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Abstract

We here provide additional proofs, definitions, lemmas and derivations omitted in
the paper. Note that material contained in the latter are referred to by the captions
used there (e.g. Theorem 1), whereas auxiliary statements contained exclusively
in this supplement are preceded by a capital Roman letter (e.g. Theorem A.1).

A Sub-Gaussian random variables and concentration inequalities

A random variable Z is called sub-Gaussian if there exists a positive constant K such that
E[|Z|q]1/q ≤ K√q. The smallest suchK is called the sub-Gaussian norm ‖Z‖ψ2

ofZ. If E[Z] = 0,
which shall be assumed for the remainder of this paragraph, then the moment-generating function
of Z satisfies E[exp(tZ)] ≤ exp(−t2/(2σ2)) for a parameter σ > 0 which is related to ‖Z‖ψ2

by a
multiplicative constant, cf. [1]. It follows that if Z1, . . . , Zn are i.i.d. copies of Z and v ∈ Rn, then∑n
i=1 viZi is sub-Gaussian with parameter ‖v‖22 σ2. We have the well-known tail bound

P(|Z| > z) ≤ 2 exp
(
− z2

2σ2

)
, z ≥ 0. (A.1)

Combining the previous two facts and using a union bound, with Z = (Z1, . . . , Zn)>, it follows
that for any collection of vectors vj ∈ Rn, j = 1, . . . , p,

P
(

max
1≤j≤p

|v>j Z| > σ max
1≤j≤p

‖vj‖2
√

2 log p+ σz

)
≤ 2 exp

(
−1

2
z2

)
, z ≥ 0. (A.2)

A.1 Bernstein-type inequality for squared sub-Gaussian random variables

The following exponential inequality combines Lemma 14, Proposition 16 and Remark 18 in [1].
Lemma A. 1. Let Z1, . . . , Zn be i.i.d. centered sub-Gaussian random variables with sub-Gaussian
norm K. Then for every a = (a1, . . . , an)> ∈ Rn and every z ≥ 0, one has

P

(∣∣∣∣∣
n∑
i=1

ai(Z2
i −E[Z2

i ])

∣∣∣∣∣ > z

)
≤ 2 exp

(
−cmin

(
z2

K4 ‖a‖22
,

z

K2 ‖a‖∞

))
, (A.3)

where c > 0 is an absolute constant.

A.2 Concentration of extreme singular values of sub-Gaussian random matrices

Denote by smin(X) and smax(X) the minimum and maximum singular value of a matrix X . The
following statement is a special case covered by Theorem 39 in [1].
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Theorem A. 1. Let X be an n × s matrix with i.i.d. centered sub-Gaussian entries having unit
variance and sub-Gaussian normK. Then for every z ≥ 0, with probability at least 1−2 exp(−cz2),
one has √

n− C
√
s− z ≤ smin(X) ≤ smax(X) ≤

√
n+ C

√
s+ z, and (A.4)

smax

(
1
n
X>X − I

)
≤ max(δ, δ2), where δ = C

√
s

n
+

z√
n
, (A.5)

with C, c depending only on K.

B Proof of Theorem 1

Self-regularizing property. We call a design self-regularizing with universal constant κ ∈ (0, 1] if

β>Σβ ≥ κ(1>β)2 ∀β � 0. (B.1)

Theorem 1 Let Σ fulfill the self-regularizing property with constant κ. Then, with probability no
less than 1 - 2/p, the NNLS estimator obeys

1
n
‖Xβ∗ −Xβ̂‖22 ≤

8σ
κ

√
2 log p
n
‖β∗‖1 +

8σ2

κ

log p
n

.

