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Abstract

Adaptive gradient methods have become recently
very popular, in particular as they have been
shown to be useful in the training of deep neu-
ral networks. In this paper we have analyzed
RMSProp, originally proposed for the training
of deep neural networks, in the context of on-
line convex optimization and show +/T-type re-
gret bounds. Moreover, we propose two vari-
ants SC-Adagrad and SC-RMSProp for which
we show logarithmic regret bounds for strongly
convex functions. Finally, we demonstrate in the
experiments that these new variants outperform
other adaptive gradient techniques or stochastic
gradient descent in the optimization of strongly
convex functions as well as in training of deep
neural networks.

1. Introduction

There has recently been a lot of work on adaptive gradient
algorithms such as Adagrad (Duchi et al., 2011), RMSProp
(Hinton et al., 2012), ADADELTA (Zeiler, 2012), and
Adam (Kingma & Bai, 2015). The original idea of Ada-
grad to have a parameter specific learning rate by analyz-
ing the gradients observed during the optimization turned
out to be useful not only in online convex optimization
but also for training deep neural networks. The original
analysis of Adagrad (Duchi et al., 2011) was limited to the
case of all convex functions for which it obtained a data-
dependent regret bound of order O(+/T) which is known
to be optimal (Hazan, 2016) for this class. However, a lot
of learning problems have more structure in the sense that
one optimizes over the restricted class of strongly convex
functions. It has been shown in (Hazan et al., 2007) that
one can achieve much better logarithmic regret bounds for
the class of strongly convex functions.
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The goal of this paper is twofold. First, we propose SC-
Adagrad which is a variant of Adagrad adapted to the
strongly convex case. We show that SC-Adagrad achieves
a logarithmic regret bound for the case of strongly convex
functions, which is data-dependent. It is known that such
bounds can be much better in practice than data indepen-
dent bounds (Hazan et al., 2007),(McMahan, 2014). Sec-
ond, we analyze RMSProp which has become one of the
standard methods to train neural networks beyond stochas-
tic gradient descent. We show that under some condi-
tions on the weighting scheme of RMSProp, this algorithm
achieves a data-dependent O(+/T') regret bound. In fact, it
turns out that RMSProp contains Adagrad as a special case
for a particular choice of the weighting scheme. Up to our
knowledge this is the first theoretical result justifying the
usage of RMSProp in online convex optimization and thus
can at least be seen as theoretical support for its usage in
deep learning. Similarly, we then propose the variant SC-
RMSProp for which we also show a data-dependent loga-
rithmic regret bound similar to SC-Adagrad for the class of
strongly convex functions. Interestingly, SC-Adagrad has
been discussed in (Ruder, 2016), where it is said that “it
does not to work”. The reason for this is that SC-Adagrad
comes along with a damping factor which prevents poten-
tially large steps in the beginning of the iterations. How-
ever, as our analysis shows this damping factor has to be
rather large initially to prevent large steps and should be
then monotonically decreasing as a function of the itera-
tions in order to stay adaptive. Finally, we show in experi-
ments on three datasets that the new methods are compet-
itive or outperform other adaptive gradient techniques as
well as stochastic gradient descent for strongly convex op-
timization problem in terms of regret and training objective
but also perform very well in the training of deep neural
networks, where we show results for different networks and
datasets.

2. Problem Statement

We first need some technical statements and notation and
then introduce the online convex optimization problem.
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2.1. Notation and Technical Statements

We denote by [T] the set {1,...,T}. Let A € R¥? be a
symmetric, positive definite matrix. We denote as

ZAuxzyj» Iz, =

1,j=1

(T,y) 4 = (z,Ay) = (z,2) 4

Note that the standard Euclidean inner product becomes
(x,y) = >, zy; = (z,y); While we use here the gen-
eral notation for matrices for comparison to the literature.
All positive definite matrices A in this paper will be diago-
nal matrices, so that the computational effort for computing
inner products and norms is still linear in d. The Cauchy-
Schwarz inequality becomes, (z,y) 4 < |||l 4 lyll4 - We
further introduce the element-wise product a®b of two vec-
tors. Let a, b € RY, then (a ® b); = a;b; fori =1,...,d.

