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Abstract

In machine learning, a popular tool to analyze the structure of graphs is the hitting time
and the commute distance (resistance distance). For two vertices u and v, the hitting time
Huv is the expected time it takes a random walk to travel from u to v. The commute
distance is its symmetrized version Cuv = Huv +Hvu. In our paper we study the behavior
of hitting times and commute distances when the number n of vertices in the graph tends
to infinity. We focus on random geometric graphs (ε-graphs, kNN graphs and Gaussian
similarity graphs), but our results also extend to graphs with a given expected degree
distribution or Erdős-Rényi graphs with planted partitions. We prove that in these graph
families, the suitably rescaled hitting time Huv converges to 1/dv and the rescaled commute
time to 1/du + 1/dv where du and dv denote the degrees of vertices u and v. In these cases,
hitting and commute times do not provide information about the structure of the graph,
and their use is discouraged in many machine learning applications.

Keywords: commute distance, resistance, random graph, k-nearest neighbor graph, spec-
tral gap

1. Introduction

Given an undirected, weighted graph G = (V,E) with n vertices, the commute distance
between two vertices u and v is defined as the expected time it takes the natural random
walk starting in vertex u to travel to vertex v and back to u. It is equivalent (up to a
constant) to the resistance distance, which interprets the graph as an electrical network
and defines the distance between vertices u and v as the effective resistance between these
vertices. See below for exact definitions, for background reading see Doyle and Snell (1984);
Klein and Randic (1993); Xiao and Gutman (2003); Fouss et al. (2006), Chapter 2 of Lyons
and Peres (2010), Chapter 3 of Aldous and Fill (2001), or Section 9.4 of Levin et al. (2008).
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The commute distance is very popular in many different fields of computer science and be-
yond. As examples consider the fields of graph embedding (Guattery, 1998; Saerens et al.,
2004; Qiu and Hancock, 2006; Wittmann et al., 2009), graph sparsification (Spielman and
Srivastava, 2008), social network analysis (Liben-Nowell and Kleinberg, 2003), proximity
search (Sarkar et al., 2008), collaborative filtering (Fouss et al., 2006), clustering (Yen et al.,
2005), semi-supervised learning (Zhou and Schölkopf, 2004), dimensionality reduction (Ham
et al., 2004), image processing (Qiu and Hancock, 2005), graph labeling (Herbster and Pon-
til, 2006; Cesa-Bianchi et al., 2009), theoretical computer science (Aleliunas et al., 1979;
Chandra et al., 1989; Avin and Ercal, 2007; Cooper and Frieze, 2003, 2005, 2007, 2011), and
various applications in chemometrics and bioinformatics (Klein and Randic, 1993; Ivanciuc,
2000; Fowler, 2002; Roy, 2004; Guillot et al., 2009).

The commute distance has many nice properties, both from a theoretical and a practical
point of view. It is a Euclidean distance function and can be computed in closed form.
As opposed to the shortest path distance, it takes into account all paths between u and
v, not just the shortest one. As a rule of thumb, the more paths connect u with v, the
smaller their commute distance becomes. Hence it supposedly satisfies the following, highly
desirable property:

Property (F): Vertices in the same “cluster” of the graph have a small
commute distance, whereas vertices in different clusters of the graph have a
large commute distance to each other.

Consequently, the commute distance is considered a convenient tool to encode the cluster
structure of the graph.

In this paper we study how the commute distance behaves when the size of the graph
increases. We focus on the case of random geometric graphs (k-nearest neighbor graphs,
ε-graphs, and Gaussian similarity graphs). Denote by Huv the expected hitting time and
by Cuv the commute distance between two vertices u and v, by du the degree of vertex u,
by vol(G) the volume of the graph. We show that as the number n of vertices tends to
infinity, there exists a scaling term sc such that the hitting times and commute distances
in random geometric graphs satisfy

sc ·
∣∣∣ 1

vol(G)
Huv −

1

dv

∣∣∣ −→ 0 and sc ·
∣∣∣ 1

vol(G)
Cuv −

( 1

du
+

1

dv

)∣∣∣ −→ 0,

and at the same time sc · du and sc · dv converge to positive constants (precise definitions,
assumptions and statements below). Loosely speaking, the convergence result says that the
rescaled commute distance can be approximated by the sum of the inverse rescaled degrees.

We present two different strategies to prove these results: one based on flow arguments on
electrical networks, and another one based on spectral arguments. While the former ap-
proach leads to tighter bounds, the latter is more general. Our proofs heavily rely on prior
work by a number of authors: Lovász (1993), who characterized hitting and commute times
in terms of their spectral properties and was the first one to observe that the commute dis-
tance can be approximated by 1/du+1/dv; Boyd et al. (2005), who provided bounds on the
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spectral gap in random geometric graphs, and Avin and Ercal (2007), who already studied
the growth rates of the commute distance in random geometric graphs. Our main technical
contributions are to strengthen the bound provided by Lovász (1993), to extend the results
by Boyd et al. (2005) and Avin and Ercal (2007) to more general types of geometric graphs
such as k-nearest neighbor graphs with general domain and general density, and to develop
the flow-based techniques for geometric graphs.

Loosely speaking, the convergence results say that whenever the graph is reasonably large,
the degrees are not too small, and the bottleneck is not too extreme, then the commute
distance between two vertices can be approximated by the sum of their inverse degrees.
These results have the following important consequences for applications.

Negative implication: Hitting and commute times can be misleading. Our approximation
result shows that the commute distance does not take into account any global properties of
the data in large geometric graphs. It has been observed before that the commute distance
sometimes behaves in an undesired way when high-degree vertices are involved (Liben-
Nowell and Kleinberg, 2003; Brand, 2005), but our work now gives a complete theoretical
description of this phenomenon: the commute distance just considers the local density (the
degree of the vertex) at the two vertices, nothing else. The resulting large sample commute
distance dist(u, v) = 1/du + 1/dv is completely meaningless as a distance on a graph. For
example, all data points have the same nearest neighbor (namely, the vertex with the largest
degree), the same second-nearest neighbor (the vertex with the second-largest degree), and
so on. In particular, one of the main motivations to use the commute distance, Property
(F), no longer holds when the graph becomes large enough. Even more disappointingly,
computer simulations show that n does not even need to be very large before (F) breaks
down. Often, n in the order of 1000 is already enough to make the commute distance close
to its approximation expression. This effect is even stronger if the dimensionality of the
underlying data space is large. Consequently, even on moderate-sized graphs, the use of the
raw commute distance should be discouraged.

Positive implication: Efficient computation of approximate commute distances. In some ap-
plications the commute distance is not used as a distance function, but as a tool to encode
the connectivity properties of a graph, for example in graph sparsification (Spielman and
Srivastava, 2008) or when computing bounds on mixing or cover times (Aleliunas et al.,
1979; Chandra et al., 1989; Avin and Ercal, 2007; Cooper and Frieze, 2011) or graph label-
ing (Herbster and Pontil, 2006; Cesa-Bianchi et al., 2009). To obtain the commute distance
between all points in a graph one has to compute the pseudo-inverse of the graph Lapla-
cian matrix, an operation of time complexity O(n3). This is prohibitive in large graphs.
To circumvent the matrix inversion, several approximations of the commute distance have
been suggested in the literature (Spielman and Srivastava, 2008; Sarkar and Moore, 2007;
Brand, 2005). Our results lead to a much simpler and well-justified way of approximating
the commute distance on large random geometric graphs.

After introducing general definitions and notation (Section 3), we present our main results
in Section 4. This section is divided into two parts (flow-based part and spectral part). In
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Section 5 we show in extensive simulations that our approximation results are relevant for
many graphs used in machine learning. Relations to previous work is discussed in Section
2. All proofs are deferred to Sections 6 and 7. Parts of this work is built on our conference
paper von Luxburg et al. (2010).

2. Related Work

The resistance distance became popular through the work of Doyle and Snell (1984) and
Klein and Randic (1993), and the connection between commute and resistance distance
was established by Chandra et al. (1989) and Tetali (1991). By now, resistance and com-
mute distances are treated in many text books, for example Chapter IX of Bollobas (1998),
Chapter 2 of Lyons and Peres (2010), Chapter 3 of Aldous and Fill (2001), or Section 9.4 of
Levin et al. (2008). It is well known that the commute distance is related to the spectrum of
the unnormalized and normalized graph Laplacian (Lovász, 1993; Xiao and Gutman, 2003).
Bounds on resistance distances in terms of the eigengap and the term 1/du + 1/dv have
already been presented in Lovász (1993). We present an improved version of this bound
that leads to our convergence results in the spectral approach.

Properties of random geometric graphs have been investigated thoroughly in the literature,
see for example the monograph of Penrose (2003). Our work concerns the case where the
graph connectivity parameter (ε or k, respectively) is so large that the graph is connected
with high probability (see Penrose, 1997; Brito et al., 1997; Penrose, 1999, 2003; Xue and
Kumar, 2004; Balister et al., 2005). We focus on this case because it is most relevant for
machine learning. In applications such as clustering, people construct a neighborhood graph
based on given similarity scores between objects, and they choose the graph connectivity
parameter so large that the graph is well-connected.

Asymptotic growth rates of commute distances and the spectral gap have already been
studied for a particular special case: ε-graphs on a sample from the uniform distribution
on the unit cube or unit torus in Rd (Avin and Ercal, 2007; Boyd et al., 2005; Cooper
and Frieze, 2011). However, the most interesting case for machine learning is the case of
kNN graphs or Gaussian graphs (as they are the ones used in practice) on spaces with a
non-uniform probability distribution (real data is never uniform). A priori, it is unclear
whether the commute distances on such graphs behave as the ones on ε-graphs: there are
many situations in which these types of graphs behave very different. For example their
graph Laplacians converge to different limit objects (Hein et al., 2007). In our paper we
now consider the general situation of commute distances in ε, kNN and Gaussian graphs
on a sample from a non-uniform distribution on some subset of Rd.

Our main techniques, the canonical path technique for bounding the spectral gap (Diaconis
and Stroock, 1991; Sinclair, 1992; Jerrum and Sinclair, 1988; Diaconis and Saloff-Coste,
1993) and the flow-based techniques for bounding the resistance, are text book knowledge
(Section 13.5. of Levin et al., 2008; Sec. IX.2 of Bollobas, 1998). Our results on the spectral
gap in random geometric graphs, Theorems 6 and 7, build on similar results in Boyd et al.
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(2005); Avin and Ercal (2007); Cooper and Frieze (2011). These three papers consider the
special case of an ε-graph on the unit cube / unit torus in Rd, endowed with the uniform
distribution. For this case, the authors also discuss cover times and mixing times, and Avin
and Ercal (2007) also include bounds on the asymptotic growth rate of resistance distances.
We extend these results to the case of ε, kNN and Gaussian graphs with general domain and
general probability density. The focus in our paper is somewhat different from the related
literature, because we care about the exact limit expressions rather than asymptotic growth
rates.

3. General Setup, Definitions and Notation

We consider undirected graphs G = (V,E) that are connected and not bipartite. By n we
denote the number of vertices. The adjacency matrix is denoted by W := (wij)i,j=1,...,n.
In case the graph is weighted, this matrix is also called the weight matrix. All weights
are assumed to be non-negative. The minimal and maximal weights in the graph are de-
noted by wmin and wmax. By di :=

∑n
j=1wij we denote the degree of vertex vi. The

diagonal matrix D with diagonal entries d1, . . . , dn is called the degree matrix, the minimal
and maximal degrees are denoted dmin and dmax. The volume of the graph is given as
vol(G) =

∑
j=1,...,n dj . The unnormalized graph Laplacian is given as L := D − W , the

normalized one as Lsym = D−1/2LD−1/2. Consider the natural random walk on G. Its
transition matrix is given as P = D−1W . It is well-known that λ is an eigenvalue of Lsym

if and only if 1− λ is an eigenvalue of P . By 1 = λ1 ≥ λ2 ≥ . . . ≥ λn > −1 we denote the
eigenvalues of P . The quantity 1−max{λ2, |λn|} is called the spectral gap of P .

The hitting time Huv is defined as the expected time it takes a random walk starting in ver-
tex u to travel to vertex v (where Huu = 0 by definition). The commute distance (commute
time) between u and v is defined as Cuv := Huv + Hvu. Closely related to the commute
distance is the resistance distance. Here one interprets the graph as an electrical network
where the edges represent resistors. The conductance of a resistor is given by the corre-
sponding edge weight. The resistance distance Ruv between two vertices u and v is defined
as the effective resistance between u and v in the network. It is well known (Chandra et al.,
1989) that the resistance distance coincides with the commute distance up to a constant:
Cuv = vol(G)Ruv. For background reading on resistance and commute distances see Doyle
and Snell (1984); Klein and Randic (1993); Xiao and Gutman (2003); Fouss et al. (2006).

