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Extraction of peptide masses from a raw protein mass spectrum (MS) is

a challenging problem in computational biology, which can be recast as

sparse recovery problem. We discuss modifications of standard sparse re-

covery methods that accomodate non-negativity and heteroscedastic noise,

which are characteristic of MS data.

The non-negativity constraints are found to be extremely powerful, since an

approach combining non-negative least squares fitting and thresholding is

shown to outperform competing methods that explicitly promote sparsity via

some form of regularization.

By means of examples taken from the given data, we discuss that assump-

tions such as absence of model mis-specifications and an upper bound on the

coherence of the dictionary typically made within the usual sparse recovery

framework are not met. We show that the resulting gap between theory and

practice can be bridged by a suitable post-processing procedure.

1.1 Introduction

In the next two paragraphs, the reader is introduced to the underlying

practical problem and its formulation within a sparse recovery framework.
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Background. In recent years, protein mass spectrometry (MS) has become

a popular technology in systems biology and clinical research, where it

is used, among other things, to discover bio-markers and to enhance the

understanding of complex diseases. A central step in the pre-processing of

MS data all subsequent analyses, like e.g. sample classification, depend on

is the extraction of the biologically relevant components (peptides) from the

raw spectrum. Peptides emerge as isotopic patterns: the chemical elements

serving as building blocks of peptides naturally occur as isotopes differing in

the number of neutrons and hence (approximately) by an integer of atomic

mass units, such that a peptide produces a signal at multiple mass positions,

which becomes manifest in a series of regularly spaced peaks (see Figure 1.1).

The data are composed of intensities observed for a large number of mass-

per-charge (m/z) positions, which is typically in the ten to the hundred

thousands. The feature selection problem is to detect those m/z-positions

at which a peptide is located and to assign charge states (z) resulting from

ionization. In combination, one obtains a list of peptide masses.

Formulation as sparse recovery problem. On a high level, the problem

amounts to deconvolution, where, using a representation on a continuous

domain, the underlying signal composed of s isotopic patterns is given by

y∗(x) =

s∑
k=1

bk(ψ?ι)(x−µ∗k), ι(x−µ∗k) =
∑
l∈Z

αl(µ
∗
k; zk)δ

(
x− µ∗k −

l

zk

)
,

(1.1)

where x takes values within some specific interval of m/z-values, the {bk}sk=1

are positive weights (amplitudes) and ψ is a fixed localized function modeling

a smeared peak (the default being a Gaussian), which is convolved with the

function ι. The latter represents an isotopic pattern which is modeled as a

positive combination of Diracs centered at m/z-positions {µ∗k + l
zk
}, where

the weights {αl(µ∗k; zk)}l∈Z are computed according to a well-established

model for isotopic abundances (Senko et al., 1995) given the position µ∗k
of the leading peak (i.e. α0(µ

∗
k; zk) ≥ αl(µ

∗
k; zk), l 6= 0) and the charge zk.

In terms of model (1.1), the task to be performed is to find the positions

{µ∗k}sk=1 and the corresponding charges {zk}sk=1 as well as the amplitudes

{bk}sk=1. For ’benign’ spectra, the problem can be solved easily in two steps.

First, one detects all peaks {δ(x−µ∗k−
l
zk

)} of a significantly high amplitude

(αl(µ
∗
k; zk) decays rapidly with |l|). Second, nearby peaks are merged to form

groups, each group representing an isotopic pattern. The charges {zk} can

be inferred from the spacings of the peaks within the same group. For more

complicated spectra, this approach is little suitable. When the supports
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Figure 1.1: Left panel: Two isotopic patterns whose intensities differ drasti-
cally. Right panel: Two instances of overlapping isotopic patterns.

of multiple patterns corresponding to different peptides overlap (see the

right panel of Figure 1.1), peaks are likely to be overlooked in the first step

because of the function ψ smearing the peaks out. But even if that does not

happen, one cannot hope to correctly assemble detected peaks according to

the pattern they belong to in the second step, since nearby peaks may belong

to different patterns. Approaches based on template matching (see Figure

1.2 for an illustration) circumvent these evident shortcomings by directly

tackling the problem at the level of isotope patterns. In essence, template

matching involves a sparse regression scheme in which the dictionary consists

of templates matching the shape of isotope patterns, exploiting that, as

mentioned above, the amplitudes {αl} are known given location and charge.