Let A € R4 be a symmetric, positive definite matrix,
z € R? and C C R? a convex set. Then we define the
weighted projection P/ (z) of z onto the set C' as

P4 (2) :argmion—zHi. (1)
zeC
It is well-known that the weighted projection is unique and

non-expansive.

Lemma 2.1 Let A € R4*¢ be a symmetric, positive defi-
nite matrix and C C R? be a convex set. Then

P& (2) — P& (y)

Lemma 2.2 For any symmetric, positive semi-definite ma-
trix A € R4 we have

o < llz=wll4-

(x, Az) < Az (A) (z,2) < tr(A) (x, x) (2)

where Apmaz(A) is the maximum eigenvalue of matrix A
and tr(A) denotes the trace of matrix A.

2.2. Problem Statement

In this paper we analyze the online convex optimization
setting, that is we have a convex set C' and at each round we
get access to a (sub)-gradient of some continuous convex
function f; : C' — R. At the ¢-th iterate we predict 8; € C'
and suffer a loss f;(6;). The goal is to perform well with
respect to the optimal decision in hindsight defined as

0" = argmanft

beCc 1

The adversarial regret at time 7" € N is then given as

> (fi(6r) -

t=1

— fi(07)).

We assume that the adversarial can choose from the class
of convex functions on C, for some parts we will specialize
this to the set of strongly convex functions.

Definition 2.1 Let C' be a convex set. We say that a func-
tion f : C — R is p-strongly convex, if there exists i € R¢
with p; > 0 fori = 1,...,d such that for all x,y € C,

fy) = f(@)+(Vf(x),y —$>+Hy—

2
‘r“diag(u)
y—x +Zlh Yi z

Let ¢ = min;—1 ... 4 [, then this function is ¢-strongly con-
vex (in the usual sense), that is

fy) = fl@) +(Vf(z),y

= f(x) +(Vf(z

—a) + (e —yll*.

Note that the difference between our notion of component-
wise strong convexity and the usual definition of strong
convexity is indicated by the bold font versus normal font.
We have two assumptions:

e Al: It holds sup,>; [|g:[l, < G which implies the
existence of a constant G o, such that sup,~ [|g¢| ., <
Goo- -

e A2: It holds sup,>, [|6; —0*|l, < D which im-
plies the existence of a constant D, such that
SUP;>1 [10: — 9*”00 <

One of the first methods which achieves the optimal regret
bound of O(+/T') for convex problems is online projected
gradient descent (Zinkevich, 2003), defined as

Oi11 = Po(0; — argy) 3)

where oy = % is the step-size scheme and g; is a (sub)-
gradient of f; at 6;. With oy = ¢, online projected gradi-
ent descent method achieves the optimal O(log(T")) regret
bound for strongly-convex problems (Hazan et al., 2007).
We consider Adagrad in the next subsection which is one of
the popular adaptive alternative to online projected gradient
descent.

2.3. Adagrad for convex problems

In this section we briefly recall the main result for the Ada-
grad. The algorithm for Adagrad is given in Algorithm 1. If
the adversarial is allowed to choose from the set of all pos-
sible convex functions on C' C R?, then Adagrad achieves
the regret bound of order O(+/T) as shown in (Duchi et al.,
2011). This regret bound is known to be optimal for this
class, see e.g. (Hazan, 2016). For better comparison to
our results for RMSProp, we recall the result from (Duchi
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Algorithm 1 Adagrad
Input: 0, € C,5 > 0,v9 =0 € R?¢
fort =1to T do
gr € 0f(0r)
vy =01+ (g¢ © g¢)
Ay = diag(\/vy) + 0l
9,5_;,.1 = Pgt (et — CKAt_lgt)
end for

etal., 2011) in our notation. For this purpose, we introduce
the notation, g1.7.; = (91,4, g2.is -, 97.:) " » Where gy ; is the
i-th component of the gradient g; € R? of the function f;
evaluated at 60;.