Recall that for a symmetric, non-invertible matrix A its Moore-Penrose inverse is defined as
A† := (A+U)−1−U where U is the projection on the eigenspace corresponding to eigenvalue
0. It is well known that commute times can be expressed in terms of the Moore-Penrose
inverse L† of the unnormalized graph Laplacian (e.g., Klein and Randic, 1993; Xiao and
Gutman, 2003; Fouss et al., 2006):

Cij = vol(G)
〈
ei − ej , L†(ei − ej)

〉
,

where ei is the i-th unit vector in Rn. The following representations for commute and
hitting times involving the pseudo-inverse L†sym of the normalized graph Laplacian are direct
consequences of Lovász, 1993:
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Proposition 1 (Closed form expression for hitting and commute times) Let G be
a connected, undirected graph with n vertices. The hitting times Hij, i 6= j, can be computed
by

Hij = vol(G)
〈 1√

dj
ej , L

†
sym

( 1√
dj
ej −

1√
di
ei

)〉
,

and the commute times satisfy

Cij = vol(G)
〈 1√

di
ei −

1√
dj
ej , L

†
sym

( 1√
dj
ej −

1√
di
ei

)〉
.

Our main focus in this paper is the class of geometric graphs. For a deterministic geometric
graph we consider a fixed set of points X1, . . . , Xn ∈ Rd. These points form the vertices
v1, . . . , vn of the graph. In the ε-graph we connect two points whenever their Euclidean
distance is less than or equal to ε. In the undirected symmetric k-nearest neighbor graph
we connect vi to vj if Xi is among the k nearest neighbors of Xj or vice versa. In the
undirected mutual k-nearest neighbor graph we connect vi to vj if Xi is among the k near-
est neighbors of Xj and vice versa. Note that by default, the terms ε- and kNN-graph
refer to unweighted graphs in our paper. When we treat weighted graphs, we always make
it explicit. For a general similarity graph we build a weight matrix between all points
based on a similarity function k : Rd × Rd → R≥0, that is we define the weight matrix W
with entries wij = k(Xi, Xj) and consider the fully connected graph with weight matrix
W . The most popular weight function in applications is the Gaussian similarity function
wij = exp(−‖Xi −Xj‖2/σ2), where σ > 0 is a bandwidth parameter.

While these definitions make sense with any fixed set of vertices, we are most interested
in the case of random geometric graphs. We assume that the underlying set of vertices
X1, ..., Xn has been drawn i.i.d. according to some probability density p on Rd. Once
the vertices are known, the edges in the graphs are constructed as described above. In
the random setting it is convenient to make regularity assumptions in order to be able to
control quantities such as the minimal and maximal degrees.

Definition 2 (Valid region) Let p be any density on Rd. We call a connected subset
X ⊂ Rd a valid region if the following properties are satisfied:

1. The density on X is bounded away from 0 and infinity, that is for all x ∈ X we have
that 0 < pmin ≤ p(x) ≤ pmax <∞ for some constants pmin, pmax.

2. X has “bottleneck” larger than some value h > 0: the set {x ∈ X : dist(x, ∂X ) >
h/2} is connected (here ∂X denotes the topological boundary of X ).

3. The boundary of X is regular in the following sense. We assume that there exist
positive constants α > 0 and ε0 > 0 such that if ε < ε0, then for all points x ∈ ∂X
we have vol(Bε(x) ∩ X ) ≥ α vol(Bε(x)) (where vol denotes the Lebesgue volume).
Essentially this condition just excludes the situation where the boundary has arbitrarily
thin spikes.
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Sometimes we consider a valid region with respect to two points s, t. Here we additionally
assume that s and t are interior points of X .

In the spectral part of our paper, we always have to make a couple of assumptions that
will be summarized by the term general assumptions. They are as follows: First we
assume that X := supp(p) is a valid region according to Definition 2. Second, we assume
that X does not contain any holes and does not become arbitrarily narrow: there exists
a homeomorphism h : X → [0, 1]d and constants 0 < Lmin < Lmax < ∞ such that for all
x, y ∈ X we have

Lmin‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ Lmax‖x− y‖.

This condition restricts X to be topologically equivalent to the cube. In applications this
is not a strong assumption, as the occurrence of “holes” with vanishing probability density
is unrealistic due to the presence of noise in the data generating process. More generally
we believe that our results can be generalized to other homeomorphism classes, but refrain
from doing so as it would substantially increase the amount of technicalities.

In the following we denote the volume of the unit ball in Rd by ηd. For readability reasons, we
are going to state our main results using constants ci > 0. These constants are independent
of n and the graph connectivity parameter (ε or k or h, respectively) but depend on the
dimension, the geometry of X , and p. The values of all constants are determined explicitly
in the proofs. They are not the same in different propositions.

4. Main Results

Our paper comprises two different approaches. In the first approach we analyze the re-
sistance distance by flow based arguments. This technique is somewhat restrictive in the
sense that it only works for the resistance distance itself (not the hitting times) and we only
apply it to random geometric graphs. The advantage is that in this setting we obtain good
convergence conditions and rates. The second approach is based on spectral arguments and
is more general. It works for various kinds of graphs and can treat hitting times as well.
This comes at the price of slightly stronger assumptions and worse convergence rates.

4.1 Results Based on Flow Arguments

Theorem 3 (Commute distance on ε-graphs) Let X be a valid region with bottleneck
h and minimal density pmin. For ε ≤ h, consider an unweighted ε-graph built from the
sequence X1, . . . , Xn that has been drawn i.i.d. from the density p. Fix i and j. Assume
that Xi and Xj have distance at least h from the boundary of X , and that the distance
between Xi and Xj is at least 8ε. Then there exist constants c1, . . . , c7 > 0 (depending on
the dimension and geometry of X ) such that with probability at least 1− c1n exp(−c2nεd)−
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c3 exp(−c4nεd)/εd the commute distance on the ε-graph satisfies

∣∣∣∣ nεd

vol(G)
Cij −

(
nεd

di
+
nεd

dj

)∣∣∣∣ ≤

c5/nε

d if d > 3

c6 · log(1/ε)/nε3 if d = 3

c7/nε
3 if d = 2

The probability converges to 1 if n→∞ and nεd/ log(n)→∞. The right hand side of the
deviation bound converges to 0 as n→∞, if

nεd →∞ if d > 3

nε3/ log(1/ε)→∞ if d = 3

nε3 = nεd+1 →∞ if d = 2.

Under these conditions, if the density p is continuous and if ε→ 0, then

nεd

vol(G)
Cij −→

1

ηdp(Xi)
+

1

ηdp(Xj)
a.s.

Theorem 4 (Commute distance on kNN-graphs) Let X be a valid region with bot-
tleneck h and density bounds pmin and pmax. Consider an unweighted kNN-graph (either
symmetric or mutual) such that (k/n)1/d/(2pmax) ≤ h, built from the sequence X1, . . . , Xn

that has been drawn i.i.d. from the density p.
Fix i and j. Assume that Xi and Xj have distance at least h from the boundary of X , and
that the distance between Xi and Xj is at least 4(k/n)1/d/pmax. Then there exist constants
c1, . . . , c5 > 0 such that with probability at least 1− c1n exp(−c2k) the commute distance on
both the symmetric and the mutual kNN-graph satisfies

∣∣∣∣ k

vol(G)
Cij −

(
k

di
+
k

dj

)∣∣∣∣ ≤

c4/k if d > 3

c5 · log(n/k)/k if d = 3

c6n
1/2/k3/2 if d = 2

The probability converges to 1 if n→∞ and k/ log(n)→∞. In case d > 3, the right hand
side of the deviation bound converges to 0 if k → ∞ (and under slightly worse conditions
in cases d = 3 and d = 2). Under these conditions, if the density p is continuous and if
additionally k/n→ 0, then k

vol(G)Cij → 2 almost surely.

Let us make a couple of technical remarks about these theorems.

To achieve the convergence of the commute distance we have to rescale it appropriately (for
example, in the ε-graph we scale by a factor of nεd). Our rescaling is exactly chosen such
that the limit expressions are finite, positive values. Scaling by any other factor in terms of
n, ε or k either leads to divergence or to convergence to zero.

In case d > 3, all convergence conditions on n and ε (or k, respectively) are the ones to
be expected for random geometric graphs. They are satisfied as soon as the degrees grow
faster than log(n). For degrees of order smaller than log(n), the graphs are not connected
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anyway, see for example Penrose (1997, 1999); Xue and Kumar (2004); Balister et al. (2005).
In dimensions 3 and 2, our rates are a bit weaker. For example, in dimension 2 we need
nε3 →∞ instead of nε2 →∞. On the one hand we are not too surprised to get systematic
differences between the lowest few dimensions. The same happens in many situations, just
consider the example of Polya’s theorem about the recurrence/ transience of random walks
on grids. On the other hand, these differences might as well be an artifact of our proof
methods (and we suspect so at least for the case d = 3; but even though we tried, we did
not get rid of the log factor in this case). It is a matter of future work to clarify this.

The valid region X has been introduced for technical reasons. We need to operate in such
a region in order to be able to control the behavior of the graph, e.g. the minimal and
maximal degrees. The assumptions on X are the standard assumptions used regularly in
the random geometric graph literature. In our setting, we have the freedom of choosing
X ⊂ Rd as we want. In order to obtain the tightest bounds one should aim for a valid X
that has a wide bottleneck h and a high minimal density pmin. In general this freedom of
choosing X shows that if two points are in the same high-density region of the space, the
convergence of the commute distance is fast, while it gets slower if the two points are in
different regions of high density separated by a bottleneck.

We stated the theorems above for a fixed pair i, j. However, they also hold uniformly over
all pairs i, j that satisfy the conditions in the theorem (with exactly the same statement).
The reason is that the main probabilistic quantities that enter the proofs are bound on the
minimal and maximal degrees, which of course hold uniformly.

4.2 Results Based on Spectral Arguments

The representation of the hitting and commute times in terms of the Moore-Penrose inverse
of the normalized graph Laplacian (Proposition 1) can be used to derive the following key
proposition that is the basis for all further results in this section.

Proposition 5 (Absolute and relative bounds in any fixed graph) Let G be a fi-
nite, connected, undirected, possibly weighted graph that is not bipartite.

1. For i 6= j ∣∣∣∣ 1

vol(G)
Hij −

1

dj

∣∣∣∣ ≤ 2

(
1

1− λ2
+ 1

)
wmax

d2min

.

2. For i 6= j ∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣ ≤ wmax

dmin

(
1

1− λ2
+ 2

)(
1

di
+

1

dj

)
≤ 2

(
1

1− λ2
+ 2

)
wmax

d2min

. (1)
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We would like to point out that even though the bound in Part 2 of the proposition is
reminiscent to statements in the literature, it is much tighter. Consider the following
formula from Lovász (1993)

1

2

(
1

di
+

1

dj

)
≤ 1

vol(G)
Cij ≤

1

1− λ2

(
1

di
+

1

dj

)
that can easily be rearranged to the following bound:∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣ ≤ 1

1− λ2
2

dmin
. (2)

The major difference between our bound (1) and Lovasz’ bound (2) is that while the latter
has the term dmin in the denominator, our bound has the term d2min in the denominator.
This makes all of a difference: in the graphs under considerations our bound converges to
0 whereas Lovasz’ bound diverges. In particular, our convergence results are not a trivial
consequence of Lovász (1993).

4.2.1 Application to Unweighted Random Geometric Graphs

In the following we are going to apply Proposition 5 to various random geometric graphs.
Next to some standard results about the degrees and number of edges in random geometric
graphs, the main ingredients are the following bounds on the spectral gap in random geo-
metric graphs. These bounds are of independent interest because the spectral gap governs
many important properties and processes on graphs.

Theorem 6 (Spectral gap of the ε-graph) Suppose that the general assumptions hold.
Then there exist constants c1, . . . , c6 > 0 such that with probability at least 1−c1n exp(−c2nεd)−
c3 exp(−c4nεd)/εd,

1− λ2 ≥ c5 · ε2 and 1− |λn| ≥ c6 · εd+1/n.

If nεd/ log n→∞, then this probability converges to 1.

Theorem 7 (Spectral gap of the kNN-graph) Suppose that the general assumptions
hold. Then for both the symmetric and the mutual kNN-graph there exist constants c1, . . . , c4 >
0 such that with probability at least 1− c1n exp(−c2k),

1− λ2 ≥ c3 · (k/n)2/d and 1− |λn| ≥ c4 · k2/d/n(d+2)/d.