Since the composition of the spectrum is unknown in advance, templates

are placed at positions {µj}pj=1 covering the whole m/z-range. This yields

a dictionary of size p · Z, where p is in the order of the number n of

m/z-positions and Z equals the number of possible charge states, typically

z ∈ {1, 2, 3, 4}. It then remains to select a small subset of the templates

yielding a good fit to the given data. More specifically, after sampling (1.1)

at m/z-positions {xi}ni=1, obtaining intensities y∗i = y∗(xi), i = 1, . . . , n, the
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following model is assumed.

y∗i =

Z∑
z=1

p∑
j=1

β∗z,jφz,j(xi), i = 1, . . . , n, ⇐⇒ y∗ = Φβ∗, (1.2)

where

φz,j(x) =
∑
l∈Z

α(z;µj)(ψ ? δ)

(
x− µj +

l

z

)
are the templates. The coefficient vector β∗ is related to the {bk}sk=1 in (1.1)

in the sense that β∗z,j = bk if φz,j(·) = ι(·−µ∗k) and β∗z,j = 0 otherwise. Since

one uses much more templates in (1.2) than there are corresponding isotopic

patterns in the spectrum, β∗ is sparse.

Figure 1.2: Illustration of template matching. The boxes in the top part of
the figure contain nine templates {φz,j} whose shape varies in dependency of
mass-over-charge (m/z) and charge (z). The bottom part of the Figure depicts
a toy spectrum generated by combining four different templates and adding
a small amount of random noise. The arrows indicate how the templates are
matched to their counterparts in the spectrum. The signal in the middle is
an overlap of two patterns which are accordingly fitted by a combination of
templates, which is indicated by a ’+’.

In practice, one does not observe {y∗i }ni=1, but instead noisy versions {yi}ni=1.

This makes template matching, i.e. finding the support of β∗, a highly non-

trivial task even in the case where n > p · Z, because noise can be fitted
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by templates whose coefficient in (1.2) is in fact zero (in the sequel, these

templates are referred to as ’off-support templates’). Consequently, one has

to find a suitable compromise between data fidelity and model complexity

as quantified by the number of templates one assigns a coefficient different

from zero. According to the paradigm established in recent years, solving the

problem by regularized regression with a sparsity-promoting term appears

to be a natural approach. One might also think of greedy approximation

schemes, where templates are successively added until the fit cannot be

significantly improved. For the latter, regularization is performed implicitly.

Outline. As discussed in the following chapters, heteroscedastic noise

(cf. left panel of Figure 1.1) has to be accommodated. Consequently, modi-

fications of standard algorithms are indispensable. The non-negativity con-

straint on β∗ turns out to be extremely powerful. In Section 1.3, we describe

an approach combining non-negative least squares and thresholding, which

yields excellent results in practice, outperforming competing methods em-

ploying regularization. Various modelling issues are discussed in Section 1.4.

In particular, the problem of model mis-specifications casts serious doubts

on the usefulness of the sparse recovery framework used in theory for the

given practical application.

Notation. For a matrix A ∈ Rn×m, AJ denotes the matrix one obtains by

extracting the columns corresponding to an index set J . For j = 1, . . . ,m,

Aj denotes the j-th column of A. Likewise, for v ∈ Rm, vJ is the sub-vector

corresponding to J . Its complement is denoted by Jc. The notation v ≥ 0

means that all components of v are non-negative.

1.2 Adapting sparse recovery methods to non-negativity and heteroscedasticity

Dealing with strong heteroscedasticity is fundamental to a successful analysis

of MS data. What happens if heteroscedasticity is ignored can be well

understood from Figure 1.3 below. Both signals emerge in different m/z-

regions of the same spectrum, and both are equally well distinguishable

from noise around them. Inspecting the horizontal axes in the two plots,

the signal achieves an intensity of around 150, whereas the noise achieves

intensities as large as 40 in the left plot. In the right panel, we have

intensities of roughly 30 for the signal and less than 10 for the noise.