Theorem 2.1 (Duchi et al., 2011) Let Assumptions Al, A2
hold and let 0; be the sequence generated by Adagrad in
Algorithm 1, where g, € 0f1(0;) and f; : C — Ris an
arbitrary convex function, then for stepsize o > 0 the regret
is upper bounded as

D2 d
R(T) < T;o S lgrrilly + > llgrrall, -
=1 i=1

The effective step-length of Adagrad is on the order of %

This can be seen as follows; first note that vy ; = Zthl gf,i

1 . . . . 1
and thus (A;) ™! is a diagonal matrix with entries T
Then one has

o
[T
D1 gfzy + 6

_ > L
VT

a(Az")i =

1 T 2 5 @)
T 2=19ii t Waa

Thus an alternative point of view of Adagrad, is that it has a
decaying stepsize % but now the correction term becomes
the running average of the squared derivatives plus a van-
ishing damping term. However, the effective stepsize has
to decay faster to get a logarithmic regret bound for the
strongly convex case. This is what we analyze in the next
section, where we propose SC-Adagrad for strongly convex
functions.

3. Strongly convex Adagrad (SC-Adagrad)

The modification SC-Adagrad of Adagrad which we pro-
pose in the following can be motivated by the observation
that the online projected gradient descent (Hazan et al.,
2007) uses stepsizes of order o = O(%) in order to achieve
the logarithmic regret bound for strongly convex functions.
In analogy with the derivation in the previous section, we

still have vr,; = 30, g7, But now we modify (A;)~!

and set it as a diagonal matrix with entries ——. Then
vt ;404
one has
1 (0% (0% 1
a(Ar )i = =7 == :
2 15T 2 5
D im1 9+ 5 T T i1 9ii T T

®)

Again, we have in the denominator a running average of
the observed gradients and a decaying damping factor. In
this way, we get an effective stepsize of order O( %) in SC-
Adagrad. The formal method is presented in Algorithm
2. As just derived the only difference of Adagrad and SC-
Adagrad is the definition of the diagonal matrix A;. Note

Algorithm 2 SC-Adagrad

Input: 6; € C, 6y > 0,v9 = 0 € R?
fort =1to T do
gt € 0f:(6;)
v = Vi1 + (9t © gt)
Choose 0 < d; < d;_1 element wise
Ay = diag(vy) + diag(dy)
9t+1 = PCAt (9,5 — CEA;lgt)
end for

also that we have defined the damping factor §; as a func-
tion of ¢ which is also different from standard Adagrad.
The constant ¢ in Adagrad is mainly introduced due to nu-
merical reasons in order to avoid problems when g ; is
very small for some components in the first iterations and
is typically chosen quite small e.g. § = 10~%. For SC-
Adagrad the situation is different. If the first components
91,i592,i,- - - are very small, say of order ¢, then the update
is ﬁ which can become extremely large if J; is chosen
to be small. This would make the method very unstable
and would lead to huge constants in the bounds. This is
probably why in (Ruder, 2016), the modification of Ada-
grad where one “drops the square-root” did not work. A
good choice of J; should be initially roughly on the order
of 1 and it should decay as v; ; = Zthl gfﬂ- starts to grow.
This is why we propose to use

Spi=Ege S i=1,....d,
for & > 0, & > 0 as a potential decay scheme as it satis-
fies both properties for sufficiently large &; and £ chosen
on the order of 1. Also, one can achieve a constant de-
cay scheme for &, = 0, & > 0. We will come back to
this choice after the proof. In the following we provide the
regret analysis of SC-Adagrad and show that the optimal
logarithmic regret bound can be achieved. However, as it is

data-dependent it is typically significantly better in practice
than data-independent bounds.
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3.1. Analysis

For any two matrices A, B € R%%4_ we use the notation

e to denote the inner productiec Ao B =37, > A;;B;;.
Note that A e B = tr(AT B).

Lemma 3.1 [Lemma 12 (Hazan et al., 2007)] Let A, B be
positive definite matrices, let A = B = 0 then

A
Al e (A— B)<log<|B||) (6)

where | A| denotes the determinant of the matrix A

Lemma 3.2 Ler Assumptions Al, A2 hold, then for T >
1 and Ay, d: as defined in the SC-Adagrad algorithm we
have,

T J ,
> (96 A" ge) <Y log (llng(sllT>
t=1 i=1 1,

i o 515,1, (515 1,i

— = |lgueill® + 0ra

Theorem 3.1 Let Assumptions Al, A2 hold and let 0; be
the sequence generated by the SC-Adagrad in Algorithm
2, where gy € 0f1(0y) and fy : C — R is an arbitrary
p-strongly convex function (u € Rd) where the stepsize
Sulfills o > max;—1,... 4 32 Furthermore, let §; > 0 and
Ot < 81,4Vt € [T] Vi € [d], then the regret of SC-
Adagrad can be upper bounded for T' > 1 as