If k/ log n→∞, then the probability converges to 1.

The following theorems characterize the hitting and commute times for ε-and kNN-graphs.
They are direct consequences of plugging the results about the spectral gap into Proposi-
tion 5. In the corollaries, the reader should keep in mind that the degrees also depend on
n and ε (or k, respectively).
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Corollary 8 (Hitting and commute times on ε-graphs) Assume that the general as-
sumptions hold. Consider an unweighted ε-graph built from the sequence X1, . . . , Xn drawn
i.i.d. from the density p. Then there exist constants c1, . . . , c5 > 0 such that with probability
at least 1− c1n exp(−c2nεd)− c3 exp(−c4nεd)/εd, we have uniformly for all i 6= j that∣∣∣∣ nεd

vol(G)
Hij −

nεd

dj

∣∣∣∣ ≤ c5
nεd+2

.

If the density p is continuous and n→∞, ε→ 0 and nεd+2 →∞, then

nεd

vol(G)
Hij −→

1

ηd · p(Xj)
almost surely.

For the commute times, the analogous results hold due to Cij = Hij +Hji.

Corollary 9 (Hitting and commute times on kNN-graphs) Assume that the gen-
eral assumptions hold. Consider an unweighted kNN-graph built from the sequence
X1, . . . , Xn drawn i.i.d. from the density p. Then for both the symmetric and mu-
tual kNN-graph there exist constants c1, c2, c3 > 0 such that with probability at least
1− c1 · n · exp(−kc2), we have uniformly for all i 6= j that∣∣∣∣ k

vol(G)
Hij −

k

dj

∣∣∣∣ ≤ c3 ·
n2/d

k1+2/d
.

If the density p is continuous and n→∞, k/n→ 0 and k
(
k/n

)2/d →∞, then

k

vol(G)
Hij −→ 1 almost surely.

For the commute times, the analogous results hold due to Cij = Hij +Hji.

Note that the density shows up in the limit for the ε-graph, but not for the kNN graph.
The explanation is that in the former, the density is encoded in the degrees of the graph,
while in the latter it is only encoded in the k-nearest neighbor distance, but not the degrees
themselves. As a rule of thumb, it is possible to convert the last two corollaries into each
other by substituting ε by (k/(np(x)ηd))1/d or vice versa.

4.2.2 Application to Weighted Graphs

In several applications, ε-graphs or kNN graphs are endowed with edge weights. For
example, in the field of machine learning it is common to use Gaussian weights wij =
exp(−‖Xi −Xj‖2/σ2), where σ > 0 is a bandwidth parameter. We can use standard spec-
tral results to prove approximation theorems in such cases.

Theorem 10 (Results on fully connected weighted graphs) Consider a fixed, fully
connected weighted graph with weight matrix W . Assume that its entries are upper and

1761



von Luxburg and Radl and Hein

lower bounded by some constants wmin, wmax, that is 0 < wmin ≤ wij ≤ wmax for all i, j.
Then, uniformly for all i, j ∈ {1, ..., n}, i 6= j,∣∣∣∣ n

vol(G)
Hij −

n

dj

∣∣∣∣ ≤ 4n

(
wmax

wmin

)
wmax

d2min

≤ 4
w2
max

w3
min

1

n
.

For example, this result can be applied directly to a Gaussian similarity graph (for fixed
bandwidth σ).

The next theorem treats the case of Gaussian similarity graphs with adapted bandwidth σ.
The technique we use to prove this theorem is rather general. Using the Rayleigh principle,
we reduce the case of the fully connected Gaussian graph to a truncated graph where edges
beyond a certain length are removed. Bounds for this truncated graph, in turn, can be
reduced to bounds of the unweighted ε-graph. With this technique it is possible to treat
very general classes of graphs.

Theorem 11 (Results on Gaussian graphs with adapted bandwidth) Let X ⊆ Rd

be a compact set and p a continuous, strictly positive density on X . Consider a fully con-
nected, weighted similarity graph built from the points X1, . . . , Xn drawn i.i.d. from density

p. As weight function use the Gaussian similarity function kσ(x, y) = 1

(2πσ2)
d
2

exp
(
−‖x−y‖

2

2σ2

)
.

If the density p is continuous and n→∞, σ → 0 and nσd+2/ log(n)→∞, then

n

vol(G)
Cij −→

1

p(Xi)
+

1

p(Xj)
almost surely.

Note that in this theorem, we introduced the scaling factor 1/σd already in the definition of
the Gaussian similarity function to obtain the correct density estimate p(Xj) in the limit.
For this reason, the resistance results are rescaled with factor n instead of nσd.

4.2.3 Application to Random Graphs with Given Expected Degrees and
Erdős-Rényi Graphs

Consider the general random graph model where the edge between vertices i and j is cho-
sen independently with a certain probability pij that is allowed to depend on i and j.
This model contains popular random graph models such as the Erdős-Rényi random graph,
planted partition graphs, and random graphs with given expected degrees. For this class
of random graphs, bounds on the spectral gap have been proved by Chung and Radcliffe
(2011). These bounds can directly be applied to derive bounds on the resistance distances.
It is not surprising to see that hitting times are meaningless, because these graphs are ex-
pander graphs and the random walk mixes fast. The model of Erdős-Rényi graphs with
planted partitions is more interesting because it gives insight to the question how strongly
clustered the graph can be before our results break down.

Theorem 12 (Chung and Radcliffe, 2011) Let G be a random graph where edges be-
tween vertices i and j are put independently with probabilities pij. Consider the normal-
ized Laplacian Lsym, and define the expected normalized Laplacian as the matrix Lsym :=
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I − D−1/2AD−1/2 where Aij = E(Aij) = pij and D = E(D). Let dmin be the minimal
expected degree. Denote the eigenvalues of Lsym by µ, the ones of Lsym by µ. Choose ε > 0.
Then there exists a constant k = k(ε) such that if dmin > k log(n), then with probability at
least 1− ε,

∀j = 1, ..., n : |µj − µj | ≤ 2

√
3 log(4n/ε)

dmin

.

Random graphs with given expected degrees. For a graph of n vertices we have n parameters
d̄1, ..., d̄n > 0. For each pair of vertices vi and vj , we independently place an edge between
these two vertices with probability d̄id̄j/

∑n
k=1 d̄k. It is easy to see that in this model, vertex

vi has expected degree d̄i (cf. Section 5.3. in Chung and Lu, 2006 for background reading).

Corollary 13 (Random graphs with given expected degrees) Consider any se-
quence of random graphs with expected degrees such that dmin = ω(log n). Then the
commute distances satisfy for all i 6= j,∣∣∣∣ 1

vol(G)
Cij −

(
1

di
+

1

dj

)∣∣∣∣/( 1

di
+

1

dj

)
= O

(
1

log(2n)

)
−→ 0, almost surely.

Planted partition graphs. Assume that the n vertices are split into two “clusters” of equal
size. We put an edge between two vertices u and v with probability pwithin if they are in
the same cluster and with probability pbetween < pwithin if they are in different clusters. For
simplicity we allow self-loops.

Corollary 14 (Random graph with planted partitions) Consider an Erdős-Rényi
graph with planted bisection. Assume that pwithin = ω(log(n)/n) and pbetween such that
npbetween →∞ (arbitrarily slow). Then, for all vertices u, v in the graph∣∣∣∣ 1n ·Hij − 1

∣∣∣∣ = O

(
1

n pbetween

)
→ 0 in probability.

This result is a nice example to show that even though there is a strong cluster structure in
the graph, hitting times and commute distances cannot see this cluster structure any more,
once the graph gets too large. Note that the corollary even holds if npbetween grows much
slower than npwithin. That is, the larger our graph, the more pronounced is the cluster
structure. Nevertheless, the commute distance converges to a trivial result. On the other
hand, we also see that the speed of convergence is O(npbetween), that is, if pbetween = g(n)/n
with a slowly growing function g, then convergence can be slow. We might need very large
graphs before the degeneracy of the commute time will be visible.
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5. Experiments

In this section we examine the convergence behavior of the commute distance in practice.
We ran a large number of simulations, both on artificial and real world data sets, in order
to evaluate whether the rescaled commute distance in a graph is close to its predicted
limit expression 1/du + 1/dv or not.We conducted simulations for artificial graphs (random
geometric graphs, planted partition graphs, preferential attachment graphs) and real world
data sets of various types and sizes (social networks, biological networks, traffic networks;
up to 1.6 million vertices and 22 million edges). The general setup is as follows. Given a
graph, we compute the pairwise resistance distance Rij between all points. The relative
deviation between resistance distance and predicted result is then given by

RelDev(i, j) :=
|Rij − 1/di − 1/dj |

Rij
.

Note that we report relative rather than absolute deviations because this is more meaning-
ful if Rij is strongly fluctuating on the graph. It also allows to compare the behavior of
different graphs with each other. In all figures, we then report the maximum, mean and
median relative deviations. In small and moderate sized graphs, these operations are taken
over all pairs of points. In some of the larger graphs, computing all pairwise distances is
prohibitive. In these cases, we compute mean, median and maximum based on a random
subsample of vertices (see below for details).

The bottom line of our experiments is that in nearly all graphs, the deviations are small.
In particular, this also holds for many moderate sized graphs, even though our results are
statements about n → ∞. This shows that the limit results for the commute distance are
indeed relevant for practice.

5.1 Random Geometric Graphs

We start with the class of random geometric graphs, which is very important for machine
learning. We use a mixture of two Gaussian distributions on Rd. The first two dimen-
sions contain a two-dimensional mixture of two Gaussians with varying separation (centers
(−sep/2, 0) and (+sep/2, 0), covariance matrix 0.2 · Id, mixing weights 0.5 for both Gaus-
sians). The remaining d − 2 dimensions contain Gaussian noise with variance 0.2 as well.
From this distribution we draw n sample points. Based on this sample, we either compute
the unweighted symmetric kNN graph, the unweighted ε-graphs or the Gaussian similarity
graph. In order to be able to compare the results between these three types of graphs
we match the parameters of the different graphs: given some value k for the kNN-graph
we choose the values of ε for the ε-graph and σ for the Gaussian graph as the maximal
k-nearest neighbor distance in the data set.

Figure 1 shows the results of the simulations. We can see that the deviations decrease fast
with the sample size. In particular, already for small sample sizes reported, the maximal
deviations get very small. The more clustered the data is (separation is larger), the larger
the deviations get. This is the case as the deviation bound scales inversely with the spectral
gap, which gets larger the more clustered the data is. The deviations also decrease with
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Figure 1: Deviations in random geometric graphs. Solid lines show the maximum relative
deviation, dashed lines the mean relative deviation. See text for more details.

increasing dimension, as predicted by our bounds. The intuitive explanation is that in
higher dimensions, geometric graphs mix faster as there exist more “shortcuts” between the
two sides of the point cloud. For a similar reason, the deviation bounds also decrease with
increasing connectivity in the graph. All in all, the deviations are very small even though
our sample sizes in these experiments are modest.

5.2 Planted Partition Graphs

Next we consider graphs according to the planted partition model. We modeled a graph with
n vertices and two equal sized clusters with connectivity parameters pwithin and pbetween.
As the results in Figure 2 show, the deviation decreases rapidly when n increases, and it
decreases when the cluster structure becomes less pronounced.
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Figure 2: Deviations in planted partition graphs. Solid lines show the maximum relative
deviation, dashed lines the mean relative deviation. See text for more details.

5.3 Preferential Attachment Graphs

An important class of random graphs is the preferential attachment model (Barabási and
Albert, 1999), because it can be used to model graphs with power law behavior. Our current
convergence proofs cannot be carried over to preferential attachment graphs: the minimal
degree in preferential attachment graphs is constant, so our proofs break down. However,
our simulation results show that approximating commute distances by the limit expression
1/du + 1/dv gives accurate approximations as well. This finding indicates that our conver-
gence results seem to hold even more generally than our theoretical findings suggest.