When applying a template matching scheme, this has the consequence that

templates just fitting noise in the left panel are assigned larger coefficients

than the template matching the signal on the right panel. If, as usually,
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Figure 1.3: Heteroscedasticity in MS data. The two panels display two
patterns occuring in different m/z-regions of the same spectrum. Note the
different scalings of the vertical axis.

the selection of templates is based on the size of their coefficients, this

has the effect that over-selection is necessary to include the signal of lower

intensity. We conclude that absolute signal strength is not meaningful for

the data under consideration. Instead, a quantification relative to the local

noise level is more appropriate. In the remainder of this section, we have

a closer look at two popular sparse recovery methods for which we suggest

modifications that take heteroscedasticity into account. The positive effect

of these modifications is demonstrated experimentally.

Adapting the lasso. In conjunction with a template matching approach

similar to our description in Section 1.1, Renard et al. (2008) propose to use

the lasso (Tibshirani, 1996) with non-negativity constraints to recover β∗ in

model (1.2). The non-negative lasso is defined as a minimizer of the problem

min
β
‖y −Φβ‖22 + λ1>β subject to β ≥ 0, (1.3)

with regularization parameter λ ≥ 0. In view of strong local differences in

noise and intensity levels, choosing the amount of regularization globally

yields poor results. Renard et al. (2008) attack this problem by cutting the

spectrum into pieces and fitting each piece separately. While this strategy

partially solves the issue, it poses new problems arising from the division of

the spectrum. We instead propose to use a more direct adjustment related

to the adaptive lasso (Zou, 2006), albeit the motivation is a different one.

Given local estimations σ̂j = σ̂(µj), j = 1, . . . , p, of the noise level for

the m/z-positions {µj}pj=1 at which a template is placed, we minimize the
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weighted non-negative lasso criterion

min
β
‖y −Φβ‖22 + λ

Z∑
z=1

p∑
j=1

σ̂jβz,j subject to β ≥ 0. (1.4)

The estimates {σ̂j}pj=1 are obtained as the median of the intensities within a

sliding window, whose size constitutes a tuning parameter. Needless to say,

one might employ more sophisticated techniques to obtain these estimates.

By making the amount of regularization proportional to the noise level in

a component-specific way, we aim at preventing over-selection in high-noise

regions and ensuring detection of small signals in low-noise regions. The

modification can be employed in connection with any sparsity-promoting

regularizer in a generic way.

Adapting orthogonal matching pursuit. Orthogonal matching pursuit

(OMP, Algorithm 1.1) generates a sparse approximation in a greedy way. Its

properties are analyzed, among others, in Tropp (2004) and Zhang (2009).

The rather close connection between `1-regularization (1.3) and OMP is

unveiled in Efron et al. (2004).

Algorithm 1.1 Orthogonal matching pursuit (OMP)

Input: Φ, y, tolerance ε ≥ 0, positive integer s ≤ min{n, p · Z}.
A← ∅, r ← y, β̂ ← 0.
while ‖Φ>r‖∞ > ε and |A| < s do

ĵ ← argmaxj∈Ac |Φ>j r|, A← A ∪ {ĵ}.
β̂A ← (Φ>AΦA)−1Φ>Ay.
r ← y −ΦAβ̂A.

end while
return β̂

Algorithm 1.1 is not a suitable answer to the template matching problem

for the aforementioned reasons. We here present a modification of OMP

that integrates both heteroscedasticity and non-negativity of β∗. As for the

lasso in the preceding paragraph, we assume that we are given estimates

of the local noise levels {σ̂j}pj=1. Comparing Algorithms 1.1 and 1.2, there

are two major differences. First, the active set A is augmented by the index

which maximizes Φ>j r/σ̂j instead of |Φ>j r|. The division by σ̂j integrates

heteroscedasticity by preventing off-support templates in high noise regions

from being included into A. The absolute value is omitted because of the

non-negativity constraint imposed on β̂: it is not hard to verify that after ĵ

has been included into A, the corresponding sign of the corresponding least
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Algorithm 1.2 Weighted non-negative orthogonal matching pursuit