D2 tr(diag(61)) | a o lgizl|? + 67
< X NPV Hol:fell T 717

d
12: (0r; —67)? a
— f 5 7 _ 5 ) _5 v
! 2 tler[lT] ( @ llg1:e.411? + 5t,i)( T, — 01,4)

For constant 0, i.e 6, ; = 6 > 0Vt € [T]andVi € [d] then
the regret of SC-Adagrad is upper bounded as

D2ds & lgrrall + 6
T) < == — E 1 (17) 7
BT < =5 Tp L 5 2
For (-strongly convex function choosing o > 2—4 we ob-

tain the above mentioned regret bounds.

Note that the first and the last term in the regret bound
can be upper bounded by constants. Only the second term
depends on 7. Note that ||91:T,iH2 < TG? and as 9§, is
monotonically decreasing, the second term is on the order
of O(log(T")) and thus we have a logarithmic regret bound.
As the bound is data-dependent, in the sense that it depends
on the observed sequence of gradients, it is much tighter
than a data-independent bound.

The bound includes also the case of a non-decaying damp-
ing factor 6; = § = & (&4 = 0). While a rather large
constant damping factor can work well, we have noticed
that the best results are obtained with the decay scheme
5t,i 2526751’%@’ = 1,...,d.

where & > 0, & > 0, which is what we use in the ex-
periments. Note that this decay scheme for £;,&; > 0 is
adaptive to the specific dimension and thus increases the
adaptivity of the overall algorithm. For completeness we
also give the bound specialized for this decay scheme.

Corollary 3.1 In the setting of Theorem 3.1 choose 0; ; =
Ee™51%i fori = 1,...,d for some & > 0,5 > 0. Then
the regret of SC-Adagrad can be upper bounded for T > 1
as

dD? &,

(6
< o052 &
R(T) < 5

*flec)
2

10g(f2€

d
[0 _ 12
Ty ; log (||91:T,z’H2 + & e bl )

d

a2
2(log(&261) +1) ;<

n e—6llgrr.il® )

Unfortunately, it is not obvious that the regret bound for our
decaying damping factor is better than the one of a constant
damping factor. Note, however that the third term in the re-
gret bound of Theorem 3.1 can be negative. It thus remains
an interesting question for future work, if there exists an
optimal decay scheme which provably works better than
any constant one.

4. RMSProp and SC-RMSProp

RMSProp is one of the most popular adaptive gradient
algorithms used for the training of deep neural networks
(Schaul et al., 2014; Dauphin et al., 2015; Daniel et al.,
2016; Schmidhuber, 2015). It has been used frequently in
computer vision (Karpathy & Fei-Fei, 2016) e.g. to train
the latest InceptionV4 network (Szegedy et al., 2016a;b).
Note that RMSProp outperformed other adaptive methods
like Adagrad order Adadelta as well as SGD with momen-
tum in a large number of tests in (Schaul et al., 2014). It
has been argued that if the changes in the parameter update
are approximately Gaussian distributed, then the matrix A;
can be seen as a preconditioner which approximates the di-
agonal of the Hessian (Daniel et al., 2016). However, it is
fair to say that despite its huge empirical success in prac-
tice and some first analysis in the literature, there is so far
no rigorous theoretical analysis of RMSProp. We will an-
alyze RMSProp given in Algorithm 3 in the framework of
of online convex optimization.
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Algorithm 3 RMSProp
Input: 0, € C,5 >0, a > 0,99 = 0 € R?
fort =1to T do
gr € 0f(0r)
vy = Brvi—1 + (1 = Be)(9: © g¢)
Sete; = % and oy = %
Ay = diag(\/vg) + e 1
= PCAt (915 — OétAt_lgt)

0t+ 1
end for

First, we will show that RMSProp reduces to Adagrad for
a certain choice of its parameters. Second, we will prove
for the general convex case a regret bound of O(\/T) sim-
ilar to the bound given in Theorem 2.1. It turns out that
the convergence analysis requires that in the update of the
weighted cumulative squared gradients (v;) , it has to hold

1
1 n S Bt S 1 t7
for some 0 < ~ < 1. This is in contrast to the original
suggestion of (Hinton et al., 2012) to choose 3; = 0.9.
It will turn out later in the experiments that the constant
choice of 3; leads sometimes to divergence of the sequence,
whereas the choice derived from our theoretical analysis
always leads to a convergent scheme even when applied to
deep neural networks. Thus we think that the analysis in
the following is not only interesting for the convex case but
can give valuable hints how the parameters of RMSProp
should be chosen in deep learning.