In our simulation we generated preferential attachment graphs according to the following
standard procedure: Starting with a graph that consists of two vertices connected by an
edge, in each time step we add a new vertex to the graph. The new vertex is connected by
a fixed number of edges to existing vertices (this number is called NumLinks in the figures
below). The target vertices of these edges are chosen randomly among all existing vertices,
where the probability to connect to a particular vertex is proportional to its degree. All
edges in the graph are undirected. As an example, we show the adjacency matrix and the
degree histogram for such a graph in Figure 3. The next plots in this figure shows the
relative deviations in such a preferential attachment graph, plotted against the sparsity of
the graph (number of outlinks). Overall we can see that the deviations are very small, they
are on the same scale as the ones in all the other simulations above. The mean deviations
simply decrease as the connectivity of the graph increases. The maximum deviations show
an effect that is different from what we have seen in the other graphs: while it decreases
in the sparse regime, it starts to increase again when the graph becomes denser. However,
investigating this effect more closely reveals that it is just generated by the three vertices in
the graph which have the largest degrees. If we exclude these three vertices when computing
the maximum deviation, then the maximum deviation decreases as gracefully as the mean
deviation. All in all we can say that in the sparse regime, the commute distance can be well
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Figure 3: Relative deviations for a preferential attachment graph. First two figures: illus-
tration of such a graph in terms of histogram of degrees and heat plot of the
adjacency matrix. Third figure: Relative deviations. As before the solid line
shows the maximum relative deviation and the dashed line the mean relative de-
viation. The line “max 3 removed” refers to the maximum deviation when we
exclude the three highest-degree vertices from computing the maximum. See text
for details.

approximated by the expression 1/du + 1/dv. In the dense regime, the same is true unless
u or v is among the very top degree vertices.

5.4 Real World Data

Now we consider the deviations for a couple of real world data sets. We start with similarity
graphs on real data, as they are often used in machine learning. As example we use the full
USPS data set of handwritten digits (9298 points in 256 dimensions) and consider the dif-
ferent forms of similarity graphs (kNN, ε, Gaussian) with varying connectivity parameter.
In Figure 4 we can see that overall, the relative errors are pretty small.
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Figure 4: Relative deviations on different similarity graphs on the USPS data. As before
the solid line shows the maximum relative deviation and the dashed line the mean
relative deviation. See text for details.

Type of Number Number mean median max
Name Network Vertices Edges rel dev rel dev rel dev

mousegene2 gene network 42923 28921954 0.12 0.01 0.70
jazz1 social network 198 5484 0.09 0.06 0.51
soc-Slashdot09022 social network 82168 1008460 0.10 0.06 0.33
cit-HepPh2 citation graph 34401 841568 0.09 0.07 0.25
soc-sign-epinions2 social network 119130 1408534 0.14 0.09 0.53
pdb1HYS2 protein databank 36417 4308348 0.12 0.10 0.28
as-Skitter2 internet topology 1694616 22188418 0.16 0.12 0.54
celegans1 neural network 453 4065 0.18 0.12 0.77
email1 email traffic 1133 10903 0.15 0.13 0.77
Amazon05052 co-purchase 410236 4878874 0.28 0.24 0.80
CoPapersCiteseer2 coauthor graph 434102 32073440 0.33 0.30 0.76
PGP1 user network 10680 48632 0.54 0.53 0.97

Figure 5: Relative Error of the approximation in real world networks. Downloaded from: 1,
http://deim.urv.cat/~aarenas/data/welcome.htm and 2, http://www.cise.
ufl.edu/research/sparse/matrices/. See text for details.

Furthermore, we consider a number of network data sets that are available online, see Fig-
ure 5 for a complete list. Some of these networks are directed, but we use their undirected
versions. In cases the graphs were not connected, we ran the analysis on the largest con-
nected component. On the smaller data sets, we computed all pairwise commute distances
and used all these values to compute mean, median and maximum relative deviations. On
the larger data sets we just draw 20 vertices at random, then compute all pairwise com-
mute distances between these 20 vertices, and finally evaluate mean, median and maximum
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based on this subset. Figure 5 shows the mean, median and maximum relative commute
distances in all these networks. We can see that in many of these data sets, the deviations
are reasonable small. Even though they are not as small as in the artificial data sets, they
are small enough to acknowledge that our approximation results tend to hold in real world
graphs.

6. Proofs for the Flow-Based Approach

For notational convenience, in this section we work with the resistance distance Ruv =
Cuv/ vol(G) instead of the commute distance Cuv, then we do not have to carry the factor
1/ vol(G) everywhere.

6.1 Lower Bound

It is easy to prove that the resistance distance between two points is lower bounded by the
sum of the inverse degrees.

Proposition 15 (Lower bound) Let G be a weighted, undirected, connected graph and
consider two vertices s and t, s 6= t. Assume that G remains connected if we remove s and
t. Then the effective resistance between s and t is bounded by

Rst ≥
Qst

1 + wstQst
,

where Qst = 1/(ds − wst) + 1/(dt − wst). Note that if s and t are not connected by a direct
edge (that is, wst = 0), then the right hand side simplifies to 1/ds + 1/dt.

Proof. The proof is based on Rayleigh’s monotonicity principle that states that increasing
edge weights (conductances) in the graph can never increase the effective resistance between
two vertices (cf. Corollary 7 in Section IX.2 of Bollobas, 1998). Given our original graph G,
we build a new graph G′ by setting the weight of all edges to infinity, except the edges that
are adjacent to s or t (setting the weight of an edge to infinity means that this edge has
infinite conductance and no resistance any more). This can also be interpreted as taking all
vertices except s and t and merging them to one super-node a. Now our graph G′ consists
of three vertices s, a, t with several parallel edges from s to a, several parallel edges from a
to t, and potentially the original edge between s and t (if it existed in G). Exploiting the
laws in electrical networks (resistances add along edges in series, conductances add along
edges in parallel; see Section 2.3 in Lyons and Peres (2010) for detailed instructions and
examples) leads to the desired result.

6.2 Upper Bound

This is the part that requires the hard work. Our proof is based on a theorem that shows
how the resistance between two points in the graph can be computed in terms of flows on
the graph. The following result is taken from Corollary 6 in Section IX.2 of Bollobas (1998).
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Theorem 16 (Resistance in terms of flows, cf. Bollobas, 1998) Let G = (V,E) be
a weighted graph with edge weights we (e ∈ E). The effective resistance Rst between two
fixed vertices s and t can be expressed as

Rst = inf

{∑
e∈E

u2e
we

∣∣∣ u = (ue)e∈E unit flow from s to t

}
.

Note that evaluating the formula in the above theorem for any fixed flow leads to an upper
bound on the effective resistance. The key to obtaining a tight bound is to distribute the
flow as widely and uniformly over the graph as possible.

For the case of geometric graphs we are going to use a grid on the underlying space to
construct an efficient flow between two vertices. Let X1, ..., Xn be a fixed set of points in
Rd and consider a geometric graph G with vertices X1, ..., Xn. Fix any two of them, say
s := X1 and t := X2. Let X ⊂ Rd be a connected set that contains both s and t. Consider
a regular grid with grid width g on X . We say that grid cells are neighbors of each other if
they touch each other in at least one edge.

Definition 17 (Valid grid) We call the grid valid if the following properties are satisfied:

1. The grid width is not too small: Each cell of the grid contains at least one of the
points X1, ..., Xn.

2. The grid width g is not too large: Points in the same or neighboring cells of the grid
are always connected in the graph G.

3. Relation between grid width and geometry of X : Define the bottleneck h of the region
X as the largest u such that the set {x ∈ X

∣∣ dist(x, ∂X ) > u/2} is connected.

We require that
√
d g ≤ h (a cube of side length g should fit in the bottleneck).

Under the assumption that a valid grid exists, we can prove the following general proposition
that gives an upper bound on the resistance distance between vertices in a fixed geometric
graph. Note that proving the existence of the valid grid will be an important part in the
proofs of Theorems 3 and 4.

Proposition 18 (Resistance on a fixed geometric graph) Consider a fixed set of
points X1, ..., Xn in some connected region X ⊂ Rd and a geometric graph on X1, ..., Xn.
Assume that X has bottleneck not smaller than h (where the bottleneck is defined as in the
definition of a valid grid). Denote s = X1 and t = X2. Assume that s and t can be con-
nected by a straight line that stays inside X and has distance at least h/2 to ∂X . Denote
the distance between s and t by d(s, t). Let g be the width of a valid grid on X and assume
that d(s, t) > 4

√
d g. By Nmin denote the minimal number of points in each grid cell, and

define a as

a :=
⌊
h/(2g

√
d− 1)

⌋
.
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Assume that points that are connected in the graph are at most Q grid cells apart from each
other (for example, two points in the two grey cells in Figure 6b are 5 cells apart from each
other). Then the effective resistance between s and t can be bounded as follows:

In case d > 3 : Rst ≤
1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
6 +

d(s, t)

g(2a+ 1)3
+ 2Q

)
In case d = 3 : Rst ≤

1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin

+
1

N2
min

(
4 log(a) + 8 +

d(s, t)

g(2a+ 1)2
+ 2Q

)
In case d = 2 : Rst ≤

1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
4a+ 2 +

d(s, t)

g(2a+ 1)
+ 2Q

)
Proof. The general idea of the proof is to construct a flow from s to t with the help of
the underlying grid. On a high level, the construction of the proof is not so difficult, but
the details are lengthy and a bit tedious. The rest of this section is devoted to it.

Construction of the flow — overview. Without loss of generality we assume that there exists
a straight line connecting s and t which is along the first dimension of the space. By C(s)
we denote the grid cell in which s sits.

Step 0. We start a unit flow in vertex s.

Step 1. We make a step to all neighbors Neigh(s) of s and distribute the flow uniformly
over all edges. That is, we traverse ds edges and send flow 1/ds over each edge (see
Figure 6a). This is the crucial step which, ultimately, leads to the desired limit result.

Step 2. Some of the flow now sits inside C(s), but some of it might sit outside of C(s). In
this step, we bring back all flow to C(s) in order to control it later on (see Figure 6b).

Step 3. We now distribute the flow from C(s) to a larger region, namely to a hypercube
H(s) of side length h that is perpendicular to the linear path from s to t and centered
at C(s) (see the hypercubes in Figure 6c). This can be achieved in several substeps
that will be defined below.

Step 4. We now traverse from H(s) to an analogous hypercube H(t) located at t using
parallel paths, see Figure 6c.

Step 5. From the hypercube H(t) we send the flow to the neighborhood Neigh(t) (this is
the “reverse” of steps 2 and 3).

Step 6. From Neigh(t) we finally send the flow to the destination t (“reverse” of step 1).

Details of the flow construction and computation of the resistance between s and t in the
general case d > 3. We now describe the individual steps and their contribution to the
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(a) Step 1. Distribut-
ing the flow from s
(black dot) to all its
neighbors (grey dots).

C(s) = C(6)

C(p) = C(1)

C(3) C(2)

(b) Step 2. We bring
back all flow from p
to C(s). Also shown
in the figure is the hy-
percube to which the
flow will be expanded
in Step 3.

s t

(c) Steps 3 and 4 of the flow construction:
distribute the flow from C(s) to a “hyper-
cube” H(s), then transmit it to a similar
hypercube H(t) and guide it to C(t).

Figure 6: The flow construction — overview.

Layer 1 

Layer 2

C(s)

(a) Definition of lay-
ers.

(b) Before Step 3A
starts, all flow is uni-
formly distributed in
Layer i − 1 (dark
area).

(c) Step 3A then dis-
tributes the flow from
Layer i− 1 to the ad-
jacent cells in Layer i

(d) After Step 3A: all
flow is in Layer i, but
not yet uniformly dis-
tributed

(e) Step 3B redis-
tributes the flow in
Layer i.

(f) After Step 3B, the
flow is uniformly dis-
tributed in Layer i.

Figure 7: Details of Step 3 between Layers i − 1 and i. The first row corresponds to the
expansion phase, the second row to the redistribution phase. The figure is shown
for the case of d = 3.
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bound on the resistance. We start with the general case d > 3. We will discuss the special
cases d = 2 and d = 3 below.

In the computations below, by the “contribution of a step” we mean the part of the sum in
Theorem 16 that goes over the edges considered in the current step.

Step 1: We start with a unit flow at s that we send over all ds adjacent edges. This leads
to flow 1/ds over ds edges. According to the formula in Theorem 16 this contributes

r1 = ds ·
1

d2s
=

1

ds

to the overall resistance Rst.

Step 2: After Step 1, the flow sits on all neighbors of s, and these neighbors are not nec-
essarily all contained in C(s). To proceed we want to re-concentrate all flow in C(s). For
each neighbor p of s, we thus carry the flow along a Hamming path of cells from p back to
C(s), see Figure 6b for an illustration.

To compute an upper bound for Step 2 we exploit that each neighbor p of s has to traverse
at most Q cells to reach C(s) (recall the definition of Q from the proposition). Let us fix p.
After Step 1, we have flow of size 1/ds in p. We now move this flow from p to all points in
the neighboring cell C(2) (cf. Figure 6b). For this we can use at least Nmin edges. Thus we
send flow of size 1/ds over Nmin edges, that is each edge receives flow 1/(dsNmin). Summing
the flow from C(p) to C(2), for all points p, gives

dsNmin

(
1

dsNmin

)2

=
1

dsNmin
,

Then we transport the flow from C(2) along to C(s). Between each two cells on the way
we can use N2

min edges. Note, however, that we need to take into account that some of
these edges might be used several times (for different points p). In the worst case, C(2) is
the same for all points p, in which case we send the whole unit flow over these edges. This
amounts to flow of size 1/(N2

min) over (Q− 1)N2
min edges, that is a contribution of

Q− 1

N2
min

.