Input: Φ, y, tolerance ε ≥ 0, positive integer s ≤ min{n, p · Z}.
A← ∅, r ← y, β̂ ← 0.
while maxj Φ>j r

/
σ̂j > ε and |A| < s do

ĵ ← argmaxj∈Ac Φ>j r, A← A ∪ {ĵ}.
β̃ ← β̂
β̂A ← (Φ>AΦA)−1Φ>Ay.
% Backward loop
while ∃j : β̂j < 0 do

Set αj ← β̃j/(β̃j − β̂j) if β̃j > 0 and αj ← 0 otherwise, j = 1, . . . , p · Z.
j∗ ← argmin{j : αj > 0}, α̂← αj∗ .
β̃ ← β̃ + α̂(β̂ − β̃)
A← A \ {j∗}
β̂A ← (Φ>AΦA)−1Φ>Ay

end while
% End of backward loop
r ← y −ΦAβ̂A.

end while
return β̂

squares coefficient β̂ĵ equals the sign of Φ>
ĵ
r. While β̂ĵ is guaranteed to be

feasible, this is not necessarily the case for the whole sub-vector β̂A. If β̂A

fails to be feasible, a backward loop is entered whose construction is adopted

from the Lawson-Hanson active set algorithm (Lawson and Hanson, 1987)

for solving the non-negative least squares problem (cf. (1.6) below). In fact,

the proposed Algorithm 1.2 coincides with the Lawson-Hanson algorithm if

the {σ̂j}pj=1 are constant, ε = 0 and s = min{n, p · Z}. The backward loop

can be understood as follows. Given a current iterate β̃, one performs an

update of the form β̃+α(β̂−β̃), where α ∈ (0, 1] is a step size. A step size of

α = 1 corresponds to the least squares solution restricted to the active set.

Since the latter may not be feasible, one proceeds into the direction β̂ − β̃
until one of the coefficients of the active set drops to zero. The procedure is

repeated with a reduced active set. The possibility of backward steps allows

the algorithm to correct itself by dropping elements that have been included

into the active set at previous iterations. This is unlike the standard OMP,

which is a pure forward selection scheme.

Illustration. To demonstrate that the set of modifications can yield a

drastic improvement, we present the result of an experiment, where we

generate random artificial spectra of the form

yi = 2φ1(xi) + φ2(xi) + 0.5φ3(xi) + σ(xi)εi, (1.5)



1.2 Adapting sparse recovery methods to non-negativity and heteroscedasticity 9

where the sampling points {xi}ni=1, n = 5000, are placed evenly along the

m/z-range [1000, 1150]. The functions {φj}3j=1 represent isotopic patterns

of charge z = 1 placed at the m/z-positions {1025, 1075, 1125}. The random

variables {εi}ni=1 constitute an additive error component. They are drawn

i.i.d. from a truncated Gaussian distribution supported on [0,∞) with stan-

dard deviation 0.2. Heteroscedasticity is induced by the positive function

σ(x) which is constant on the sub-intervals [1000, 1050), [1050, 1100), [1100, 1150].

Figure 1.4 displays one instance of such a spectrum. The aim is to recover

{φj}3j=1 from a dictionary of 600 templates placed evenly in the range

[1000, 1150], that is to find the support of β∗ after re-writing (1.5) as

y = Φβ∗ + ξ = [Φ1Φ2Φ3 Φ4 . . .Φ600] [ 2 1 0.5 0 . . . 0 ]> + ξ,

y = (yi), Φj = (φj(xi)), j = 1, . . . , p, ξ = (σ(xi)εi).
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Figure 1.4: An artificial mass spectrum generated randomly according to
(1.5). The coloured circles indicate the positions of the initial peak of the
patterns (φ1 = black, φ2 = red, φ3 = green). The function σ is drawn in grey.