Before we start the regret analysis we want to discuss the
sequence v; in more detail. Using the recursive definition
of vy, we get the closed form expression

v = (1=8) [ Aol
=1

k=j+1
. _ 1 _ k=1 _2
With 3, = 1— 7 one gets, vy ; = E; 15 Hk_j+1 95
and using the telescoping product ones gets
HZ:]’-H k=l = 1 and thus

_ 1N\t 2
Vti = 3 Zj:l 954
If one uses additionally the stepsize scheme oy = % and

€ = %, then we recover the update scheme of Adagrad,
see (4), as a particular case of RMSProp. We are not aware
of that this correspondence of Adagrad and RMSProp has
been observed before.

The proof of the regret bound for RMSProp relies on the
following lemma.

Lemma 4.1 Ler Assumptions AI and A2 and suppose that

—% < B <1—7 forsome0 <~y <1, andt > 1. Also

fort > 1 suppose \/(t — 1)e;_1 < \/tey, then
(\/ TUTI + \/T€T>

T
>
e} \/tvtz'i‘\/q

Corollary 4.1 Let Assumptions Al, A2 hold and suppose

thatl—% < By <1 — 7 for some 0 < v < 1, and

t> 1 Alsofort > 1 suppose \/(t — 1)e;—1 < /tey, and

set oy = \[, then

T
Zaf gt, t gt <
— 2 a

fj (VT ori+Ter)

i=1

With the help of Lemma 4.1 and Corollary 4.1 we can now
state the regret bound for RMSProp.

Theorem 4.1 Let Assumptions Al, A2 hold and let 0; be
the sequence generated by RMSProp in Algorithm 3, where
gt € 0f1(0;) and f; - C — R is an arbitrary convex func-
tion and oy = %forsomea > Oandlf% < B <1-7

for some 0 < v < 1. Alsofort > 1let \/(t —1)ei—1 <

V'tes, then the regret of RMSProp can be upper bounded
forT > 1as

D% a(2-9)\ v
R(T) < (52 + f) > (VTori +VTer)

i=1

Note that for gy = 1 — % thatis vy = 1, and ¢, = % where
RMSProp corresponds to Adagrad we recover the regret
bound of Adagrad in the convex case, see Theorem 2.1, up
to the damping factor. Note that in this case

T
\/ﬁm = ZQJQZ = |lgrz.illy -
j=1

4.1. SC-RMSProp

Similar to the extension of Adagrad to SC-Adagrad, we
present in this section SC-RMSProp which achieves a log-
arithmic regret bound.

Note that again there exist choices for the parameters of
SC-RMSProp such that it reduces to SC-Adagrad. The cor-
respondence is given by the choice

Btzl—% Oét:%7 GtZ%,
for which again it follows v, ; = + 25:1 g3 ; with the same
argument as for RMSProp. Please see Equation (5) for the
correspondence. Moreover, with the same argument as for
SC-Adagrad we use a decay scheme for the damping factor

e—€1tvei

€i=8&——, 1=1

; d. foré >0,6 >0
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Algorithm 4 SC-RMSProp

Input: 0, € C,5 =1,v9 =0 ¢c R?

fort =1toTdo
gt € 0f(0r)
v = Brvi—1 + (1= Be)(9: © g¢)
Sete; = % where 0;; < 6;_1,;fori € [d]and oy = ¢

= diag(vs + €:)

011 = Pét (9t - atAt_lgt)

end for

The analysis of SC-RMSProp is along the lines of SC-
Adagrad with some overhead due to the structure of v;.