Altogether we obtain

r2 ≤
1

dsNmin
+

Q

N2
min

.

Step 3: At the beginning of this step, the complete unit flow resides in the cube C(s). We
now want to distribute this flow to a “hypercube” of three dimensions (no matter what d
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is, as long as d > 3) that is perpendicular to the line that connects s and t (see Figure 6c,
where the case of d = 3 and a 2-dimensional “hypercube” are shown). To distribute the
flow to this cube we divide it into layers (see Figure 7a). Layer 0 consists of the cell C(s)
itself, the first layer consists of all cells adjacent to C(s), and so on. Each side of Layer i
consists of

li = (2i+ 1)

cells. For the 3-dimensional cube, the number zi of grid cells in Layer i, i ≥ 1, is given as

zi = 6 · (2i− 1)2︸ ︷︷ ︸
interior cells of the faces

+ 12 · (2i− 1)︸ ︷︷ ︸
cells along the edges (excluding corners)

+ 8︸︷︷︸
corner cells

= 24i2 + 2.

All in all we consider

a =
⌊
h/(2g

√
d− 1)

⌋
≤
⌊
h/(2(g − 1)

√
d− 1)

⌋
layers, so that the final layer has diameter just a bit smaller than the bottleneck h. We now
distribute the flow stepwise through all layers, starting with unit flow in Layer 0. To send
the flow from Layer i− 1 to Layer i we use two phases, see Figure 7 for details. In the “ex-
pansion phase” 3A(i) we transmit the flow from Layer i− 1 to all adjacent cells in Layer i.
In the “redistribution phase” 3B(i) we then redistribute the flow in Layer i to achieve that it
is uniformly distributed in Layer i. In all phases, the aim is to use as many edges as possible.

Expansion phase 3A(i). We can lower bound the number of edges between Layer i− 1 and
Layer i by zi−1N

2
min: each of the zi−1 cells in Layer i− 1 is adjacent to at least one of the

cells in Layer i, and each cell contains at least Nmin points. Consequently, we can upper
bound the contribution of the edges in the expansion phase 3A(i) to the resistance by

r3A(i) ≤ zi−1N2
min ·

(
1

zi−1N2
min

)2

=
1

zi−1N2
min

.

Redistribution phase 3B(i). We make a crude upper bound for the redistribution phase.
In this phase we have to move some part of the flow from each cell to its neighboring
cells. For simplicity we bound this by assuming that for each cell, we had to move all its
flow to neighboring cells. By a similar argument as for Step 3A(i), the contribution of the
redistribution step can be bounded by

r3B(i) ≤ ziN2
min ·

(
1

ziN2
min

)2

=
1

ziN2
min

.

All of Step 3. All in all we have a layers. Thus the overall contribution of Step 3 to the
resistance can be bounded by

1774



Hitting and Commute Times in Large Random Neighborhood Graphs

r3 =
a∑
i=1

r3A(i) + r3B(i) ≤
2

N2
min

a∑
i=1

1

zi−1
≤ 2

N2
min

(
1 +

1

24

a−1∑
i=1

1

i2

)
≤ 3

N2
min

.

To see the last inequality, note that the sum
∑a−1

i=1 1/i2 is a partial sum of the over-harmonic
series that converges to a constant smaller than 2.

Step 4: Now we transfer all flow in “parallel cell paths” from H(s) to H(t). We have
(2a + 1)3 parallel rows of cells going from H(s) to H(t), each of them contains d(s, t)/g
cells. Thus all in all we traverse (2a + 1)3N2

mind(s, t)/g edges, and each edge carries flow
1/((2a+ 1)3N2

min). Thus step 4 contributes

r4 ≤ (2a+ 1)3N2
min

d(s, t)

g
·
(

1

(2a+ 1)3N2
min

)2

=
d(s, t)

g(2a+ 1)3N2
min

.

Step 5 is completely analogous to steps 2 and 3, with the analogous contribution r5 =
1

dtNmin
+ Q

N2
min

+ r3.

Step 6 is completely analogous to step 1 with overall contribution of r6 = 1/dt.

Summing up the general case d > 3. All these contributions lead to the following overall
bound on the resistance in case d > 3:

Rst ≤
1

ds
+

1

dt
+

(
1

ds
+

1

dt

)
1

Nmin
+

1

N2
min

(
6 +

d(s, t)

g(2a+ 1)3
+ 2Q

)

with a and Q as defined in Proposition 18. This is the result stated in the proposition for
case d > 3.

Note that as spelled out above, the proof works whenever the dimension of the space satisfies
d > 3. In particular, note that even if d is large, we only use a 3-dimensional “hypercube”
in Step 3. It is sufficient to give the rate we need, and carrying out the construction for
higher-dimensional hypercube (in particular Step 3B) is a pain that we wanted to avoid.

The special case d = 3. In this case, everything works similar to above, except that we we
only use a 2-dimensional “hypercube” (this is what we always show in the figures). The
only place in the proof where this really makes a difference is in Step 3. The number zi of
grid cells in Layer i is given as zi = 8i. Consequently, instead of obtaining an over-harmonic
sum in r3 we obtain a harmonic sum. Using the well-known fact that

∑a
i=1 1/i ≤ log(a) + 1

we obtain
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r3 ≤
2

N2
min

(
1 +

1

8

a−1∑
i=1

1

i

)
≤ 2

N2
min

(2 + log(a)) .

In Step 4 we just have to replace the terms (2a+ 1)3 by (2a+ 1)2. This leads to the result
in Proposition 18.

The special case d = 2. Here our “hypercube” only consists of a “pillar” of 2a + 1 cells.
The fundamental difference to higher dimensions is that in Step 3, the flow does not have
so much “space” to be distributed. Essentially, we have to distribute all unit flow through
a “pillar”, which results in contributions

r3 ≤
2a+ 1

N2
min

r4 ≤
d(s, t)

g

1

(2a+ 1)N2
min

.

This concludes the proof of Proposition 18.

Let us make a couple of technical remarks about this proof. For the ease of presentation
we simplified the proof in a couple of respects.

Strictly speaking, we do not need to distribute the whole unit flow to the outmost Layer a.
The reason is that in each layer, a fraction of the flow already “branches off” in direction
of t. We simply ignore this leaving flow when bounding the flow in Step 3, our construction
leads to an upper bound. It is not difficult to take the outbound flow into account, but it
does not change the order of magnitude of the final result. So for the ease of presentation
we drop this additional complication and stick to our rough upper bound.

When we consider Steps 2 and 3 together, it turns out that we might have introduced some
loops in the flow. To construct a proper flow, we can simply remove these loops. This
would then just reduce the contribution of Steps 2 and 3, so that our current estimate is an
overestimation of the whole resistance.

The proof as it is spelled out above considers the case where s and t are connected by a
straight line. It can be generalized to the case where they are connected by a piecewise
linear path. This does not change the result by more than constants, but adds some tech-
nicality at the corners of the paths.

The construction of the flow only works if the bottleneck of X is not smaller than the di-
ameter of one grid cell, if s and t are at least a couple of grid cells apart from each other,
and if s and t are not too close to the boundary of X . We took care of these conditions in
Part 3 of the definition of a valid grid.
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6.3 Proof of the Theorems 3 and 4

First of all, note that by Rayleigh’s principle (cf. Corollary 7 in Section IX.2 of Bollobas,
1998) the effective resistance between vertices cannot decrease if we delete edges from the
graph. Given a sample from the underlying density p, a random geometric graph based on
this sample, and some valid region X , we first delete all points that are not in X . Then we
consider the remaining geometric graph. The effective resistances on this graph are upper
bounds on the resistances of the original graph. Then we conclude the proofs with the
following arguments:

Proof of Theorem 3. The lower bound on the deviation follows immediately from Propo-
sition 15. The upper bound is a consequence of Proposition 18 and well known properties
of random geometric graphs (summarized in the appendix). In particular, note that we can
choose the grid width g := ε/(2

√
d− 1) to obtain a valid grid. The quantity Nmin can be

bounded as stated in Proposition 28 and is of order nεd, the degrees behave as described
in Proposition 29 and are also of order nεd (we use δ = 1/2 in these results for simplicity).
The quantity a in Proposition 18 is of the order 1/ε, and Q can be bounded by Q = ε/g
and by the choice of g is indeed a constant. Plugging all these results together leads to the
final statement of the theorem.

Proof of Theorem 4. This proof is analogous to the ε-graph. As grid width g we choose
g = Rk,min/(2

√
d− 1) where Rk,min is the minimal k-nearest neighbor distance (note that

this works for both the symmetric and the mutual kNN-graph). Exploiting Propositions 28
and 30 we can see that Rk,min and Rk,max are of order (k/n)1/d, the degrees and Nmin are
of order k, a is of the order (n/k)1/d and Q a constant. Now the statements of the theorem
follow from Proposition 18.

7. Proofs for the Spectral Approach

In this section we present the proofs of the results obtained by spectral arguments.

7.1 Proof of Propositions 1 and 5

First we prove the general formulas to compute and approximate the hitting times.

Proof of Proposition 1. For the hitting time formula, let u1, . . . , un be an orthonormal
set of eigenvectors of the matrix D−1/2WD−1/2 corresponding to the eigenvalues µ1, . . . , µn.
Let uij denote the j-th entry of ui. According to Lovász (1993) the hitting time is given by

Hij = vol(G)
n∑
k=2

1

1− µk

(
u2kj
dj
−
ukiukj√
didj

)
.

A straightforward calculation using the spectral representation of Lsym yields

Hij = vol(G)

〈
1√
dj
ej ,

n∑
k=2

1

1− µk

〈
uk,

1√
dj
ej − 1√

di
ei

〉
uk

〉
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= vol(G)

〈
1√
dj
ej , L

†
sym

(
1√
dj
ej − 1√

di
ei

)〉
.

The result for the commute time follows from the one for the hitting times.

In order to prove Proposition 5 we first state a small lemma. For convenience, we set
A = D−1/2WD−1/2 and ui = ei/

√
di. Furthermore, we are going to denote the projection

on the eigenspace of the j-the eigenvalue λj of A by Pj .

Lemma 19 (Pseudo-inverse L†sym) The pseudo-inverse of the symmetric Laplacian sat-
isfies

L†sym = I − P1 +M,

where I denotes the identity matrix and M is given as follows:

M =

∞∑
k=1

(A− P1)
k =

n∑
r=2

λr
1− λr

Pr. (3)

Furthermore, for all u, v ∈ Rn we have

| 〈u,Mv〉 | ≤ 1

1− λ2
· ‖(A− P1)u‖ · ‖(A− P1)v‖+ | 〈u , (A− P1)v〉 |. (4)

Proof. The projection onto the null space of Lsym is given by P1 =
√
d
√
d
T
/
∑

i=1 di where√
d = (

√
d1, . . . ,

√
dn)T . As the graph is not bipartite, λn > −1. Thus the pseudoinverse of

Lsym can be computed as

L†sym = (I −A)† = (I −A+ P1)
−1 − P1 =

∞∑
k=0

(A− P1)
k − P1.

Thus

M :=
∞∑
k=1

(A− P1)
k =

∞∑
k=0

(A− P1)
k(A− P1)

= (
∞∑
k=0

n∑
r=2

λkrPr)(
n∑
r=2

λrPr) = (
n∑
r=2

1

1− λr
Pr)(

n∑
r=2

λrPr)

=
n∑
r=2

λr
1− λr

Pr

which proves Equation (3). By a little detour, we can also see

M =

∞∑
k=0

(A− P1)
k(A− P1)

2 + (A− P1) = (

n∑
r=2

1

1− λr
Pr)(A− P1)

2 + (A− P1).
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Exploiting that (A− P1) commutes with all Pr gives

〈u,Mv〉 =
〈
(A− P1)u , (

n∑
r=2

1

1− λr
Pr)(A− P1)v

〉
+ 〈u, (A− P1)v〉 .

Applying the Cauchy-Schwarz inequality and the fact ‖
∑n

r=2
1

1−λrPr‖2 = 1/(1− λ2) leads
to the desired statement.

Proof of Proposition 5. This proposition now follows easily from the Lemma above.
Observe that

〈ui, Auj〉 =
wij
didj

≤ wmax

d2min

‖Aui‖2 =
n∑
k=1

w2
ik

d2i dk
≤ wmax

dmind2i

∑
k

wik =
wmax

dmin

1

di
≤ wmax

d2min

‖A(ui − uj)‖2 ≤
wmax

dmin

(
1

di
+

1

dj

)
≤ 2wmax

d2min

.