By construction, φj is centered at the j-th sub-interval on which σ is

constant, j = 1, . . . , 3, while the amplitudes {2, 1, 0.5} have been chosen

such that the corresponding signal-to-noise ratios are equal. We generate

100 random spectra from (1.5). For each instance, we compute the solution

paths (Efron et al. (2004)) of both the non-negative lasso (1.3) and its

weighted counterpart (1.4) as well as all intermediate solutions of OMP and

its modification given by Algorithm 1.2. For simplicity the {σ̂j} are obtained

by evaluating the function σ. The results of the experiments displayed in

Figure 1.5 show unambiguously that φ3 cannot be distinguished from the

off-support templates φ4, . . . , φ600 if heteroscedastic noise is ignored. The

proposed modifications turn out to be an effective means to counteract that
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problem, since on the right halves of the plots, φ3 clearly stands out from

the noise.

Figure 1.5: Upper panel: Solution paths of the non-negative lasso (1.3)
(left), solution paths of the weighted non-negative lasso (1.4) (right). Lower
panel: Output of OMP (Algorithm 1.1, left) and output of its modification
(Algorithm 1.2, right) after running the (outer) while loop steps times, where
steps ranges from 1 to 50. Note that for Algorithm 1.2 (right), {β̂j/σ̂j} is
on the vertical axis. Colours: φ1 = black, φ2 = red, φ3 = green, off-support
templates φ4, . . . , φ600= grey.

1.3 A pure fitting approach and its advantages

An alternative to conventional sparse approximation schemes as discussed

in the preceding section is a pure fitting approach applied with great success

in Slawski et al. (2012), in which the `1-regularizer is discarded from (1.4),

and a sparse model is enforced by subsequently applying hard thresholding

with a threshold depending on an estimate of the local noise level, i.e. given

a minimizer β̂ of the non-negative least squares criterion

min
β
‖y −Φβ‖22 subject to β ≥ 0, (1.6)
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and a threshold t ≥ 0, we obtain β̂(t) defined component-wise by

β̂z,j(t) =

{
β̂z,j if β̂z,j ≥ tσ̂j
0 otherwise

, z = 1, . . . , Z, j = 1, . . . , p,

and {σ̂j}pj=1 are, as in the previous section, local estimates of the noise

level, computed as medians of the intensities within a sliding window. At

first glance, this approach seems to be entirely naive, since in the absence

of a regularizer, one would expect over-adaption to the noise, making sparse

recovery via subsequent thresholding a hopeless task. This turns out not

to be the case, because non-negativity of both Φ and β prevents the usual

effect of canncellation of large positive and negative terms.

Sparse recovery by non-negativity constraints. The empirical success

(see Figure 1.6 below) of the fitting-plus-thresholding approach to perform

sparse recovery of non-negative signals is not a coincidence. To make our

exposition self-contained, the goal of this paragraph is to provide the reader

the main concepts an analysis of that approach is based upon. To this

end, we follow the lines of Slawski and Hein (2011), where we provide a

solid theoretical basis for the idea of of recovering a sparse, non-negative

signal without regularization even in the presence of noise, thereby extending

prior work addressing the noiseless case (Bruckstein et al., 2008; Wang and

Tang, 2009; Donoho and Tanner, 2010; Wang et al., 2011). In these papers,

the authors study uniqueness of non-negative solutions of underdetermined

linear systems of equations

Φβ = y subject to β ≥ 0 (1.7)

given the existence of a sparse solution β∗ with support set S = {j : β∗j > 0}
of cardinality s. For a matrix A ∈ Rn×m, ARm+ = {Ax : x ∈ Rm+} denotes

the polyhedral cone generated by the columns of A. In geometrical terms,

the condition for uniqueness is then given by the following statement.

Proposition 1.1. If ΦSRs+ is a face of ΦRp+ and the columns of Φ are in

general position in Rn, then the constrained linear system (1.7) has β∗ as

its unique solution.