Lemmad4.2 Leta; = ¢, 1 — % < By <1— 7 and Ay as
defined in SC-RMSProp, then it holds for all T' > 1,

Z% gt A

t=1 i=1

d
gi —ter; + (t— 1)1,
’Yt 2 i=1 togi + tegs

d
2;1

d

T'(vr, i
¢ gt> < %Zlog (7(1@’ T er ))

€1,i

)(1+logT)

_/E[l T]]Uj 3 +.7€] i

Note that for v = 1 and the choice ¢; = %t this reduces to

the result of Lemma 3.2.

Lemma 4.3 Lete; < = andl— +< B <
1>~>0. Then it holds

1 — 7 for some

L _ —diag(e;) + frdiag(es—1)
22(“““) o 1-5) )

« E tet Ji t* 1)€t 1,i
S%;; tvtz"_tetz

o~ (1)1 +1logT)
2y = infjen 1) jvja + J€ji

Theorem 4.2 Let Assumptions Al, A2 hold and let 0; be
the sequence generated by SC-RMSProp in Algorithm 4,
where g, € 0f1(0;) and fy : C — R is an arbitrary p-
strongly convex function (u € Ri) with oy = § for some

oz>(2 V)G“andl l < B <1-

i 1 for some 0 <
~v < 1. Furthermore, set €, = % and assume 1 > 6, ; > 0
and 6y ; < 841Vt € [T,Vi € [d], then the regret of SC-
RMSProp can be upper bounded for T' > 1 as
D2 tr(dlag 51 T'UTi + 5Ti
pry < Do om0 | oy Tori+ona)
(T) < o Z 5

1 (Gf i or )2 o
- £ i) S — 5
+ 2 Ztler[lT] ( a y(tog,; + tet,i))( T~ 01i)

i=1

. a d (I=7)1+1logT)
27y pt infjep 7y Jvji + Jeji

Note that the regret bound reduces for v = 1 to that of SC-
Adagrad. For 0 < v < 1 a comparison between the bounds
is not straightforward as the v, ; terms cannot be compared.
It is an interesting future research question whether it is
possible to show that one scheme is better than the other
one potentially dependent on the problem characteristics.

5. Experiments

The idea of the experiments is to show that the proposed
algorithms are useful for standard learning problems in
both online and batch settings. We are aware of the fact
that in the strongly convex case online to batch conver-
sion is not tight (Hazan & Kale, 2014), however that does
not necessarily imply that the algorithms behave gener-
ally suboptimal. We compare all algorithms for a strongly
convex problem and present relative suboptimality plots,
log; (ﬂz;i):p*), where p* is the global optimum, as well
as separate regret plots, where we compare to the best op-
timal parameter in hindsight for the fraction of training
points seen so far. On the other hand RMSProp was origi-
nally developed by (Hinton et al., 2012) for usage in deep
learning. As discussed before the fixed choice of 3; is
not allowed if one wants to get the optimal O(\/T ) regret
bound in the convex case. Thus we think it is of interest to
the deep learning community, if the insights from the con-
vex optimization case transfer to deep learning. Moreover,
Adagrad and RMSProp are heavily used in deep learning
and thus it is interesting to compare their counterparts SC-
Adagrad and SC-RMSProp developed for the strongly con-
vex case also in deep learning. The supplementary material
contains additional experiments on various neural network
models.

Datasets: We use three datasets where it is easy, diffi-
cult and very difficult to achieve good test performance,
just in order to see if this influences the performance. For
this purpose we use MNIST (60000 training samples, 10
classes), CIFAR10 (50000 training samples, 10 classes)
and CIFAR100 (50000 training samples, 100 classes). We
refer to (Krizhevsky, 2009) for more details on the CIFAR
datasets.

Algorithms: We compare 1) Stochastic Gradient Descent
(SGD) (Bottou, 2010) with O(1/t) decaying step-size for
the strongly convex problems and for non-convex problems
we use a constant learning rate, 2) Adam (Kingma & Bai,
2015) , is used with step size decay of oy = % for strongly
convex problems and for non-convex problems we use a
constant step-size. 3) Adagrad, see Algorithm 1, remains

the same for strongly convex problems and non-convex
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Figure 1. Relative Suboptimality vs Number of Epoch for L2-Regularized Softmax Regression
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Figure 2. Regret (log scale) vs Dataset Proportion for Online L2-Regularized Softmax Regression