Proof. For some vector δ ∈ Rp, set P = {j : δj ≥ 0} and N = {j : δj < 0} and define
δ̂ = β∗ − β̂, where β̂ is a minimizer of the NNLS criterion. We will bound the `1-norm of δ̂. Note
that by feasibility of β̂, we have δ̂ � β∗ and hence ‖δ̂P ‖1 ≤ ‖β∗‖1. By definition, δ̂ minimizes

2
n
ε>Xδ + δ>P Σ̂PP δP + 2δ>P Σ̂PNδN + δ>N Σ̂NNδN . (B.2)

over all feasible δ � β∗. The `1-norm ‖δ̂N‖1 can be controlled by bounding the `1-norm of any
minimizer d̂ of the problem

min
d�0

2
n
ε>XNd+ 2 ‖β∗‖1 1>d+ κ(1>d)2, (B.3)

where (B.3) is obtained from (B.2) by omitting terms not depending on δN and replacing δ>P Σ̂PNδN
and δ>N Σ̂NNδN by the lower bounds

δ>P Σ̂PNδN ≥ −‖β∗‖1 1>δN , (B.4)

δ>N Σ̂NNδN ≥ κ(1>δN )2, (B.5)

where (B.4) follows from the `1-bound on δ̂P in combination with Hölder’s inequality, and (B.5) is
obtained by invoking the self-regularizing property (B.1). These replacements evidently ensure that
‖δ̂N‖1 ≤ ‖d̂‖1, where d̂ is any minimizer of (B.3). The KKT optimality conditions of the quadratic
program (B.3) read

1
n
X>Nε+ ‖β∗‖11 + κ(1>d̂)1 + µ̂ = 0,

d̂ � 0, µ̂ � 0, µ̂kd̂k = 0, k = 1, . . . , |N |,
where µ̂ is a Langrangian multiplier. From the first equation, it follows that

‖d̂‖1 ≤
‖β∗‖1 +A

κ
, A =

∥∥∥∥X>εn
∥∥∥∥
∞
.

Since β∗ is feasible for the NNLS problem, using ‖δ̂N‖1 ≤ ‖d̂‖1 and κ < 1, we have

1
n
‖Xβ∗ −Xβ̂‖22 =

1
n
‖Xδ̂‖22 ≤ −

2
n
ε>Xδ̂ ≤ 2A(‖δ̂P ‖1 + ‖δ̂N‖1) ≤ 4A‖β∗‖1 + 2A2

κ
.

Using the maximal inequality (A.2) for a finite collection of sub-Gaussian random variables, the

event
{
A ≤ 2σ

√
2 log p
n

}
holds with probability no less than 1− 2/p. The result follows.
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C Addendum for Definition 2

Lemma C. 1.

(i) ω̂(S) > 0⇔ τ̂(S) > 0⇔ XSRs+ is a face of C.

(ii) ω̂(S) ≤ 1 with equality if {Xj}j∈S and {Xj}j∈Sc are orthogonal and 1
nX
>
ScXSc is entry-

wise non-negative.

Proof. (i): We have

τ̂2(S) = min
θ∈Rs, λ∈Tp−s−1

1
n
‖XSθ −XScλ‖22 = min

λ∈Tp−s−1

1
n
‖Zλ‖22 , hence (C.1)

∃λ̂ ∈ T p−s−1 s.t. Zλ̂ = 0 ⇒ Z>Zλ̂ = 0 ⇒ ‖Z>Zλ̂‖∞ = 0 ⇒ ω̂(S) = 0.

On the other hand

∃v̂ ∈ V(F ) s.t. ‖Z>F ZF v̂‖∞ = 0 ⇒ Z>F ZF v̂ = 0 ⇒ ‖ZF v̂‖22 ⇒ τ̂(S) = 0.