Proof. By definition, since ΦSRs+ is a face of ΦRp+, there is a hyperplane

separating ΦSRs+ from ΦScRp−s+ , i.e. there exists a w ∈ Rn such that

〈Φj ,w〉 = 0, j ∈ S, 〈Φj ,w〉 > 0, j ∈ Sc. Assume that there is a second

solution β∗ + δ, δ 6= 0. Expand ΦS(β∗S + δS) + ΦScδSc = y. Multiplying

both sides by w> yields
∑

j∈Sc 〈Φj ,w〉 δj = 0. Since β∗Sc = 0, feasibility

requires δj ≥ 0, j ∈ Sc. All inner products within the sum are positive,
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concluding that δSc = 0. General position implies δS = 0.

This statement suggest that there are situations where sparse recovery is

possible by enforcing non-negativity. In fact, Donoho and Tanner (2010)

(Corollary 4.1, Theorem 4.1) give explicit examples of Φ allowing for sparse

recovery for a support size s proportional to p. In order to extend Proposition

1.1 to a noisy setup with i.i.d. zero-mean sub-Gaussian error terms {εi}ni=1,

Slawski and Hein (2011) introduce an incoherence constant that naturally

builds upon the notion of a face. Recall that the cone ΦSRs+ generated by

the columns of the support is a face if there is a hyperplane separating it

from the rest of the cone. The idea of the separating hyperplane constant

τ̂(S) is to quantify separation. It is defined as the optimum value of the

following quadratic program (it is assumed that ‖Φj‖2 = O(
√
n) for all j).

τ̂(S) = max
τ,w

τ

subject to
1√
n

Φ>Sw = 0,
1√
n

Φ>Scw ≥ τ1, ‖w‖2 ≤ 1.

In geometric terms, τ̂(S) equals the distance of the subspace spanned by

the columns of ΦS and the convex hull of the columns of ΦSc . Intuitively,

the stronger the separation as indicated by the size of τ̂(S), the less sparse

recovery will be affected by noise. Accordingly, a rough version of the main

result in Slawski and Hein (2011) is as follows.

Theorem 1.2. (Slawski and Hein, 2011). Consider the linear model y =

Φβ∗+ε, where the entries {εi}ni=1 of ε are i.i.d. zero-mean sub-Gaussian with

parameter σ > 0, and β∗ is as in Proposition 1.1. Consider β̂(t) obtained

by thresholding a non-negative least squares estimator as defined in (1.6). If

t > 2σ
τ̂2(S)

√
2 log p
n and minj∈S β

∗
j > t̃, t̃ = tC(S), for a constant C(S), β̂(t)

satisfies ‖β̂(t)− β∗‖∞ ≤ t̃, and {j : β̂j(t) > 0} = S, with high probability.

To the best of our knowledge, this is the first result about sparse recovery

by non-negative least squares in a high-dimensional statistical inference

framework. Yet, the result bears some resemblance with a similar result

of Wainwright (2009) (Theorem 1) about support recovery of the lasso.

Performance in practice. With regard to the template matching problem

one encounters for MS data, the fitting-plus-thresholding approach offers

several advantages over `1-regularized fitting.

With the normalization supx φz,j(x) = 1 for all j, z, the coefficient β̂z,j
equals the estimated amplitude of the highest peak of the template, such

that β̂z,j/σ̂j may be interpreted as signal-to-noise ratio and thresholding
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Figure 1.6: Precision-recall plot for the Myoglobin spectrum as described in the text.

amounts to discarding all templates whose signal-to-noise ratio falls below

a specific value. This makes the parameter choice easier compared to that

of a non-intuitive regularization parameter, notably for MS experts.

The `∞-normalization of the templates is natural, since it enhances in-

terpretability of the coefficients. The pure fitting approach allows one to

choose the most convenient normalization freely, as opposed to regularized

fitting where the normalization may cause an implicit preference for specific

elements of the dictionary.