Exploiting that P1(ui − uj) = 0 we get for the hitting time∣∣∣∣ 1

vol(G)
Hij −

1

dj

∣∣∣∣ = | 〈uj ,M(uj − ui)〉 |

≤ 1

1− λ2
‖Auj‖ · ‖A(uj − ui)‖+ |〈uj , A(uj − ui)〉|

≤ 1

1− λ2
wmax

dmin

(
1√
dj

√
1

di
+

1

dj

)
+
wij
didj

+
wjj
d2j

≤ 2
wmax

d2min

(
1

1− λ2
+ 1

)
.

For the commute time, we note that∣∣∣∣ 1

vol(G)
Cij −

( 1

di
+

1

dj

)∣∣∣∣ =
∣∣ 〈ui − uj ,M(ui − uj)〉

∣∣
≤ 1

1− λ2
‖A(ui − uj)‖2 +

∣∣ 〈ui − uj , A(ui − uj)〉
∣∣

≤ wmax

dmin

(
1

1− λ2
+ 2

)(
1

di
+

1

dj

)
.

We would like to point out that the key to achieving this bound is not to give in to the
temptation to manipulate Eq. (3) directly, but to bound Eq. (4). The reason is that we
can compute terms of the form 〈ui, Auj〉 and related terms explicitly, whereas we do not
have any explicit formulas for the eigenvalues and eigenvectors in (3).
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7.2 The Spectral Gap in Random Geometric Graphs

As we have seen above, a key ingredient in the approximation result for hitting times and
commute distances is the spectral gap. In this section we show how the spectral gap can be
lower bounded for random geometric graphs. We first consider the case of a fixed geometric
graph. From this general result we then derive the results for the special cases of the ε-graph
and the kNN-graphs. All graphs considered in this section are unweighted and undirected.
We follow the strategy in Boyd et al. (2005) where the spectral gap is bounded by means
of the Poincaré inequality (see Diaconis and Stroock, 1991, for a general introduction to
this technique; see Cooper and Frieze, 2011, for a related approach in simpler settings).
The outline of this technique is as follows: for each pair (X,Y ) of vertices in the graph we
need to select a path γXY in the graph that connects these two vertices. In our case, this
selection is made in a random manner. Then we need to consider all edges in the graph and
investigate how many of the paths γXY , on average, traverse this edge. We need to control
the maximum of this “load” over all edges. The higher this load is, the more pronounced
is the bottleneck in the graph, and the smaller the spectral gap is. Formally, the spectral
gap is related to the maximum average load b as follows.

Proposition 20 (Spectral gap, Diaconis and Stroock, 1991) Consider a finite, con-
nected, undirected, unweighted graph that is not bipartite. For each pair of vertices X 6=Y
let PXY be a probability distribution over all paths that connect X and Y and have uneven
length. Let (γXY )X,Y be a family of paths independently drawn from the respective PXY .
Define b := max{e edge} E|{γXY

∣∣ e ∈ γXY }|. Denote by |γmax| the maximum path length
(where the length of the path is the number of edges in the path). Then the spectral gap in
the graph is bounded as follows:

1− λ2 ≥
vol(G)

d2max|γmax|b
and 1− |λn| ≥

2

dmax|γmax|b
.

For deterministic sets Γ, this proposition has been derived as Corollary 1 and 2 in Diaconis
and Stroock (1991). The adaptation for random selection of paths is straightforward, see
Boyd et al. (2005).

The key to tight bounds based on Proposition 20 is a clever choice of the paths. We need
to make sure that we distribute the paths as “uniformly” as possible over the whole graph.
This is relatively easy to achieve in the special situation where X is a torus with uniform
distribution (as studied in Boyd et al., 2005; Cooper and Frieze, 2011) because of symmetry
arguments and the absence of boundary effects. However, in our setting with general X
and p we have to invest quite some work.

7.2.1 Fixed Geometric Graph on the Unit Cube in Rd

We first treat the special case of a fixed geometric graph with vertices in the unit cube [0, 1]d

in Rd. Consider a grid on the cube with grid width g. For now we assume that the grid cells
are so small that points in neighboring cells are always connected in the geometric graph,
and so large that each cell contains a minimal number of data points. We will specify the
exact value of g later. In the following, cells of the grid are identified with their center points.
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C(b)

C(a)

Figure 8: Canonical path between a and b. We first consider a “Hamming path of cells”
between a and b. In all intermediate cells, we randomly pick a point.

Construction of the paths. Assume we want to construct a path between two vertices a
and b that correspond to the points a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [0, 1]d. Let C(a)
and C(b) denote the grid cells containing a and b, denote the centers of these cells by
c(a) = (c(a)1, . . . , c(a)d) and c(b) = (c(b)1, . . . , c(b)d). We first construct a deterministic
“cell path” between the cells C(a) and C(b) (see Figure 8). This path simply follows a
Hamming path: starting at cell C(a) we change the first coordinate until we have reached
c(b)1. For example, if c(a)1 < c(b)1 we traverse the cells(
c(a)1, c(a)2, . . . , c(a)d

)
;
(
c(a)1 + g, c(a)2, . . . , c(a)d

)
; . . . ;

(
c(b)1, c(a)2, . . . , c(a)d

)
.

Then we move along the second coordinate from c(a)2 until we have reached c(b)2, that is
we traverse the cells (c(b)1, ∗, c(a)3, . . . , c(a)d). And so on. This gives a deterministic way
of traversing adjacent cells from C(a) to C(b). Now we transform this deterministic “cell
path” to a random path on the graph. In the special cases where a and b are in the same
cell or in neighboring cells, we directly connect a and b by an edge. In the general case,
we select one data point uniformly at random in each of the interior cells on the cell path.
Then we connect the selected points to form a path. Note that we can always force the
paths to have uneven lengths by adding one more point somewhere in between.

Proposition 21 (Path construction is valid) Assume that (1) Each cell of the grid
contains at least one data point. (2) Data points in the same and in neighboring cells
are always connected in the graph. Then the graph is connected, and the paths constructed
above are paths in the graph.

Proof. Obvious, by construction of the paths.

In order to apply Proposition 20 we now need to compute the maximal average load of all
paths.

Proposition 22 (Maximum average load for fixed graph on cube) Consider a ge-
ometric graph on [0, 1]d and the grid of width g on [0, 1]d. Denote by Nmin and Nmax the
minimal and maximal number of points per grid cell. Construct a random set of paths as
described above.

1. Let C be any fixed cell in the grid. Then there exist at most d/gd+1 pairs of cells
(A,B) such that cell paths starting in cell A and ending in cell B pass through C.
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2. If the path construction is valid, then the maximal average load is upper bounded by

b ≤ 1 +

(
N2

max

N2
min

+ 2
Nmax

Nmin

)
d

gd+1
.

Proof. Part 1. We identify cells with their centers. Consider two different grid cells A
and B with centers a and b. By construction, the Hamming path between A and B has the
corners

a =(a1, a2, a3, . . . , ad) ; (b1, a2, a3, . . . , ad) ; (b1, b2, a3, . . . , ad)

; . . . ; (b1, b2, b3, . . . , bd−1, ad) ; (b1, b2, b3, . . . , bd−1, bd) = b.

All cells on the path have the form (b1, b2, . . . , bl−1, ∗, al+1, . . . , ad) where ∗ can take any
value between al and bl. A path can only pass through the fixed cell with center c if there
exists some l ∈ {1, . . . , d} such that

(c1, . . . , cd) = (b1, b2, . . . , bl−1, ∗, al+1, . . . , ad).

That is, there exists some l ∈ {1, . . . , d} such that

(I) bi = ci for all i = 1, . . . , l − 1 and (II) ai = ci for all i = l + 1, . . . , d.

For the given grid size g there are 1/g different cell centers per dimension. For fixed l there
thus exist 1/gd−l+1 cell centers that satisfy (I) and 1/gl cell centers that satisfy (II). So
all in all there are 1/gd+1 pairs of cells A and B such that both (I) and (II) are satisfied
for a fixed value of l. Adding up the possibilities for all choices of l ∈ {1, . . . , d} leads to
the factor d.

Part 2. Fix an edge e in the graph and consider its two adjacent vertices v1 and v2. If v1
and v2 are in two different cells that are not neighbors to each other, then by construction
none of the paths traverses the edge. If they are in the same cell, by construction at most
one of the paths can traverse this edge, namely the one directly connecting the two points.
The interesting case is the one where v1 and v2 lie in two neighboring grid cells C and C̃.
If both cells are “interior” cells of the path, then by construction each edge connecting
the two cells has equal probability of being selected. As there are at least Nmin points in
each cell, there are at least N2

min different edges between these cells. Thus each of the edges
between the cells is selected with probability at most 1/N2

min. We know by Part 1 that there
are at most d/gd+1 pairs of start/end cells. As each cell contains at most Nmax points, this
leads to N2

maxd/g
d+1 different paths passing through C. This is also an upper bound on

the number of paths passing through both C and C̃. Thus, the number of paths using each
edge is at most dN2

max/(g
d+1N2

min).
If at least one of the cells is the start cell of the path, then the corresponding vertex, say
v1, is the start point of the path. If v2 is an intermediate point, then it is selected with
probability at most 1/Nmin (the case where v2 is an end point has already been treated at
the beginning). Similarly to the last case, there are at most Nmaxd/g

d+1 paths that start
in v1 and pass through C̃. This leads to an average load of dNmax/(g

d+1Nmin) on edge e.
The same holds with the roles of v1 and v2 exchanged, leading to a factor 2.
The overall average load is now the sum of the average loads in the different cases.
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7.2.2 Fixed Geometric Graph on a Domain X That Is Homeomorphic to a
Cube

Now assume that X ⊂ Rd is a compact subset that is homeomorphic to the cube [0, 1]d

in the following sense: we assume that there exists a homeomorphism h : X → [0, 1]d and
constants 0 < Lmin < Lmax <∞ such that for all x, y ∈ X we have

Lmin‖x− y‖ ≤ ‖h(x)− h(y)‖ ≤ Lmax‖x− y‖. (5)

The general idea is now as follows. Assume we are given a geometric graph on X1, . . . , Xn ∈
X . In order to construct the paths we first map the points in the cube using h. Then we
construct the paths on h(X1), . . . , h(Xn) ∈ [0, 1]d as in the last section. Finally, we map
the path back to X .

Proposition 23 (Maximum average load for fixed graph on general domain)
Let G be a geometric graph based on X1, . . . , Xn ∈ X . Assume that there exists some g̃ > 0
such that points of distance smaller than g̃ are always connected in the graph. Consider a
mapping h : X → [0, 1]d as in Equation (5) and a grid of width g on [0, 1]d. Let (Ci)i be
the cells of the g-grid on [0, 1]d, denote their centers by ci. Let Bi and B′i be balls in X
with radius r = g/(2Lmax) and R =

√
d g/Lmin centered at h−1(ci).

1. These balls satisfy Bi ⊆ h−1(Ci) ⊆ B′i.

2. Denote by Ñmin the minimal number of points in Bi and Ñmax the maximal number
of points in B′i. Construct paths between the points h(Xi) ∈ [0, 1]d as described in the
previous subsection. If Ñmin ≥ 1 and g ≤ Lming̃/

√
d+ 3, then these paths are valid.

3. In this case, the maximal average load can be upper bounded by

1 +

(
Ñ2

max

Ñ2
min

+ 2
Ñmax

Ñmin

)
d

(g̃Lmin/
√
d+ 3)d+1

.

Proof. Part (1). To see the first inclusion, consider any point x ∈ Bi. By the Lipschitz
continuity and the definition of Bi we get

‖h(x)− ci‖ ≤ Lmax‖x− h−1(ci)‖ ≤ Lmax · r = g/2.

Hence, h(x) ∈ Ci. To show the other inclusion let x ∈ h−1(Ci). Then by the Lipschitz
continuity and the definition of Ci we get

‖x− h−1(ci)‖ ≤ ‖h(x)− ci‖/Lmin ≤
√
dg/Lmin = R,

hence x ∈ B′i.
Part (2). By the definition of Ñmin and Part (1) it is clear that each cell of the grid
contains at least one point. Consider two points Xi, Xj ∈ X such that h(Xi) and h(Xj) are
in neighboring cells of the g-grid. Then ‖h(Xi)−h(Xj)‖ ≤ g

√
d+ 3. By the properties of h,

‖h−1(Xi)− h−1(Xj)‖ ≤
1

Lmin
‖Xi −Xj‖ ≤

1

Lmin

√
d+ 3 g ≤ g̃.