problems. 4) RMSProp as proposed in (Hinton et al., 2012)
is used for both strongly convex problems and non-convex
problems with 8; = 0.9 V¢t > 1. 5) RMSProp (Ours) is
used with step-size decay of a; = % and 3y = 1 — 7.
In order that the parameter range is similar to the original
RMSProp ((Hinton et al., 2012)) we fix as v = 0.9 for all
experiment (note that for v = 1 RMSProp (Ours) is equiv-
alent to Adagrad), 6) SC-RMSProp is used with stepsize
ap = % and v = 0.9 as RMSProp (Ours) 7) SC-Adagrad
is used with a constant stepsize «. The decaying damp-
ing factor for both SC-Adagrad and SC-RMSProp is used
with & = 0.1, & = 1 for convex problems and we use
& = 0.1, & = 0.1 for non-convex deep learning prob-
lems. Finally, the numerical stability parameter § used in
Adagrad, Adam, RMSProp is set to 10~% as it is typically
recommended for these algorithms.

Setup: Note that all methods have only one varying pa-
rameter: the stepsize « which we choose from the set of
{1,0.1,0.01,0.001,0.0001} for all experiments. By this
setup no method has an advantage just because it has more
hyperparameters over which it can optimize. The optimal
rate is always chosen for each algorithm separately so that
one achieves either best training objective or best test per-
formance after a fixed number of epochs.

Strongly Convex Case - Softmax Regression: Given the
training data (1, ¥;)ic[m) and let y; € [K]. we fit a lin-
ear model with cross entropy loss and use as regularization
the squared Euclidean norm of the weight parameters. The
objective is then given as

LI ([ .
0= e s ) A

All methods are initialized with zero weights. The regu-
larization parameter was chosen so that one achieves the
best prediction performance on the test set. The results are
shown in Figure 1. We also conduct experiments in an on-
line setting, where we restrict the number of iterations to
the number of training samples. Here for all the algorithms,
we choose the stepsize resulting in best regret value at the
end. We plot the Regret (in log scale) vs dataset propor-
tion seen, and as expected SC-Adagrad and SC-RMSProp
outperform all the other methods across all the considered
datasets. Also, RMSProp (Ours) has a lower regret values
than the original RMSProp as shown in Figure 2.

Convolutional Neural Networks: Here we test a 4-layer
CNN with two convolutional (32 filters of size 3 x 3) and
one fully connected layer (128 hidden units followed by
0.5 dropout). The activation function is ReLLU and after
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Figure 4. Plots of ResNet-18 on CIFAR10 dataset

the last convolutional layer we use max-pooling over a 2 X
2 window and 0.25 dropout. The final layer is a softmax
layer and the final objective is cross-entropy loss. This is
a pretty simple standard architecture and we use it for all
datasets. The results are shown in Figure 3. Both RMSProp
(Ours) and SC-Adagrad perform better than all the other
methods in terms of test accuracy for CIFAR10 dataset. On
both CIFAR100 and MNIST datasets SC-RMSProp is very
competitive.

Residual Network: We also conduct experiments for
ResNet-18 network proposed in (He et al., 2016a) where
the residual blocks are used with modifications proposed
in (He et al., 2016b) on CIFAR10 dataset. We report the
results in Figures 4. SC-Adagrad, SC-RMSProp and RM-
SProp (Ours) have the best performance in terms of test
Accuracy and RMSProp (Ours) has the best performance
in terms of training objective along with Adagrad.

We also test all the algorithms on a simple 3-layer Mul-
tilayer perceptron which we include in the supplemen-
tary material. Given these experiments, we think that SC-
RMSProp and SC-Adagrad are valuable new adaptive gra-
dient techniques for deep learning.

6. Conclusion

We have analyzed RMSProp originally proposed in the
deep learning community in the framework of online con-
vex optimization. We show that the conditions for conver-
gence of RMSProp for the convex case are different than
what is used by (Hinton et al., 2012) and that this leads
to better performance in practice. We also propose vari-
ants SC-Adagrad and SC-RMSProp which achieve loga-
rithmic regret bounds for the strongly convex case. More-
over, they perform very well for different network models
and datasets and thus they are an interesting alternative to
existing adaptive gradient schemes. In the future we want
to explore why these algorithms perform so well in deep
learning tasks even though they have been designed for the
strongly convex case.
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