The second equivalence is by the definition of a face of a cone.
(ii) Consider all principal sub-matrices 1

nZ
>
F ZF . By definition, ω̂(S) equals the maximum of the

absolute values of the entries of 1
nZ
>
F ZF v, where one minimizes over all v contained in the boundary

of the unit cube in [0, 1]|F |. We may restrict our attention to matrices 1
nZ
>Z which are entry-wise

non-negative. To see this, assume that there exists a non-negative off-diagonal entry for a pair (j, k).
Then pick F0 = {j, k} and set V(F0) = {v ∈ R2 : v � 0, ‖v‖∞ = 1} to obtain that

ω̂(S) ≤ min
v∈V(F0)

∥∥∥∥ 1
n
Z>F0

ZF0v

∥∥∥∥
∞
≤ max

{ 1
n

(Z>Z)jj +
1
n

(Z>Z)jk,

1
n

(Z>Z)kk +
1
n

(Z>Z)jk
}

≤ max
{

1
n

(Z>Z)jj ,
1
n

(Z>Z)kk

}
≤ 1,

re-calling that ‖Zj‖22 =
∥∥Π⊥SXj

∥∥2

2
≤ ‖Xj‖22 = n for all j. If Z>Z is entry-wise non-negative,

a similar argument shows that ω̂(S) equals the minimum diagonal entry of 1
nZ
>Z, which is upper

bounded by 1. Since

1
n
Z>Z =

1
n
X>ScXSc − 1

n
X>ScXS

(
1
n
X>S XS

)−1

X>S XSc ,

orthogonality implies that 1
nZ
>Z = 1

nX
>
ScXSc . Using entry-wise non-negativity of 1

nX
>
ScXSc

together with ‖Xj‖22 = n, the assertion follows.

D Proofs of Lemma 1 and Lemma 2

Lemma 1 β̂ is a minimizer of the NNLS problem if and only if there exists F ⊆ {1, . . . , p} such
that

1
n
X>j (y −Xβ̂) = 0, and β̂j > 0, j ∈ F, 1

n
X>j (y −Xβ̂) ≤ 0, and β̂j = 0, j ∈ F c.

Proof. For µ, β � 0, the Lagrangian of the NNLS problem is given by

L(β, µ) =
1
n
‖y −Xβ‖22 − µ

>β.

Lemma 1 is then immediately obtained from the resulting KKT optimality conditions.
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Lemma 2 Consider the two non-negative least squares problems

(P1) : min
β(P1)�0

1
n
‖Π⊥S (ε−XScβ(P1))‖22 (P2) : min

β(P2)�0

1
n
‖ΠSy −XSβ

(P2) −ΠSXSc β̂(P1)‖22

with minimizers β̂(P1) of (P1) and β̂(P2) of (P2), respectively. If β̂(P2) � 0, then setting β̂S =
β̂(P2) and β̂Sc = β̂(P1) yields a minimizer β̂ of the non-negative least squares problem.

Proof. The NNLS objective is split into two parts in the following way:

min
β�0

1
n
‖y −Xβ‖22 = min

β�0

1
n
‖ΠSy −XSβS −ΠSXScβSc‖22 +

1
n
‖ξ − ZβSc‖22 , ξ = Π⊥S ε.

(D.1)
Separate minimization of the second summand on the r.h.s. of (D.1) yields β̂(P1). Substituting β̂(P1)

for βSc in the first summand, and minimizing the latter amounts to solving (P2). In view of Lemma
1, if β̂(P2) � 0, it coincides with the unconstrained least squares estimator (D.1) corresponding to
problem (P2). This implies that the optimal value of (P2) must be zero, because the observation
vector of the non-negative least squares problem (P2) is contained in the column space of XS .
Since the second summand in (D.1) corresponding to (P1) cannot be made smaller than by separate
minimization, we have minimized the non-negative least squares objective.

