
by some clustering objective function. In this paper we focus on the case of the normalized cut



objective function Ncut (Shi and Malik, 2000) and on the question if and how the results of graph
based clustering algorithms are affected by the graph type and the parameters that are chosen for the
construction of the neighborhood graph.

To this end, we first want to study the convergence of the clustering criterion (Ncut) on different
kinds of graphsKNN graph and--neighborhood graph), as the sample size tends to infinity. To our
own surprise, when studying this convergence it turned out that, depending on the type of graph,
the normalized cut converges to different limit values! That is, the (suitably normalized) values of
Ncut tend to a different limit functional, depending on whether we use-teighborhood graph or

the kNN graph on the finite sample. Intuitively, what happens is as follows: On any gragh,

the normalized cut is one unique, well-defined mathematical expression. But of course, given a
fixed partition of a sample gboints this Ncut value is different for different graphs constructed

on the sample (different graph constructions put different numbers of edges between points, which
leads to different Ncut values). It can now be shown that even after appropriate rescaling, such
differences remain visible in the limit for the sample size tending to infinity. For example, we will
see that depending on the type of graph, the limit criterion integrates over different powers of the
density. This can lead to the effect that the minimizer of Ncut orkiR& graph is different from

the minimizer of Ncut on the-graph.

This means that ultimately, the question about the “best Ncut” clustering, given infinite amount of
data, has different answers, depending on which underlying graph we use! This observation opens
Pandora’s box on clustering criteria: the “meaning” of a clustering criterion does not only depend
on the exact definition of the criterion itself, but also on how the graph on the finite sample is
constructed. In the case of Ncut this means that Ncut is not just “one well-defined criterion”, but

it corresponds to a whole bunch of criteria, which differ depending on the underlying graph. More
sloppy: Ncut on &NN graph does something different than Ncut on-ameighborhood graph!

The first part of our paper is devoted to the mathematical derivation of our results. We investigate
how and under which conditions the Ncut criterion converges on the different graphs, and what
the corresponding limit expressions are. The second part of our paper shows that these findings
are not only of theoretical interest, but that they also influence concrete algorithms such as spectral
clustering in practice. We give examples of well-clustered distributions (mixtures of Gaussians),
where the optimal limit cut on theNN graph is different from the one on theneighborhood

graph. Moreover, these results can be reproduced with finite samples. That is, given a finite sample
from some well-clustered distribution, normalized spectral clustering oklX#é graph produces
systematically different results from spectral clustering onvtineighborhood graph.

2 Definitions and assumptions

Given a graplG = (V, E') with weightsw : E — R and a partition of the nodés into (C, V' \ C)
we definecut(C,V\ C) = 3., .ccvero w(u, v), vol(C) = 3 co ey w(u, v), and

Neut(C,V\ C) = cut(C,V\ O) <V011(C) * VOl(‘} \C) >

Given a finite set of pointsy, ..., z,, we consider two main types of neighborhood graphs:

¢ ther-neighborhood graphyr,, . there is an edge from point; to pointz; if dist(z;, z;) < r
foralll <i,5 <mn,i#j.

e the directed:-nearest neighbor gragh, ;: there is a directed edge from to «; if «; is one of
thek nearest neighbors af for 1 <i,j < n,i # j.

In the following we work on the spad&? with Euclidean metriclist. We denote byy; the volume

of the d-dimensional unit ball ifR¢ and by B(z, ) the ball with radius- centered at-. On the
spaceR? we will study partitions which are induced by some hypersurfsic&Siven a surfaces
which separates the data points in two non-empty partsandC'—, we denote byut,, .(S) the
number of edges it,, , that go from a sample point on one side of the surface to a sample point on
the other side of the surface. The corresponding quantity for the diréatedrest neighbor graph

is denoted bycut,, ,(S). For a setdA C R9 the volume of{zy,...,x,} N A in the graphG,, .
denoted byol,, ,.(A), and correspondinglyol,, 5 (A) in the graprG,L/k



