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A Proof of Proposition 1

Proposition 1 is about Algorithm 1, which we re-state here.

Algorithm 1 FINDVERTICES EXACT

1. Fix p ∈ aff(D) and compute P = [D:,1 − p, . . . , D:,n − p].
2. Determine r − 1 linearly independent columns C of P , obtaining P:,C and subsequently

r − 1 linearly independent rows R, obtaining PR,C ∈ R
r−1×r−1.

3. Form Z = P:,C(PR,C)
−1 ∈ R

m×r−1 and T̂ = Z(B(r−1) − pR1
⊤
2r−1) + p1⊤

2r−1 ∈

R
m×2r−1

, where the columns of B(r−1) correspond to the elements of {0, 1}r−1.

4. Set T = ∅. For u = 1, . . . , 2r−1, if T̂:,u ∈ {0, 1}m set T = T ∪ {T̂:,u}.
5. Return T = {0, 1}m ∩ aff(D).

Proposition 1. The affine subspace aff(D) contains no more than 2r−1 vertices of [0, 1]m. More-
over, Algorithm 1 provides all vertices contained in aff(D).

Proof. Consider the first part of the statement. Let b ∈ {0, 1}m and p ∈ aff(D) arbitrary. We have
b ∈ aff(D) iff there exists θ ∈ R

n s.t.

Dθ = b, θ⊤1n = 1 ⇐⇒ [D:,1 − p, . . . , D:,n − p]︸ ︷︷ ︸
=P

θ + p = b ⇐⇒ Pθ = b− p. (A.1)

Note that rank(P ) = r − 1. Hence, if there exists θ s.t. Pθ = b − p, such θ can be obtained from
the unique λ ∈ R

r−1 solving PR,Cλ = bR − pR, where R ⊂ {1, . . . ,m} and C ⊂ {1, . . . , n} are

subsets of rows respectively columns of P s.t. rank(PR,C) = r−1. Finally note that bR ∈ {0, 1}r−1

so that there are no more than 2r−1 distinct right hand sides bR − pR.
Turning to the second part of the statement, observe that for each b ∈ {0, 1}m, there exists a unique
λ s.t. PR,Cλ = bR − pR ⇔ λ = (PR,C)

−1(bR − pR). Repeating the argument preceding (A.1), if
b ∈ {0, 1}m ∩ aff(D), it must hold that

b = P:,Cλ+ p ⇐⇒ b = P:,C(PR,C)
−1

︸ ︷︷ ︸
=Z

(bR − pR) + p ⇐⇒ b = Z(bR − pR) + p. (A.2)

Algorithm 1 generates all possible right hand sides T̂ = Z(B(r−1) − pR1
⊤
2r−1) + p1⊤

2r−1 , where

B(r−1) contains all elements of {0, 1}r−1 as its columns. Consequently if b ∈ {0, 1}m ∩ aff(D), it

must appear as a column of T̂ . Conversely, if the leftmost equality in (A.2) does not hold, b /∈ aff(D)

and the column of T̂ corresponding to bR cannot be a binary vector.
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B The matrix factorization problem without the constraint A⊤
1
r
= 1

n

In the paper, we have provided Algorithm 2 to solve the matrix factorization problem

find T ∈ {0, 1}m×r and A ∈ R
r×n, A⊤

1r = 1n such that D = TA. (B.1)

We here provide variants of Algorithms 1 and 2 to solve the corresponding problem without the
constraint A⊤

1r = 1n, that is

find T ∈ {0, 1}m×r and A ∈ R
r×n such that D = TA. (B.2)

The following Algorithm B.1 is the analog of Algorithm 1. Algorithm B.1 yields span(D)∩{0, 1}m,
which can be proved along the lines of the proof of Proposition 1 under the stronger assumption that
T has r linearly independent in place of only r affinely independent columns, which together with
the assumption rank(A) = r implies that also rank(D) = r (cf. Section 2.1 of the paper). Algorithm
B.1 results from Algorithm 1 by setting p = 0 and replacing r − 1 by r.

Algorithm B.1 FINDVERTICES EXACT LINEAR

1. Determine r linearly independent columns C of D, obtaining D:,C and subsequently r
linearly independent rows R, obtaining DR,C ∈ R

r×r.

2. Form Z = D:,C(DR,C)
−1 ∈ R

m×r and T̂ = ZB(r) ∈ R
m×2r , where the columns of

B(r) correspond to the elements of {0, 1}r

3. Set T = ∅. For u = 1, . . . , 2r, if T̂:,u ∈ {0, 1}m set T = T ∪ {T̂:,u}.
4. Return T = {0, 1}m ∩ span(D).

The following Algorithm B.2 solves problem (B.2) given the output of Algorithm B.1.

Algorithm B.2 BINARYFACTORIZATION EXACT LINEAR

1. Obtain T as output from FINDVERTICES EXACT LINEAR(D)
2. Select r linearly independent elements of T to be used as columns of T .
3. Obtain A as solution of the linear system TA = D.
4. Return (T,A) solving problem (B.2).