E Addendum for Examples 1 and Examples 2

E.1 Example 1

The Gram matrix Σ = 1
nX
>X can be identified with a covariance matrix of a set of zero-mean, unit

variance random variables {Rj}pj=1. Correspondingly, for any S ⊂ {1, . . . , p}, the matrix

1
n
Z>Z =

1
n
X>Sc(I −ΠS)XSc = ΣScSc − ΣScSΣ−1

SSΣSSc (E.1)

can be interpreted as the conditional covariance matrix of the random variables {Rj}j∈Sc condi-
tional on {Rj}j∈S . The power decay structure of the matrix Σ induces a Markov random field (see
[2]) so that the conditional covariances satisfy Cov(Rk, Rl|{Rj}j∈S) ≥ 0, with equality if S con-
tains an index j such that k ∧ l < j < k ∨ l. The minimum diagonal entry of 1

nZ
>Z used to lower

bound ω̂(S) can be obtained from the following consideration.
1
n

(Z>Z)jj = Var(Rj |{Rk}k∈S) ≥ Var(Rj |{Rj−1, Rj+1}) = σjj − ΣjN (ΣNN )−1ΣN j , (E.2)

with N = {j − 1, j + 1} and

ΣjN = [ρ ρ], ΣNN =
[

1 ρ2

ρ2 1

]
.

Explicit computation of the r.h.s. of (E.2) then yields that 1
n (Z>Z)jj ≥ 1− 2ρ2

1+ρ2 .
Moreover, it is well-known (see again [2]) that the off-diagonal entries of the inverse of a co-
variance matrix are − up to a change in sign and a multiplicative factor − equal to the con-
ditional covariances after conditioning on all remaining variables, i.e. for j 6= k, (Σ−1)jk ∝
−Cov(Rj , Rk|{Rl}l/∈{j,k}). In view of the Markov random field structure under considera-
tion, which implies that all Rj are conditionally independent of all remaining variables given
{Rj−1, Rj+1}, it thus follows that Σ−1 as well as the inverses of sub-matrices Σ−1

SS have at
most two non-zero off-diagonal entries per row. Hence, K(S) = maxv: ‖v‖∞=1

∥∥Σ−1
SSv

∥∥
∞ and

φmin(S) = minv: ‖v‖2=1 ‖ΣSSv‖2 are necessarily upper and lower bounded by constants depend-
ing on ρ only, but not on s.

E.2 Example 2

One computes that

(Σ−1
SS)jk =

1
(1− ρ)(1 + (s− 1)ρ)

{
1 + (s− 2)ρ j = k,

−ρ j 6= k.
(E.3)
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and consequently, using (E.1),(
1
n
Z>Z

)
jk

=
{

1− ρ2s/(1 + (s− 1)ρ) j = k,

ρ− ρ2s/(1 + (s− 1)ρ) j 6= k.
(E.4)

From (C.1), τ̂2(S) = minλ∈Tp−s−1 λ> 1
nZ
>Zλ. In view of the simple structure (E.4), one verifies

that the minimum is attained for λ = 1/(p− s), which yields that

τ̂2(S) =
(1− ρ)ρ

(s− 1)ρ+ 1
+

1− ρ
p− s

= O(s−1), (E.5)

and, with high probability,

‖β̂Sc‖1 ≤
2σ
√

2 log(p)/n
τ̂2(S)

≤
((s− 1)ρ+ 1)2σ

√
2 log(p)/n

(1− ρ)ρ
, (E.6)

as given in the paper. Given the closed form expression (E.3), the bound (14) in the paper, which,
for some vector v, reads

‖Σ−1
SSΣSScv‖∞ ≤ max

v: ‖v‖∞=1
‖Σ−1

SSv‖∞︸ ︷︷ ︸
K(S)

max
j∈S,k∈Sc

|σjk|︸ ︷︷ ︸
µ(S)

‖v‖1

is replaced by
‖Σ−1

SSΣSScv‖∞ ≤ ‖Σ−1
SS1‖∞ ‖v‖1 =

ρ

1 + (s− 1)ρ
‖v‖1 ,

using the fact that all off-diagonal entries of Σ are equal to ρ. Applying the previous bound to
v = β̂Sc together with (E.6) and φmin(S) = 1 − ρ and following Step 3 in the proof of Theorem 2
in the paper, one obtains that with high probability,∥∥∥β̂S − β∗S∥∥∥∞ ≤ 4σ