General assumptions in the whole paper: The data points:y, ..., 2, are drawn independently
from some density on R?. This density is bounded from below and above, that is p.i, <
p(z) < pmax- IN particular, it has compact support. We assume that the bounday¢’ of C

is well-behaved, that means it is a set of Lebesgue medsangl we can find a constant > 0
such that forr sufficiently smallyol(B(z,r) N C') > ~vol(B(z,r)) for all z € C. Furthermore
we assume that is twice differentiable in the interior of’ and that the derivatives are bounded.
The measure oRR¢ induced byp will be denoted by, that means, for a measurable sétwe set
1(A) = [, p(x)dz. For the cut surfaces, we assume that the volume$h 9C with respect to the
(d — 1)-dimensional measure ofiis a set of measur@. Moreover,S splits the spac®? into two
setsCT andC'~ with positive probability mass.

While the setting introduced above is very general, we make some substantial simplifications in this
paper. First, we consider all graphs as unweighted graphs (the proofs are already technical enough
in this setting). We have not yet had time to prove the corresponding theorems for weighted graphs,
but would expect that this might lead yet to other limit expressions. This will be a point for future
work. Moreover, in the case of théVN-graph we consider the directed graph for simplicity. Some
statements can be carried over by simple arguments from the directed graph to the symmetric graph,
but not all of them. In general, we study the setting where one wants to find two clusters which
are induced by some hypersurfaceRf. In this paper we only consider the case whérés a
hyperplane. Our results can be generalized to more general (smooth) surfaces, provided one makes
a few assumptions on the regularity of the surfac@he proofs are more technical, though.

3 Limits of quality measures

In this section we study the asymptotic behavior of the quantities introduced above for both the
unweighted directe®tNN graph and the unweightedgraph. Due to the lack of space we only
provide proof sketches; detailed proofs can be found in the supplement Maier et al. (2008).

Let (k. )nen be an increasing sequence. Given a finite sample., z,, from the underlying dis-
tribution, we will construct the grap&,, ., and study the convergenceNtut,, x, (S), that is the
Ncut value induced by, evaluated on the grapf,, .. Similarly, given a sequende,)nen Of
radii, we consider the convergenceMut,, ., induced byS on the graptG,, .-, . In the following
/5 ds denotes théd — 1)-dimensional surface integral alosg Here is our main result:

Theorem 1 (Limit values of Ncut on different graphs) Assume the general assumptions hold for
the densityp on R? and a fixed hyperplang in R?. Consider the sequenceés,),cny C N and

(rn)nen C R. For the kNN graph, assume that,,/n — 0. In cased = 1, assume that,,/\/n —
o0, In cased > 2 assumek,, / logn — oo. Then we have far — oo

([ Neutyi, (5) =% m/spll/d(s)ds ((/C‘+p(x)dx>_1+ (/7p(x)dx)_1).

For the r-neighborhood graph assume:,, > 0, r,, — 0 andnrd*! — oo for n — oco. Then

%Ncutn,m(s) s, (;Zlﬁ/sﬁ(s)ds ((/C+ p2(m)dm>_l+ (/7p2(a:)dx>_1).

Proof (Sketch for the case of th&/N graph, the case of the graph is similar. Details see Maier
et al., 2008.). Define the scaling constants,;(n, k,) = n~'TY4=1=1/4 and ¢y (n, ky) =
(nk,)~'. Then,(n/k,)*/¢ Ncut(S) can be decomposed in cut and volume term:

(ccut(n, k) CUtn i, (S)) : ((cvol(n, kn) vl i (CT)) ™1+ (cvor(n, Ein) VOl g, (C’*))*l) .
In Proposition 3 below we will see that the volume term satisfies

cvol(na kn) VOln,kn (C+) E’ p(x)dxv
c+

and the corresponding expression holdsd@or. For the cut term we will prove below that

a.s. 277(171 1-1/d
Ceut (N, kp) cUty g, (S) — —————— / P /4(g)ds. Q)
o ) K (S) (d 1)m1l+1/d S (s)
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This will be done using a standard decomposition into variance and bias term, which will be treated
in Propositions 1 and 2, respectively. ]