For the sake of completness, we provide Algorithm B.3 as a counterpart to Algorithm 3 regarding
the approximate case. An additional modification is necessary to eliminate the zero vector, which

is always contained in span(D) and hence would be returned as a column of T if we used B(r) in

place of B
(r)
\0 in step 2. below, whose columns correspond to the elements of {0, 1}r \ {0r}.

Algorithm B.3 FINDVERTICES APPROXIMATE LINEAR

1. Compute U (r) ∈ R
m×r, the left singular vectors corresponding to the r largest singular

values of D. Select r linearly independent rows R of U (r), obtaining U
(r)
R,: ∈ R

r×r.

2. Form Z = U (r)(U
(r)
R,:)

−1 and T̂ = ZB
(r)
\0 .

4. Compute T̂ 01 ∈ R
m×2r : for u = 1, . . . , 2r, i = 1, . . . ,m, set T̂ 01

i,u = I(T̂i,u > 1
2 ).

5. For u = 1, . . . , 2r, set δu = ‖T̂:,u − T̂ 01
:,u‖2. Order increasingly s.t. δu1

≤ . . . ≤ δ2r .

6. Return T = [T̂ 01
:,u1

. . . T̂ 01
:,ur

]

C Matrix factorization with left and right binary factor and real-valued

middle factor

We here sketch how our approach can be applied to obtain a matrix factorization considered in [1],
which is of the form TWA⊤ with both T and A binary and W real-valued in the exact case; the
noisy case be tackled similarly with the help of Algorithm B.3 and is thus omitted.
Consider the matrix factorization problem

find T ∈ {0, 1}m×r, A ∈ {0, 1}n×r and W ∈ R
r×r such that D = TWA⊤, (C.1)

and suppose that rank(D) = r. Then the following Algorithm C.1 solves problem (C.1).
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Algorithm C.1 THREEWAYBINARYFACTORIZATION

1. Obtain T as output from FINDVERTICES EXACT LINEAR(D)
2. Obtain A as output from FINDVERTICES EXACT LINEAR(D⊤)
3. Select r linearly independent elements of T and A to be used as columns of T respec-

tively A.
4. Obtain W = (T⊤T )−1T⊤DA(A⊤A)−1.
5. Return (T,A,W ) solving problem (C.1).

D Proof of Corollary 1

Corollary 1 follows directly from Proposition 1.

E Proof of Proposition 2

Before re-stating Proposition 2 below, let us recall problem (1) and property (4) of the paper.

find T ∈ {0, 1}m×r and A ∈ R
r×n, A⊤

1r = 1n such that D = TA. (1)

aff(D) ∩ {0, 1}m = aff(T ) ∩ {0, 1}m = {T:,1, . . . , T:,r} (4)

Let us also recall that T is said to be separable if there exists a permutation Π such that ΠT =
[M ; Ir], where M ∈ {0, 1}m−r×r.

Proposition 2. If T is separable, condition (4) holds and thus problem (1) has a unique solution.

Proof. We have aff(T ) ∋ b ∈ {0, 1}m iff there exists λ ∈ R
r, λ⊤

1r = 1 such that

Tλ = b ⇐⇒ ΠTλ = Πb ⇐⇒ [M ; Ir]λ = Πb.

Since Πb ∈ {0, 1}m, for the bottom r block of the linear system to be fulfilled, it is necessary that
λ ∈ {0, 1}r. The condition λ⊤

1r = 1 then implies that λ must be one of the r canonical basis
vectors of Rr. We conclude that aff(T ) ∩ {0, 1}m = {T:,1, . . . , T:,r}.

F Proof of Theorem 1

Our proof of Theorem 1 relies on two seminal results on random ±1-matrices.

Theorem F.1. [2] Let M be a random m × r-matrix whose entries are drawn i.i.d. from {−1, 1}
each with probability 1

2 . There is a constant C so that if r ≤ m− C,

P (span(M) ∩ {−1, 1}m = {±M:,1, . . . ,±M:,r}) ≥ 1− (1 + o(1)) 4

(
r

3

)(
3

4

)m

as m → ∞.

(F.1)

Theorem F.2. [3] Let M be a random m × r-matrix, r ≤ m, whose entries are drawn i.i.d. from
{−1, 1} each with probability 1

2 . Then

P
(
M has linearly independent columns

)
≥ 1−

(
3

4
+ o(1)

)m

as m → ∞. (F.2)

We are now in position to re-state and prove Theorem 1.