1− ρ

√
2 log p
n

,

provided βmin(S) exceeds the right hand side. Moreover, (E.4) implies that ω̂(S) = 1 − ρ2s/(1 +
(s − 1)ρ), since all entries of 1

nZ
>Z are non-negative. Consequently, choosing the threshold as

λ = 2σbω(S)

√
2 log p
n with ω̂(S) as above,∥∥∥β̂(λ)− β∗

∥∥∥
∞
≤ 4σ

1− ρ
+ 2σ

(
1− ρ2s

1 + (s− 1)ρ

)√
2 log p
n

.

F Proof of Theorem 3

Consider the following ensemble of random matrices

Ens+ = {X = (xij), {xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p} i.i.d. from a sub-Gaussian distribution on R+}.

Theorem 3 Let X be a random matrix from Ens+, scaled s.t. E
[

1
n
X>X

]
= ρI+ (1−ρ)11> for

some ρ ∈ (0, 1). Fix an S ⊂ {1, . . . , p}, |S| ≤ s. Then there exists constants c, c1, c2, c3, C, C ′ > 0
such that for all n ≥ C log(p)s2,

τ̂2(S) ≥ cs−1 − C ′
√

log(p)/n

with probability no less than 1− 3/p− exp(−c1n)− 2 exp(−c2 log p)− exp(−c3 log1/2(p)s).

We state and prove three basic concentration results first.
Lemma F. 1. Let Z1, . . . , Zn be i.i.d. centered, unit variance sub-Gaussian random variables with
sub-Gaussian norm K. Then for all z ≥ 0

P

(
n∑
i=1

Z2
i > n+ zn

)
≤ exp(−cmin(

z2

K4
,
z

K2
)n). (F.1)
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Proof. Noting that E[
∑n
i=1 Z

2
i ] = n and re-arranging, the result follows from Lemma A.1 with

a = (1, . . . , 1)>.

In the sequel, we denote by Σ∗ the population covariance E[ 1
nX
>X] = (1 − ρ)Ip + ρ11>, where

ρ ∈ (0, 1) depends on the specific distribution for the entries (xij).
Lemma F. 2. If X is a random matrix from Ens+, then for all t ≥ 0 and any S ⊆ {1, . . . , p},
|S| ≤ s, with probability at least 1− 2 exp(−c1t2)− exp

(
−c2 min

(
t2, t

)
s
)

smax

(
1
n
X>S XS − Σ∗SS

)
≤ max(δ, δ2) + C1

√
s2(1 + t)

n
, δ = C2

√
s

n
+

t√
n
, (F.2)

where C,C1, C2, c, c1, c2 > 0 are universal constants.

Proof. We decompose Xi
S = X̃i

S + µ1, where µ > 0 is the mean of the entries, i = 1, . . . , n. We
have

smax

(
1
n
X>S XS − Σ∗SS

)
= sup
v: ‖v‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(
〈X̃i

S + µ1, v〉2 −E[〈X̃i
S + µ1, v〉2]

)∣∣∣∣∣ ,
= sup
v: ‖v‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(
〈X̃i

S , v〉2 −E[〈X̃i
S , v〉2] + 2〈µ1, v〉〈X̃i

S , v〉
)∣∣∣∣∣

≤ sup
v: ‖v‖2=1

∣∣∣∣∣ 1n
n∑
i=1

(
〈X̃i

S , v〉2 −E[〈X̃i
S , v〉2]

)∣∣∣∣∣+ 2 sup
v: ‖v‖2=1

∣∣∣∣∣〈µ1, v〉 1n
n∑
i=1

〈X̃i
S , v〉

∣∣∣∣∣
The first summand is handled by an application of Theorem A.1. For the second summand, we have