Proposition 1 (Limit values of E cut,, x, and E cut,, ,,) Let the general assumptions hold, a$id
be an arbitrary, but fixed hyperplan&or the kNN graph, if k,,/n — 0 andk, /logn — oo for

n — oo, then
1 n 241 _—1-1/d 1-1/d
E( — ¢/ — cut, ds.
o ) B+~ Rl o

For the r-neighborhood graph, if r,, — 0, r,, > 0 for n — oo, then
cuty, ., (S) 2n4-1 9
E(nzrﬁlfl ) a1 /Sp (s)ds.

Proof (Sketch, see Maier et al., 2008)Ve start with the case of theneighborhood graph. B,
(i = 1,...,n) denote the number of edges in the graph that start in pgiahd end in some point
on the other side of the cut surfase As all points are sampled i.i.d, we have

E(cutnﬂ«n (S)) = ZZL:l EN, = nEN1

Suppose the position of the first pointds The idea to compute the expected number of edges
originating inz is as follows. We consider a balt(z, r,,) of radiusr,, aroundz (wherer,, is the
current parameter of the-neighborhood graph). The expected number of edges originatimg in
equals the expected number of points which lie in the intersection of this ball with the other side of
the hyperplane. That is, setting

_ fu(Bz,ry)nCT) ifzeC
9(,mn) = {/.L(B(l‘,’l“n) nc-) ifzeCt

we haveE(N;|X; = z) = (n — 1)g(x,r,), since the number of points in the intersection of
B(z,ry,) with the other side of the hyperplane is binomially distributed with parameterd and
g(z,r,). Integrating this conditional expectation over all positions of the pointR¢ gives

E(cuty,,(S)) = n(n—1) /]Rd g(x,ry)p(x)de.

The second important idea is that instead of integrating B/emve first integrate over the hyper-
planeS and then, at each poirte S, along the normal line through that is the lines + ¢77, ¢t € R,
whereri denotes the normal vector of the hyperplane pointing tow@rtsThis leads to

n(n—1) /Rd g(z,rp)p(x)de = n(n-—1) /s /jo g(s+tit,ry)p(s + ti) dt ds.

This has two advantages. Firstuifis far enough fromS (that is,dist(x, s) > r, for all s € .S),
theng(z, r,) = 0 and the corresponding terms in the integral vanish. Secondsitlose tos € S
and the radius,, is small, then the density on the bal(z, r,,) can be considered approximately
homogeneous, that jgy) ~ p(s) forall y € B(z,r,). Thus,

Tn

o0
/ g(s +ti,rp)p(s + ti) dt = / g(s +ti, ry)p(s + tid) dt

—00 —Ty

~ 2 / p(s) vol (B(s + ti,r,) N C™)p(s) dt.
Jo

Itis not hard to see thavl (B(s+tit,r,)NC~) = ré A(t/r,), whereA(t/r,) denotes the volume
of the cap of the unit ball capped at distan¢e,,. Solving the integrals leads to

" 1
/ vol (B(s + tit, ) N Cf)dt = 7’7:,/ A(t)dt = -1
’ 0 d+1

Combining the steps above we obtain the result fortheighborhood graph.



In the case of th&NN graph, the proof follows a similar principle. We have to replace the radius
r, by thek-nearest neighbor radius, that is, the distance of a data pointkthitsearest neighbor.
This leads to additional difficulties, as this radius is a random variable as well. By a technical
lemma one can show that for large under the conditiork,,/logn — oo we can replace the
integration over the possible values of th€N radius by its expectation. Then we observe that as
kn/n — 0, the expecte&NN radius converges to 0, that is for largewve only have to integrate
over balls of homogeneous density. In a region of homogeneous dénsite expecteckNN
radius is given agk/((n—1)n4p))'/¢. Now similar arguments as above lead to the desired résult.