Thus, by the definition of g̃ the points Xi and Xj are connected in G.

Part (3). Follows directly from Proposition 22 and Parts (1) and (2).
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7.2.3 Spectral Gap for the ε-Graph

Now we are going to apply Proposition 23 to ε-graphs. We will use the general results on
ε-graphs summarized in the appendix.

Proposition 24 (Maximal average load for ε-graph) Assume that X is homeomor-
phic to the cube with a mapping h as described in Equation (5). Then there exist constants
c1, c2, c3 > 0 such that with probability at least 1−c1 exp(−c2nεd)/εd, the maximum average
load is upper bounded by c3/ε

d+1. If nεd/ log n → ∞, then this probability tends to 1 as
n→∞.

Proof. The proof is based on Proposition 23. By construction we know that points with
distance at most g̃ = ε are always connected in the ε-graph. By Part 2 of Proposition 23,
to ensure that points in neighboring grid cells are always connected in the graph we thus
need to choose the grid width g = ε · Lmin/

√
d+ 3. The radius r defined in Proposition 23

is then given as

r =
g

2Lmax
= ε · Lmin

2
√
d+ 3Lmax

.

The probability mass of the balls Bi is thus bounded by

bmin ≥ rdηdpminα = εd ·
(
Lmin

Lmax

)d ηd
2d(d+ 3)d/2

pminα =: εd · cmin

(recall that the constant α takes care of boundary points, see Definition 2 of the valid
region).
We have

K = 1/gd =
√
d+ 3/Ldmin · (1/εd) =: κ · (1/εd)

grid cells and thus the same number of balls Bi. We can now apply Proposition 28 (with
δ := 1/2) to deduce the bound for the quantity Ñmin used in Proposition 23:

P
(
Ñmin ≤ nεdcmin/2

)
≤ κ

εd
exp(−nεdcmin/12).

Analogously, for Ñmax we have R = ε > ε
√
d/
√
d+ 3 and bmax = Rdηdpmax = εdηdpmax :=

εd · cmax. With δ = 0.5 we then obtain

P
(
Ñmax ≥ nεdcmax3/2

)
≤ κ

εd
exp(−nεdcmax/12).

Plugging these values into Proposition 23 leads to the result.

Proof of Theorem 6. With probability at least 1 − c1n exp(−c2nεd), both the min-
imal and maximal degrees in the graph are of the order Θ(nεd) (cf. Proposition 29),
and the volume of G is of order Θ(n2εd). To compute the maximal number |γmax| of
edges in each of the paths constructed above, observe that each path can traverse at most
d · 1/g = (d

√
d+ 3/Lmin) · (1/ε) cubes, and a path contains just one edge per cube. Thus

|γmax| is of the order Θ(1/ε). In Proposition 24 we have seen that with probability at least
c4 exp(−c5nεd)/εd the maximum average load b is of the order Ω(1/εd+1). Plugging all these
quantities in Proposition 20 leads to the result.
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7.2.4 Spectral Gap for the kNN-Graph

As in the case of the flow proofs, the techniques in the case of the kNN-graphs are identical
to the ones for the ε-graph, we just have to replace the deterministic radius ε by the minimal
kNN-radius. As before we exploit that if two sample points have distance less than Rk,min

from each other, then they are always connected both in the symmetric and mutual kNN-
graph.

Proposition 25 (Maximal average load in the kNN-graph) Under the general as-
sumptions, with probability at least 1−c1 ·n ·exp(−c2k) the maximal average load in both the
symmetric and mutual kNN-graph is bounded from above by c3(n/k)1+1/d. If k/ log n→∞,
then this probability converges to 1.

Proof. This proof is analogous to the one of Proposition 24, the role of ε is now taken over
by Rk,min.

Proof of Theorem 7. With probabilities at least 1−n exp(−c1k) the following statements
hold: the minimal and maximal degree are of order Θ(k), thus the number of edges in the
graph is of order Θ(nk). Analogously to the proof for the ε-graph, the maximal path length
|γmax| is of the order 1/Rk,min = Θ((k/n)1/d). The maximal average load is of the order
O((n/k)d+1/d). Plugging all these quantities in Proposition 20 leads to the result.

7.3 Proofs of Corollaries 8 and 9

Now we collected all ingredients to finally present the following proofs.

Proof of Corollary 8. This is a direct consequence of the results on the minimal degree
(Proposition 29) and the spectral gap (Theorem 6). Plugging these results into Proposition
5 leads to the first result. The last statement in the theorem follows by a standard density
estimation argument, as the degree of a vertex in the ε-graph is a consistent density esti-
mator (see Proposition 29).

Proof of Corollary 9. Follows similarly as Theorem 8 by applying Proposition 5. The
results on the minimal degree and the spectral gap can be found in Proposition 30 and Theo-
rem 7. The last statement follows from the convergence of the degrees, see Proposition 30.

7.4 Weighted Graphs

For weighted graphs, we use the following results from the literature.

Proposition 26 (Spectral gap in weighted graphs) 1. For any row-stochastic ma-
trix P ,

λ2 ≤
1

2
max
i,j

n∑
k=1

∣∣wik
di
−
wjk
dj

∣∣ ≤ 1− nmin
i,j

wij
di
≤ 1− wmin

wmax
.

2. Consider a weighted graph G with edge weights 0 < wmin ≤ wij ≤ wmax and denote its
second eigenvalue by λ2,weighted. Consider the corresponding unweighted graph where
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all edge weights are replaced by 1, and denote its second eigenvalue by λ2,unweighted.
Then we have

(1− λ2,unweighted) ·
wmin

wmax
≤ (1− λ2,weighted) ≤ (1− λ2,unweighted) ·

wmax

wmin
.

Proof.

1. This bound was obtained by Zenger (1972), see also Section 2.5 of Seneta (2006) for
a discussion. Note that the second inequality is far from being tight. But in our
application, both bounds lead to similar results.

2. This statement follows directly from the well-known representation of the second
eigenvalue µ2 of the normalized graph Laplacian Lsym (see Sec. 1.2 in Chung, 1997),

µ2 = inf
f∈Rn

∑n
i,j=1wij(fi − fj)2

minc∈R
∑n

i=1 di(fi − c)2
.

Note that the eigenvalue µ2 of the normalized Laplacian and the eigenvalue λ2 of the
random walk matrix P are in relation 1− λ2 = µ2.

Proof of Theorem 10. Follows directly from plugging in the first part of Proposition 26
in Proposition 5.

Proof of Theorem 11. We split

∣∣∣∣nRij − 1

p(Xi)
− 1

p(Xj)

∣∣∣∣ ≤ ∣∣∣∣nRij − n

di
− n

dj

∣∣∣∣+

∣∣∣∣ ndi +
n

dj
− 1

p(Xi)
− 1

p(Xj)

∣∣∣∣ .
Under the given assumption, the second term on the right hand side converges to 0 a.s.
by a standard kernel density estimation argument (e.g., Section 9 of Devroye and Lugosi,
2001). The main work is the first term on the right hand side. We treat upper and lower
bounds of Rij − 1/di − 1/dj separately.

To get a lower bound, recall that by Proposition 15 we have

Rij ≥
Qij

1 + wijQij
,

where Qij = 1/(di − wij) + 1/(dj − wij) and wij is the weight of the edge between i and j.
Observe that under the given conditions, for any two fixed points Xi, Xj the Gaussian edge
weight wij converges to 0 (as σ → 0). Thus

n

(
Rij −

1

di
− 1

dj

)
≥ n

(
Qij

1 + wijQij
− 1

di
− 1

dj

)
→ 0 a.s.

To treat the upper bound, we define the ε-truncated Gauss graph Gε as the graph with
edge weights

wεij :=

{
wij if ‖Xi −Xj‖ ≤ ε,
0 else.
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Let dεi =
∑n

j=1w
ε
ij . Because of wεij ≤ wij and Rayleigh’s principle, we have Rij ≤ Rεij ,

where Rε denotes the resistance of the ε-truncated Gauss graph. Obviously,

nRij −
(
n

di
+
n

dj

)
≤
∣∣∣∣nRεij − ( ndi +

n

dj

)∣∣∣∣
≤

∣∣∣∣∣nRεij −
(
n

dεi
+
n

dεj

)∣∣∣∣∣︸ ︷︷ ︸
(∗)

+

∣∣∣∣∣
(
n

dεi
+
n

dεj

)
−
(
n

di
+
n

dj

)∣∣∣∣∣︸ ︷︷ ︸
(∗∗)

.

To bound term (∗∗) we show that the degrees in the truncated graph converge to the ones
in the non-truncated graph. To see this, note that

E
(dεi
n

∣∣∣ Xi

)
=

1

(2π)
d
2

1

σd

∫
B(Xi,ε)

e
−‖Xi−y‖

2

2σ2 p(y) dy

=
1

(2π)
d
2

∫
B(0, ε

σ
)
e−
‖z‖2
2 p(Xi + σz) dz

= E
(di
n

∣∣∣ Xi

)
− 1

(2π)
d
2

∫
Rd\B(0, ε

σ
)
e−
‖z‖2
2 p(Xi + σz) dz.

Exploiting that

1

(2π)
d
2

∫
Rd\B(0, ε

σ
)
e−
‖z‖2
2 ≤ 1

(2π)
d
2

e−
ε2

4σ2

∫
Rd
e−
‖z‖2
4

≤ 2
d
2 e−

ε2

4σ2 = 2
d
2

1

(nεd+2)
1
4

we obtain the convergence of the expectations: under the assumptions on n and σ from the
theorem, ∣∣∣ E

(dεi
n

∣∣∣ Xi

)
− E

(di
n

∣∣∣ Xi

) ∣∣∣ → 0.

Now, a probabilistic bound for term (∗∗) can be obtained by standard concentration argu-
ments.

We now bound term (∗). Up to now, our argument holds for arbitrary ε. For this last step,
we now require that ε satisfies σ2 = ω(ε2/ log(nεd+2)). Note that for this choice of ε, the
truncated Gaussian graph “converges” to the non-truncated graph, as we truncate less and
less weight.

Denote by λε,weighted the eigenvalues of the ε-truncated Gauss graph, and by wεmin, wεmax

its minimal and maximal edge weights. Also consider the graph G′′ that is the unweighted
version of the ε-truncated Gauss graph Gε . Note that G′′ coincides with the standard
ε-graph. We denote its eigenvalues by λε,unweighted. By applying Proposition 5, Corollary 8
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and Proposition 26 we get∣∣∣∣∣nRεij −
(
n

dεi
+
n

dεj

)∣∣∣∣∣ ≤ wεmax

dεmin

(
1

1− λε,weighted2

+ 2

)(
n

dεi
+
n

dεj

)
≤ wεmax

dεmin

(
wεmax

wεmin

1

1− λε,unweighted2

+ 2

)(
n

dεi
+
n

dεj

)
(6)

where the first inequality holds with probability at least 1 − c1n exp(−c2nσd) −
c3 exp(−c4nσd)/σd. By (∗∗) we already know that the last factor in (6) converges to a
constant: (

n

dεi
+
n

dεj

)
→ 1/p(Xi) + 1/p(Xj).

For the other factors of Term (6) we use the following quantities:

wεmin ≥
1

σd
exp(− ε2

2σ2
)

wεmax ≤
1

σd

dεmin ≥ nεdwεmin

1− λε,unweighted2 ≥ ε2

Plugging these quantities in (6) and exploiting σ2 = ω(ε2/ log(nεd+2)) leads to the desired
convergence of (∗) to 0.

Proof of Corollary 13. We use the result from Theorem 4 in Chung and Radcliffe (2011)
which states that under the assumption that the minimal expected degree dmin satisfies
dmin/ log(n)→∞, then with probability at least 1− 1/n the spectral gap is bounded by a
term of the order O(log(2n)/dmin). Plugging this in Part (2) of Proposition 5 shows that
with high probability,

∣∣∣ 1
vol(G)Cij −

1
di
− 1

dj

∣∣∣
1
di

+ 1
dj

s ≤
(

dmin

log(2n)
+ 2

)
1

dmin
= O

(
1

log(2n)

)
.

Proof of Corollary 14. The expected degree of each vertex is n(pwithin + pbetween)/2,
the expected volume of the graph is n2(pwithin + pbetween)/2. The matrix A has the form(
pJ qJ
qJ pJ

)
where J is the (n/2 × n/2)-matrix of all ones and p = pwithin and q = pbetween.