2 sup
v: ‖v‖2=1

∣∣∣∣∣〈µ1, v〉 1n
n∑
i=1

〈X̃i
S , v〉

∣∣∣∣∣ ≤ 2

∣∣∣∣∣µ√s
∥∥∥∥∥ 1
n

n∑
i=1

X̃i
S

∥∥∥∥∥
2

∣∣∣∣∣ .
Re-writing the norm as∥∥∥∥∥ 1

n

n∑
i=1

X̃i
S

∥∥∥∥∥
2

=

 1
n

∑
j∈S

(
1√
n

n∑
i=1

x̃ij

)2
1/2

=

 1
n

s∑
j=1

Z2
j

1/2

, Zj =
1√
n

n∑
i=1

x̃ij .

and noting that, as explained in Appendix A, the sub-Gaussian norm of the {Zj} is uniformly
bounded by an absolute constant, say L, we invoke (F.1), which yields for all t ≥ 0

P

 s∑
j=1

Z2
j > s+ ts

 ≤ exp
(
−cmin

(
t2

L4
,
t

L2

)
s

)
.

The claim follows by taking roots and back-substituting.

Lemma F. 3.

max
1≤j,k≤p

∣∣∣∣∣
(

1
n
X>X − Σ∗

)
jk

∣∣∣∣∣ ≤ C
√

log p
n

,

with probability at least 1− 3/p− exp(−cn), where C, c > 0 are universal constants.

Proof. Write X̃j = Xj − µ1, j = 1, . . . , p, for the column vectors obtained by centering the
columns of X . We have

1
n

(〈Xj , Xk〉 −E[〈Xj , Xk〉]) =
1
n
〈X̃j , X̃k〉 − µ

(
1
n
〈X̃j ,1〉+

1
n
〈X̃k,1〉

)
. (F.3)

For the second term in (F.3), we have, in view of the properties of sub-Gaussian random variables in
Appendix A

P
(∣∣∣µ
n
〈X̃j + X̃k,1〉

∣∣∣ > √2µz
)
≤ 2 exp(−c0nz2). (F.4)
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For the first term in (F.3), let us first consider the case j 6= k. Fix any j ∈ {1, . . . , p}. It follows
from Lemma F.1 that the event Ej = {‖Xj‖22 ≤ 2n} holds with probability at least 1− exp(−c1n).
Conditional on Ej , 〈X̃j , X̃k〉 is a sub-Gaussian random variable with sub-Gaussian norm bounded
by L
√
n, for some universal constant L > 0. It follows that

P
(∣∣∣∣ 1n 〈X̃j , X̃k〉

∣∣∣∣ > z

)
≤ P

(∣∣∣∣ 1n 〈X̃j , X̃k〉
∣∣∣∣ > z

∣∣∣Ej)+ P(Ecj )

≤ 2 exp(−c2nz2/L2) + exp(−c1n) ≤ 2 exp(−c3nz2) + exp(−c1n).
(F.5)

Let now j = k. With the aim to control the first term in (F.3), an application of Lemma A.1 yields
∀z ≥ 0

P

∣∣∣∣∣∣ 1n
n∑
j=1

(
x̃2
ij −E[x̃2

ij ]
)∣∣∣∣∣∣ > z

 ≤ 2 exp(−c4 min(z, z2)n). (F.6)

Combining (F.4), (F.5) and (F.6), with a union bound over all p2 entries of 1
nX
>X and setting

z = 2/
√

min{c0, c3, c4}
√

log p
n , we obtain

P

(∣∣∣∣∣
(

1
n
X>X − Σ∗

)
jk

∣∣∣∣∣ > C

√
log p
n

)
≤ 3
p

+ exp(−c1n+ log p).