Proposition 1 already shows one of the most important differences between the limits of the expected
cut for the different graphs: For thegraph we integrate over?, while we integrate ovep' /¢

for thekNN graph. This difference comes from the fact that kh&N-radius is a random quantity,
which is not the case for the deterministically chosen ragjuis the r-graph.

Proposition 2 (Deviation of cut,, i, and cut,, »,, from their means) Let the general assumptions
hold. For the kNN graph, if the dimension! = 1 then assumé,, /\/n — oo, for d > 2 assume
kn/logn — oo. In both cases let,, /n — 0. Then

1 1

Ly ﬂ _ L ﬁ ’ a.s.
i A et e, (9) E(nkn kn cutn,kn(S)) LRI

For the r-neighborhood graph, letr,, > 0, r,, — 0 such thathr@*! — oo for n — co. Then
1 1 a.s.
‘W Clbn,r, (S) — E(W cutn,r, (S)) ‘ — 0.

Proof (Sketch, details see Maier et al., 2008)sing McDiarmid’s inequality (with a kissing
number argument to obtain the bounded differences condition) or a U-statistics argument leads to
exponential decay rates for the deviation probabilities (and thus to convergence in probability). The
almost sure convergence can then be obtained using the Borel-Cantelli lemma. |

Proposition 3 (Limits of vol, x,, and vol, ) Let the general assumptions hold, aHdC R< an
arbitrary measurable subset. Then,as— oo, for the kNN graph we have

1 a.s.
Tkn VOln)k” (H) — (H)

For the r-neighborhood graph if nr? — oo we have

1 a.s.
W vol, ., (H) == ng /HpQ(a:)da:.
Proof. In the graphG,, i, there are exactly outgoing edges from each node. Thus the expected
number of edges originating id/ depends on the number of sample pointsHnonly, which

is binomially distributed with parameters and (H). For the graph’,, ., we decompose the
volume into the contributions of all the points, and for a single point we condition on its location.
The number of outgoing edges, provided the point is at positiois the number of other points

in B(z,r,), which is binomially distributed with parametefs — 1) and u(B(z,r,)). If r, is
sufficiently small we can approximaté B(z, r,,)) by nqrlp(x) under our conditions on the density.
Almost sure convergence is proved using McDiarmid’s inequality or a U-statistics argumehft.

Other convergence resultsin the literature, we only know of one other limit result for graph cuts,
proved by Narayanan et al. (2007). Here the authors study the case of a fully connected graph with
Gaussian weights, (z;, z;) = 1/(4nt)%? exp(—dist(z; — x;)?/4t). Denoting the corresponding

cut value byeut,, ¢, the authors show thatif, — 0 such that,, > 1/n'/(2¢+2) then

ﬁ CUtn,t71 - /p(S) ds a.s.
S

n\/t,

Comparing this result to ours, we can see that it corroborates our finding: yet another graph leads to
yet another limit result (focut, as the authors did not study the Ncut criterion).




4 Examples where different limits of Ncut lead to different optimal cuts

In Theorem 1 we have proved that tkN graph leads to a different limit functional fd¥cut(.S)

than ther-neighborhood graph. Now we want to show that this difference is not only a mathematical
subtlety without practical relevance. We will see that if we select an optimal cut based on the limit
criterion for thekNN graph we can obtain a different result than if we use the limit criterion based
on ther-neighborhood graph. Moreover, this finding does not only apply to the limit cuts, but also
to cuts constructed on finite samples. This shows that on finite data sets, different constructions of
the graph can lead to systematic differences in the clustering results.