The expected degree of all vertices is n(p + q)/2. Hence, D−1/2AD−1/2 = 2
n(p+q) · A. This

matrix has rank 2, its largest eigenvalue is 1 (with eigenvector the constant 1 vector), the
other eigenvalue is (p− q)/(p+ q) with eigenvector (1, ..., 1,−1, ...,−1). Hence, the spectral
gap in this model is 2q/(p+ q).
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Under the assumption that p = ω(log(n)/n), the deviations in Theorem 12 converge to 0.
Plugging the spectral gap in our bound in Proposition 5 shows that with high probability,

n(pwithin + pbetween)

2
·
∣∣∣∣ 1

vol(G)
Hij −

1

di

∣∣∣∣ ≤ 4

npbetween
+

4

n(pwithin + pbetween)

= O

(
1

npbetween

)
.

8. Discussion

We have presented different strategies to prove that in many large graphs the commute
distance can be approximated by 1/di + 1/dj . Both our approaches tell a similar story.
Our result holds as soon as there are “enough disjoint paths” between i and j, compared
to the size of the graph, and the minimal degree is “large enough” compared to n. Most
relevant for machine learning, our results hold for all kinds of random geometric graphs
(ε-graphs, kNN graphs, Gaussian similarity graphs). Here, the limit distance function
dist(i, j) = 1/di + 1/dj is meaningless: It just considers the local density (the degree) at
the two vertices, but does not take into account any global property such as the cluster
structure of the graph. As the speed of convergence is very fast (for example, of the order
1/n in the case of Gaussian similarity graphs), the use of the raw commute distance should
be discouraged even on moderate sized graphs.

An important point to note is that the results on the degeneracy of the hitting and
commute times are not due to pathologies such as a “misconstruction” of the graphs or
“wrong scaling constants”. For example, in the random geometric graph setting the graph
Laplacian can be proved to converge to the Laplace-Beltrami operator on the underlying
space under similar assumptions as the ones above (Hein et al., 2007). But even though the
Laplacian itself converges to a meaningful limit, the resistance distance, which is computed
based on point evaluations of the inverse of this Laplacian, does not converge to a useful
limit.

There are two important classes of graphs that are not covered in our approach. In power
law graphs as well as in grid-like graphs, the minimal degree is constant, thus our results
do not lead to tight bounds. The resistance distances on grid-like graphs has been studied
in some particular cases. For example, Cserti (2000) and Wu (2004) prove explicit formulas
for the resistance on regular one-and two-dimensional grids, and Benjamini and Rossignol
(2008) characterize the variance of the resistance on random Bernoulli grids.

Beyond the commute distance, there exists a large variety of distance functions on graphs,
and it is an interesting question to study their convergence behavior as n → ∞. In par-
ticular, several authors constructed parametric families of distances that include both the
shortest path distance and commute distance as special cases (e.g., Yen et al., 2008, Cheb-
otarev, 2011, Alamgir and von Luxburg, 2011). For such families, the limit behavior is
particularly interesting. On the one hand, it is well-known that shortest path distances
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on random geometric graphs converge to the Euclidean or geodesic distances in the un-
derlying space (Bernstein et al., 2000). On the other hand, as we have just seen in this
paper, the commute distance converges to a meaningless distance function. Hence it is an
interesting problem to characterize those distances that are degenerate. For the family of
p-resistance distances this question has been solved in Alamgir and von Luxburg (2011). If
p > p∗ for some critical threshold p∗, we are in a similar regime as the commute distance
and the p-resistance is degenerate. For p < p∗ the commute distance is in a similar regime
as the shortest path distance and is not degenerate. We believe that a solution to this
question would be particularly interesting for the family of logarithmic forest distances by
Chebotarev (2011). This family has many nice properties and, in our experience, tends to
perform nicely in practice. So what are the parameters α for which we can guarantee that
the distance is not degenerate as n→∞?
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Appendix A. General Properties of Random Geometric Graphs

In this appendix we collect some basic results on random geometric graphs. These results
are well-known, cf. Penrose (2003), but we did not find any reference where the material
is presented in the way we need it (often the results are used implicitly or are tailored
towards particular applications).

In the following, assume that X := supp(p) is a valid region according to Definition 1.
Recall the definition of the boundary constant α in the valid region.

A convenient tool for dealing with random geometric graphs is the following well-known
concentration inequality for binomial random variables with small p (originally found by
Chernoff, 1952 and Hoeffding, 1963, we use the version as published in Angluin and Valiant,
1977).

Proposition 27 (Concentration inequalities) Let N be a Bin(n, p)-distributed random
variable. Then, for all δ ∈]0, 1],

P
(
N ≤ (1− δ)np

)
≤ exp(−1

3
δ2np)

P
(
N ≥ (1 + δ)np

)
≤ exp(−1

3
δ2np).

We will see below that computing expected, minimum and maximum degrees in random
geometric graphs always boils down to counting the number of data points in certain balls

1790



Hitting and Commute Times in Large Random Neighborhood Graphs

in the space. The following proposition is a straightforward application of the concentration
inequality above and serves as “template” for all later proofs.

Proposition 28 (Counting sample points) Consider a sample X1, . . . , Xn drawn i.i.d.
according to density p on X . Let B1, . . . , BK be a fixed collection of subsets of X (the Bi do
not need to be disjoint). Denote by bmin := mini=1,...,K

∫
Bi
p(x)dx the minimal probability

mass of the sets Bi (similarly by bmax the maximal probability mass), and by Nmin and Nmax

the minimal (resp. maximal) number of sample points in the sets Bi. Then for all δ ∈]0, 1]

P
(
Nmax ≥ (1 + δ)nbmax

)
≤ K · exp(−δ2nbmax/3)

P
(
Nmin ≤ (1− δ)nbmin

)
≤ K · exp(−δ2nbmin/3).

Proof. This is a straightforward application of Proposition 27 using the union bound.

When working with ε-graphs or kNN-graphs, we often need to know the degrees of the
vertices. As a rule of thumb, the expected degree of a vertex in the ε-graph is of the order
Θ(nεd), the expected degree of a vertex in both the symmetric and mutual kNN-graph is
of the order Θ(k). The expected kNN-distance is of the order Θ((k/n)1/d). Provided the
graph is “sufficiently connected” , all these rules of thumb also apply to the minimal and
maximal values of these quantities. The following propositions make these rules of thumb
explicit.

Proposition 29 (Degrees in the ε-graph) Consider an ε-graph on a valid region
X ⊂ Rd.

1. Then, for all δ ∈]0, 1], the minimal and maximal degrees in the ε-graph satisfy

P
(
dmax ≥ (1 + δ)nεdpmaxηd

)
≤ n · exp(−δ2nεdpmaxηd/3)

P
(
dmin ≤ (1− δ)nεdpminηdα

)
≤ n · exp(−δ2nεdpminηdα/3).

In particular, if nεd/ log n→∞, then these probabilities converge to 0 as n→∞.

2. If n→∞, ε→ 0 and nεd/ log n→∞, and the density p is continuous, then for each
interior point Xi ∈ X the degree is a consistent density estimate: di/(nε

dηd) −→ p(Xi)
a.s.

Proof. Part 1 follows by applying Proposition 28 to the balls of radius ε centered at the
data points. Note that for the bound on dmin, we need to take into account boundary
effects as only a part of the ε-ball around a boundary point is contained in X . This is
where the constant α comes in (recall the definition of α from the definition of a valid
region). Part 2 is a standard density estimation argument: the expected degree of Xi is
the expected number of points in the ε-ball around Xi. For ε small enough, the ε-ball
around Xi is completely contained in X and the density is approximately constant on this
ball because we assumed the density to be continuous. The expected number of points is
approximately nεdηdp(Xi) where ηd denotes the volume of a d-dimensional unit ball. The
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result now follows from Part 1.

Recall the definitions of the k-nearest neighbor radii: Rk(x) denotes the distance of x to
its k-nearest neighbor among the Xi, and the maximum and minimum values are denoted
Rk,max := maxi=1,...,nRk(Xi) and Rk,min := maxi=1,...,nRk(Xi). Also recall the definition of
the boundary constant α from the definition of a valid region.

Proposition 30 (Degrees in the kNN-graph) Consider a valid region X ⊂ Rd.

1. Define the constants a = 1/(2pmaxηd)
1/d and ã := 2/(pminηdα)1/d. Then

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ n exp(−k/3)

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/12).

If n→∞ and k/ log n→∞, then these probabilities converge to 0.

2. Moreover, with probability at least 1 − n exp(−c4k) the minimal and maximal degree
in both the symmetric and mutual kNN-graph are of the order Θ(k) (the constants
differ).

3. If the density is continuous, n → ∞, k/ log n → ∞ and additionally k/n → 0, then
in both the symmetric and the mutual kNN-graph, the degree of any fixed vertex vi in
the interior of X satisfies k/di → 1 a.s.

Proof. Part 1. Define the constant a = 1/(2pmaxηd)
1/d and the radius r := a (k/n)1/d, fix

a sample point x, and denote by µ(x) the probability mass of the ball around x with radius r.
Set µmax := rdηdpmax ≥ maxx∈X µ(x). Note that µmax < 1. Observe that Rk(x) ≤ r if and
only if there are at least k data points in the ball of radius r around x. Let M ∼ Bin(n, µ)
and V ∼ Bin(n, µmax). Note that by the choices of a and r we have E(V ) = k/2. All this
leads to

P
(
Rk(x) ≤ r

)
≤ P

(
M ≥ k

)
≤ P

(
V ≥ k

)
= P

(
V ≥ 2E(V )

)
.

Applying the concentration inequality of Proposition 27 (with δ := 1)) and using a union
bound leads to the following result for the minimal kNN-radius:

P
(
Rk,min ≤ a

(
k

n

)1/d )
≤ P

(
∃i : Rk(Xi) ≤ a

(
k

n

)1/d )
≤ n max

i=1,...,n

(
Rk(Xi) ≤ r

)
≤ n exp(−k/3).

By a similar approach we can prove the analogous statement for the maximal kNN-radius.
Note that for the bound on Rk,max we additionally need to take into account boundary
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effects: at the boundary of X , only a part of the ball around a point is contained in X ,
which affects the value of µmin. We thus define ã := 2/(pminηdα)1/d, r := ã(k/n)1/d, µmin :=
rdηdpminα where α ∈]0, 1] is the constant defined in the valid region. With V = Bin(n, µmin)
with EV = 2k we continue similarly to above and get (using δ = 1/2)

P
(
Rk,max ≥ ã

(
k

n

)1/d )
≤ n exp(−k/12).

Part 2. In the directed kNN-graph, the degree of each vertex is exactly k. Thus, in the
mutual kNN-graph, the maximum degree over all vertices is upper bounded by k, in the
symmetric kNN-graph the minimum degree over all vertices is lower bounded by k.

For the symmetric graph, observe that the maximal degree in the graph is bounded by the
maximal number of points in the balls of radius Rk,max centered at the data points. We
know that with high probability, a ball of radius Rk,max contains of the order Θ(nRdk,max)

points. Using Part 1 we know that with high probability, Rk,max is of the order (k/n)1/d.
Thus the maximal degree in the symmetric kNN-graph is of the order Θ(k), with high
probability.

In the mutual graph, observe that the minimal degree in the graph is bounded by the
minimal number of points in the balls of radius Rk,min centered at the data points. Then
the statement follows analogously to the last one.

Part 3, proof sketch. Consider a fixed point x in the interior of X . We know that both
in the symmetric and mutual kNN-graph, two points cannot be connected if their distance
is larger than Rk,max. As we know that Rk,max is of the order (k/n)1/d, under the growth
conditions on n and k this radius becomes arbitrarily small. Thus, because of the continuity
of the density, if n is large enough we can assume that the density in the ball B(x,Rk,max)
of radius Rk,max around x is approximately constant. Thus, all points y ∈ B(x,Rk,max)
have approximately the same k-nearest neighbor radius R := (k/(n · p(x)ηd))

1/d. Moreover,
by concentration arguments it is easy to see that the actual kNN-radii only deviate by a
factor 1± δ from their expected values.

Then, with high probability, all points inside of B(x,R(1 − δ)) are among the k nearest
neighbors of x, and all k nearest neighbors of x are inside B(x,R(1+δ)). On the other hand,
with high probability x is among the k nearest neighbors of all points y ∈ B(x,R(1 − δ)),
and not among the k nearest neighbors of any point outside of B(x,R(1 + δ)). Hence,
in the mutual kNN-graph, with high probability x is connected exactly to all points y ∈
B(x,R(1 − δ)). In the symmetric kNN-graph, x might additionally be connected to the
points in B(x,R(1+δ))\B(x,R(1−δ)). By construction, with high probability the number
of sample points in these balls is (1 + δ)k and (1− δ)k. Driving δ to 0 leads to the result.
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