Equipped with these auxiliary results, we turn to the actual proof of the Theorem. We analyze the
random scaling of τ̂2(S) using the dual formulation (C.1). In the following, denote by Ss−1 = {u ∈
Rs : ‖u‖2 = 1} the unit sphere in Rs. Expanding the square in (C.1), we have

τ̂2(S) = min
θ∈Rs, λ∈Tp−s−1

θ>
1
n
X>S XSθ − 2θ>

1
n
X>S XScλ+ λ>

1
n
X>ScXScλ

≥ min
r>0, u∈Ss−1, λ∈Tp−s−1

r2u>Σ∗SSu− r2smax

(
1
n
X>S XS − Σ∗SS

)
−

− 2ru>
1
n
X>S XScλ+ λ>

1
n
X>ScXScλ

≥ min
r>0, u∈Ss−1, λ∈Tp−s−1

r2u>Σ∗SSu− r2smax

(
1
n
X>S XS − Σ∗SS

)
− 2ρru>1− 2ru>(

1
n
X>S XSc − Σ∗SSc)λ+ ρ+

1− ρ
p− s

−

− sup
λ∈Tp−s−1

∣∣∣∣λ>(
1
n
X>ScXSc − Σ∗ScSc)λ

∣∣∣∣ .

(F.7)

For the last inequality, we have used that minλ∈Tp−s−1 λ>Σ∗ScScλ = ρ + 1−ρ
p−s by set-

ting λ = 1/(p − s). We further set ∆ = smax

(
1
nX
>
S XS − Σ∗SS

)
and δ =

supu∈Ss−1,λ∈Tp−s−1

∣∣u> ( 1
nX
>
ScXSc − Σ∗ScSc

)
λ
∣∣. The random deviation terms ∆ and δ will be

controlled uniformly over u ∈ Ss−1 and λ ∈ T p−s−1 by means of the two preceding lemmas, and
are hence subsequently treated as constants. This approach allows us to minimize the lower bound
in (F.7) w.r.t. u and r separately from λ. The minimization problem involving u and r reads

min
r>0, u∈Ss−1

r2u>Σ∗SSu− 2ρru>1− r2∆− 2rδ. (F.8)

We first derive an expression for

φ(r) = min
u∈Ss−1

r2u>Σ∗SSu− 2ρru>1. (F.9)

We decompose u = u‖ + u⊥, where u‖ =
〈

1√
s
, u
〉

1√
s

is the projection of u on the unit vector

1/
√
s, which is the eigenvector of Σ∗SS associated with its largest eigenvalue 1 + ρ(s − 1). By
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Parseval’s identity, we have ‖u‖‖22 = γ, ‖u⊥‖22 = (1 − γ) for some γ ∈ [0, 1]. Inserting this
decomposition and noting that the remaining eigenvalues of Σ∗SS are all equal to (1− ρ), we obtain
the following expression to be minimized w.r.t. γ ∈ [0, 1]

r2γ (1 + (s− 1)ρ)︸ ︷︷ ︸
smax(Σ∗SS)

+r2(1− γ) (1− ρ)︸ ︷︷ ︸
smin(Σ∗SS)

−2ρr
√
γ
√
s, (F.10)

where we have used that 〈u⊥,1〉 = 0 and that all potential minimizers must satisfy 〈u‖,1〉 > 0. Let
us put aside the constraint γ ∈ [0, 1] for a moment. The expression (F.10) is a convex function of
γ, hence we may find an (unconstrained) minimizer γ̃ by differentiating and setting the derivative
equal to zero. This yields γ̃ = 1

r2s , which coincides with the constrained minimizer if and only if
r ≥ 1√

s
. Now observe that the minimizer of the problem minr>0,u∈Ss−1 r2u>Σ∗SSu−2ρru>1 with

r being unfixed equals the minimizer θ̂ of the problem minθ∈Rs θ>Σ∗SSθ − 2ρθ>1, which is given
by θ̂ = ρ1

1+(s−1)ρ = 1√
s
·
√
sρ

1+(s−1)ρ , a unit vector satisfying γ = 1 times a radius less than 1/
√
s. We

conclude that for all r < 1/
√
s, the minimum is attained for γ = 1, hence the function φ(r) (F.9) is

given by

φ(r) =
{
r2smax(Σ∗SS)− 2rρ

√
s r < 1/

√
s,

r2(1− ρ)− ρ otherwise,
(F.11)

where the second line is obtained by inserting γ̃ = 1
r2s for γ in (F.10). The minimization problem