Consider Gaussian mixture distributions in one and two dimensions of the form
S @iN([14,0,...,0],0,I) which are set to0 where they are below a thresholil (and
properly rescaled), with specific parameters

dim || u; 2 | p3 || o1 | o1 o1 | a1 | a2 | a3 0
1 0 051 04(101]0.1]066]0.17] 0.17] 0.1
2 1110 131020401 04 | 0.55] 0.05]| 0.01

For density plots, see Figure 1. We first investigate the theoretic limit Ncut values, for hyperplanes
which cut perpendicular to the first dimension (which is the “informative” dimension of the data).
For the chosen densities, the limit Ncut expressions from Theorem 1 can be computed analytically.
The plots in Figure 2 show the theoretic limits. In particular, the minimal Ncut value if¥hié

case is obtained at a different position than the minimal value in-tgighborhood case.

This effect can also be observed in a finite sample setting. We sampte@000 points from the

given distributions and constructed the (unweight€dN graph (we tried a range of parameters of

k andr, our results are stable with respect to this choice). Then we evaluated the empirical Ncut
values for all hyperplanes which cut perpendicular to the informative dimension, similar as in the
last paragraph. This experiment was repeated 100 times. Figure 2 shows the means of the Ncut
values of these hyperplanes, evaluated on the sample graphs. We can see that the empirical plots
are very similar to the limit plots produced above. In particular, we can reproduce the effect that the
kNN andr-graphs lead to different positions of the optimal hyperplane.

Moreover, we applied normalized spectral clustering (cf. von Luxburg, 2007) to the mixture data
sets. Instead of the direct&tVN graph we used the undirected one, as standard spectral clustering is
not defined for directed graphs. We compare different clusterings by the minimal matching distance:

dara(Clust, Clusk) = rr;in (371 Letust (21) 2 (Clusb (z:)) ) / (2)

where the minimum is taken over all permutationsf the labels. In the case of two clusters, this
distance corresponds to the 0-1-loss as used in classification: a minimal matching distaf8e of

say, means tha8% of the data points lie in different clusters. In our spectral clustering experiment,
we could observe that the clusterings obtained by spectral clustering are usually very close to the
theoretically optimal hyperplane splits predicted by theory (the minimal matching distances to the
optimal hyperplane splits were always in the order of 0.03 or smaller). As predicted by theory, both
kinds of graph give different cuts in the data. An illustration of this phenomenon for the case of
dimension 2 can be found in Figure 3. To give a quantitative evaluation of this phenomenon, we
computed the mean minimal matching distances between clusterings obtained by the same type of
graph over the different samples (denotgen andd,.), and the mean differencgny - between

the clusterings obtained by different graph types:

Example| dinn | dr | dinn —r
1dim 0.00039 £ 0.0005 | 0.0005 £ 0.00045 | 0.32 £ 0.012
2dim 0.0029 4+ 0.0013 0.0005 % 0.0005 0.48 £ 0.045

We can see that for the same graph, the clustering results are very stable (differences in the order of
10—3) whereas the differences betweenkheN graph and the-neighborhood graph are substantial

(0.32 and 0.48, respectively). This difference is exactly the one induced by assigning the middle
mode of the density to different clusters, which is the effect predicted by theory.

It is tempting to conjecture that these effects might be due to the fact that the number of Gaussians
and the number of clusters we are looking for do not conincide. But this is not the case: for a sum of



Density example 1 Density example 2
. (informative dimension only)

Figure 1: Densities in the examples. In the two-dimensional case, we plot the informative dimension
(marginal over the other dimensions) only. The dashed blue vertical line depicts the optimal limit
cut of ther-graph, the solid red vertical line the optimal limit cut of tkki¥N graph.

NCut of hyperplanes, kNN graph, NCut of hyperplanes, kNN graph,
d=1, n=2000, k=30 d=2, n=2000, k=100
; 20 :
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Ncut of hyperplanes, r—graph, Ncut of hyperplanes, r—graph,
d=1, n=2000, r=0.1 d=2, n=2000, r=0.3
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—emp

10 10
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Figure 2: Ncut values for hyperplanes: theoretical predictions (dashed) and empirical means (solid).
The optimal cut is indicated by the dotted line. The top row shows the results faNtNegraph,

the bottom row for the-graph. In the left column the result for one dimension, in the right column
for two dimensions.

two Gaussians in one dimension with me&@risand0.4, varianced).05 and0.03, weights0.8 and
0.2, and a threshold df.1 the same effects can be observed.