Theorem 1. Let T be a random m× r-matrix whose entries are drawn i.i.d. from {0, 1} each with
probability 1

2 . Then, there is a constant C so that if r ≤ m− C,

P

(
aff(T )∩{0, 1}m = {T:,1, . . . , T:,r

)
≥ 1−(1+o(1)) 4

(
r

3

)(
3

4

)m

−

(
3

4
+ o(1)

)m

as m → ∞.
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Proof. Note that T = 1
2 (M + 1m×r), where M is a random ±1-matrix as in Theorem F.1. Let

λ ∈ R
r, λ⊤

1r = 1 and b ∈ {0, 1}m. Then

Tλ = b ⇐⇒
1

2
(Mλ+ 1m) = b ⇐⇒ Mλ = 2b− 1m ∈ {−1, 1}m. (F.3)

Now note that with the probability given in (F.1),

span(M) ∩ {−1, 1}m = {±M:,1, . . . ,±M:,r} =⇒ aff(M) ∩ {−1, 1}m ⊆ {±M:,1, . . . ,±M:,r}

On the other hand, with the probability given in (F.2), the columns of M are linearly independent.
If this is the case,

aff(M) ∩ {−1, 1}m ⊆ {±M:,1, . . . ,±M:,r}

=⇒ aff(M) ∩ {−1, 1}m = {M:,1, . . . ,M:,r}. (F.4)

To verify this, first note the obvious inclusion aff(M) ∩ {−1, 1}m ⊇ {M:,1, . . . ,M:,r}. Moreover,

suppose by contradiction that there exists j ∈ {1, . . . , r} and θ ∈ R
r, θ⊤1r = 1 such that Mθ =

−M:,j . Writing ej for the j-th canonical basis vector, this would imply M(θ + ej) = 0 and in turn

by linear independence θ = −ej , which contradicts θ⊤1r = 1.
Under the event (F.4), Mλ = 2b− 1m is fulfilled iff λ is equal to one of the canonical basis vectors
and 2b−1m equals the corresponding column of M . We conclude the assertion in view of (F.3).

G Theorem 1: empirical evidence

It is natural to ask whether a result similar to Theorem 1 holds if the entries of T are drawn from
a Bernoulli distribution with parameter p in (0, 1) sufficiently far away from the boundary points.
We have conducted an experiment whose outcome suggests that the answer is positive. For this
experiment, we consider the grid {0.01, 0.02, . . . , 0.99} for p and generate random binary matrices
T ∈ R

m×r with m = 500 and r ∈ {8, 16, 24} whose entries are i.i.d. Bernoulli with parameter p.
For each value of p and r, 100 trials are considered, and for each of these trials, we compute the
number of vertices of [0, 1]m contained in aff(T ). In Figure G.1, we report the maximum number of
vertices over these trials. One observes that except for a small set of values of p very close to 0 or 1,
exactly r vertices are returned in all trials. On the other hand, for extreme values of p the number of
vertices can be as large as 220 in the worst case.
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Figure G.1: Number of vertices contained in aff(T ) over 100 trials for T drawn entry-wise from a
Bernoulli distribution with parameter p.

H Entire set of experiments with synthetic data

In section 4.1 of the paper, we have presented only a subset of all synthetic data experiments that
we have performed. We here present the entire set.
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For the first set of experiments, we have considered three different setups concerning the generation
of T and A and two choices of r (10 and 20), out of which only the results of the first one (’T0.5’)
for r = 10 are reported in the paper.
Setups.
’T0.5’: We generate D = T ∗A∗ + αE, where the entries of T ∗ are drawn i.i.d. from {0, 1} with
probability 0.5, the columns of A are drawn i.i.d. uniformly from the probability simplex and the
entries of E are i.i.d. standard Gaussian. We let m = 1000, r ∈ {10, 20}, n = 2r, and let the noise
level α vary along a grid starting from 0.
’Tsparse+dense’: The matrix T is now generated by drawing the entries of one half of the columns
of T i.i.d. from a Bernoulli distribution with probability 0.1 (’sparse’ part), and the second half
from a Bernoulli distribution with parameter 0.9 (’dense’ part). The rest is as for the first setup.
’T0.5,Adense’: As for ’T0.5’ apart from the following modification: after random generation of A
as above, we compute its Euclidean projection on {A ∈ R

r×n
+ : A⊤

1r = 1n, maxk,i Ak,i ≤ 2/r},
thereby constraining the columns of A to be roughly constant. With such A, all data points are
situated near the barycentre T1r/r of the simplex generated by the columns of T . Given that the
goal is to recover vertices, this setup is hence potentially more difficult.
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Figure H.1: Results of the synthetic data experiments separated according to the ttwo setups ’T.05’
and ’Tsparse+dense’. Bottom/top: r = 10, r = 20. Left/Middle/Right: ‖T ∗ − T ‖2F/(mr),

‖T ∗A∗ − TA‖F/(mn)1/2 and ‖TA−D‖F /(mn)1/2.
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Figure H.2: Results of the synthetic data experiments (continued) for the setup ’T0.5,Adense’. Bot-

tom/top: r = 10, r = 20. Left/Middle/Right: ‖T ∗ − T ‖2F/(mr), ‖T ∗A∗ − TA‖F/(mn)1/2 and

‖TA−D‖F /(mn)1/2.

Regarding the comparison against HOTTOPIXX, only the results for r = 10 are reported in the
paper. We here display the results for r = 20 as well.
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Figure H.3: Results of the experimental comparison against HOTTOPIXX.
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