(F.8) to be considered eventually reads

min
r>0

ψ(r), ψ(r) = φ(r)− r2∆− 2rδ. (F.12)

We argue that it suffices to consider the case r < 1/
√
s in (F.11) provided

((1− ρ)−∆)2 > δ2s, (F.13)

a condition we will comment on below. If this condition is met, differentiating shows that ψ is
increasing on [ 1√

s
,∞). In fact, for all r in that ray,

d

dr
ψ(r) = 2r(1− ρ)− 2r∆− 2δ, and thus

d

dr
ψ(r) > 0 for all r ∈

[
1√
s
,∞
)
⇔ 1√

s
((1− ρ)−∆) > δ ⇔ ((1− ρ)−∆)2 > sδ2.

Considering the case r < 1/
√
s, we observe that ψ(r) is convex provided

smax(Σ∗SS) > ∆, (F.14)

a condition we shall comment on below as well. Provided (F.13) and (F.14) hold true, the minimizer
r̂ of (F.12) is given by (ρ

√
s+ δ)/(smax(Σ∗SS)−∆). Substituting this result back into (F.12) and in

turn into the lower bound (F.7), one obtains after collecting terms

τ̂2(S) ≥ ρ (1− ρ)−∆
(1− ρ) + sρ−∆

− 2ρ
√
sδ + δ2

smax(Σ∗SS)−∆
+

1− ρ
p− s

− sup
λ∈Tp−s−1

∣∣∣∣λ>(
1
n
X>ScXSc − Σ∗ScSc)λ

∣∣∣∣ .
(F.15)

Consider the two events

A =

∆ ≤ C1

√s2 log1/2 p

n
+

√
log p
n

 ,B =

{
max
j,k

∣∣∣∣∣
(

1
n
X>X − Σ∗

)
jk

∣∣∣∣∣ ≤ C2

√
log p
n

}
,

for universal constants C1, C2 > 0. Conditional on A ∩ B, bounding

δ ≤ sup
u∈Ss−1

‖u‖1 sup
λ∈Tp−s−1

∥∥∥∥( 1
n
X>ScXSc − Σ∗ScSc

)
λ

∥∥∥∥
∞
≤
√
sC2

√
log p
n

,

and inserting the scaling for ∆ under A, there exists a sufficiently large constant Ĉ > 0 such
that the two conditions (F.13) and (F.14) supposed to be fulfilled previously indeed hold given that

8



n ≥ Ĉ log(p)s2. We may re-write (F.15) as

τ̂2(S) ≥ ρ(1−∆/(1− ρ))
(1−∆/(1− ρ)) + s ρ

1−ρ
+

2ρ
√
s

1+(s−1)ρδ

1−∆/(1 + (s− 1)ρ)
− δ2/(1 + (s− 1)ρ)

1−∆/(1 + (s− 1)ρ)
−

− sup
λ∈Tp−s−1

∣∣∣∣λ>(
1
n
X>ScXSc − Σ∗ScSc)λ

∣∣∣∣ .
(F.16)

Conditional on A ∩ B, there exists again a sufficiently large constant C̃ > 0 such that if n ≥
C̃ log(p)s2

c1
1
s
− C3

√
log p
n
− C4

log p
n
− C2

√
log p
n

= c1
1
s
− C5

√
log p
n

(F.17)

by inserting the resulting scalings separately for each summand in (F.16), where c1, C3, C4, C5 > 0
are universal constants. We conclude that if n ≥ max(Ĉ, C̃) log(p)s2, (F.17) holds with probability
no less than 1 − P(A) − P(B). Using Lemmas F.2 and F.3 to control P(A) and P(B), the result
follows.
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