Finally, we conducted an experiment similar to the last one on two real data sets (breast cancer and
heart from the Data Repository by GaRch). Here we chose the paramefees 20 andr = 3.2

for breast cancer and= 4.3 for heart (among the parameters we tried, these were the parameters
where the results were most stable, that is whigkgy andd,. were minimal). Then we ran spectral
clustering on different subsamples of the data sets 00 for breast cancer, = 170 for heart). To
evaluate whether our clusterings were any useful at all, we computed the minimal matching distance
between the clusterings and the true class labels and obtained distafc®sfof the r-graph and

0.44 for thekNN graph on breast cancer afid 7 and0.19 for heart. These results are reasonable
(standard classifiers lead to classification error8.2f and0.17 on these data sets). Moreover, to
exclude other artifacts such as different cluster sizes obtained witkNheor r-graph, we also
computed the expected random distances between clusterings, based on the actual cluster sizes we
obtained in the experiments. We obtained the following table:

Example diNN rand.dxnn | dr rand.d, dxNN —r rand. dxnN —r
breast canc| 0.13+0.15 | 0.48+ 0.01 | 0.40+ 0.10 | 0.22+ 0.01 | 0.40+ 0.10 | 0.44+ 0.01
heart 0.06+0.02 | 0.47+0.02 | 0.06+0.02 | 0.44+0.02 | 0.07+0.03 | 0.47+0.02

We can see that in the example of breast cancer, the disténgesndd,. are much smaller than the
distancedyny . This shows that the clustering results differ considerably between the two kinds

of graph (and compared to the expected random effects, this difference does not look random at all).
For heart, on the other side, we do not observe significant differences between the two graphs.

This experiment shows that for some data sets a systematic difference between the clusterings based
on different graph types exists. But of course, such differences can occur for many reasons. The



r-graph, n=2000, r=0.3 kNN graph, n=2000, k=100

Figure 3: Results of spectral clustering in two dimensionsy{fgraph (left) andkNN graph (right)

different limit results might just be one potential reason, and other reasons might exist. But whatever
the reason s, itis interesting to observe these systematic differences between graph types in real data.

5 Discussion

In this paper we have investigated the influence of the graph construction on graph-based clustering
measures such as the normalized cut. We have seen that depending on the type of graph, the Ncut
criterion converges to different limit results. In our paper, we computed the exact limit expressions
for ther-neighborhood graph and théVN graph. Moerover, yet a different limit result for a com-

plete graph using Gaussian weights exists in the literature (Narayanan et al., 2007). The fact that all
these different graphs lead to different clustering criteria shows that these criteria cannot be studied
isolated from the graph they will be applied to.

From a theoretical side, there are several directions in which our work can be improved. Some
technical improvements concern using the symmetric instead of the dite§tédraph, and adding
weights to the edges. In the supplement (Maier et al., 2008) we also prove rates of convergence for
our results. It would be interesting to use these to determine an optimal choice of the connectivity
parametek or r of the graphs (we have already proved such results in a completely different graph
clustering setting, cf. Maier et al., 2007). Another extension which does not look too difficult

is obtaining uniform convergence results. Here one just has to take care that one uses a suitably
restricted class of candidate surfacegnote that uniform convergence results over the set of all
partitions ofR¢ are impossible, cf. von Luxburg et al., 2008).

For practice, it will be important to study how the different limit results influence clustering results.
So far, we do not have much intuition about when the different limit expressions lead to different
optimal solutions, and when these solutions will show up in practice. The examples we provided
above already show that different graphs indeed can lead to systematically different clusterings in
practice. Gaining more understanding of this effect will be an important direction of research if one
wants to understand the nature of different graph clustering criteria.
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