Thresholding is computationally attractive, since it is applied to precisely

one non-negative least squares fit. For the `1-regularized criteria (1.3) and

(1.4), the entire solution path cannot be computed in a reasonable amount of

time: with both n and p in the several ten thousands, an active set algorithm

is simply too slow, such that different algorithms in combination with a grid

search for λ are required.

These aspects lead to an excellent performance in practice. We here present

the results obtained on a MALDI-TOF spectrum of Myoglobin and compare

them to those of `1-regularization without (1.3) and with weights (1.4) as

wells as to OMP and its weighted counterpart. A manual annotation of the

spectrum by an MS expert is used to classify selected templates either as

true or false positives, which yields the Precision-Recall curve in Figure 1.6.

Each point in the (Recall, Precision)-plane corresponds to a specific choice

of the central tuning parameter, which is specific to the method employed

(threshold, regularization parameter, number of iterations (OMP)).
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1.4 Systematic and random error

In theory, one conventionally assumes that the model is correctly specified

− an ideal situation rarely encountered in practice. We discuss the conse-

quences of two common mis-specifications of the linear model (1.2) with

regard to sparse recovery. In a second paragraph, we discuss alternatives to

squared loss (1.6) one could argue for in view of specific properties of MS

data. This issue deserves some attention, since for our problem ’denoising’

and ’sparse recovery’ are tightly connected, such that the choice of the loss

function has considerable influence on the performance.

Effects of sampling and misspecified templates. Let us look more closely

at the transition from the continuous model formulation (1.1) to the dis-

crete one. Sampling yields pairs {(xi, y∗i )}ni=1, which are related by the linear

model (1.2). However, (1.2) can hold only if the positions {µj}pj=1 comprise

the positions {µ∗k}sk=1 of the isotopic patterns. In practice, the {µj}pj=1 are

chosen as a subset of the sampling points, so that sampling at the unknown

m/z positions at which there is actually a peptide in the spectrum would

be required, i.e. {xi}ni=1 ⊃ {µ∗k}sk=1 would have to hold true. We conclude

that the matrix Φ is not correctly specified in practice due to imprecision

induced by sampling. Placing densely templates at subset of all positions

{xi}ni=1 which have been sampled leads to a phenomenon we refer to as

’peak splitting’. Consider an isotopic pattern of amplitude β∗ located at

µ∗ and let µl, µr, µl < µ∗ < µr, be the m/z-positions of templates in

the dictionary closest to µ∗ from the left and right, respectively. One ob-

serves that the corresponding non-negative least squares coefficients β̂l, β̂r
are both assigned positive values which are roughly proportional to the dis-

tances |µl − µ∗|, |µr − µ∗| and β∗. In particular, if |µl − µ∗| ≈ |µr − µ∗| is

small, the weight β∗ is divided into two weights β̂l, β̂r of about the same

size. Consequently, any sparse recovery method is very likely to select both

templates located at µl and µr. The situation is mimicked in Figure 1.7.

The plot suggests that the lasso (1.3) is not an answer to the problem, since

only a high amount of regularization leading to a poor fit would achieve a

selection of only one template.

A second reason for ’peak splitting’ is mis-specification of the function ψ

(cf. model (1.1)) that defines the shape of the smeared out peaks emerging

in the spectrum. The function ψ implicitly depends on a parameter control-

ling its spread, which may additionally be position-dependent. While Slawski

et al. (2012) have developed a reliable procedure for estimating the spreads

in a data-driven way, the estimates may yield a poor fit at some places of the
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Figure 1.7: Systematic errors in the template model: consequences of a
limited sampling rate. The right half of the plot displays the solution path of
the non-negative lasso.

spectrum. Figure 1.8 shows the consequences of an underestimation of the

spread. In order to avoid the effect arising from sampling, we work within

an idealized setting where the true m/z-position of the pattern (denoted by

’correct’ template in Figure 1.8) is included in the set of positions {µj}pj=1

the templates of the dictionary are placed at. Again, `1-regularization (1.3)

would hardly save the day, because the selection of only one template would

underestimate the true amplitude at least by a factor of two, as can be seen

from the lower right panel. For the situations depicted in Figures 1.7 and

1.8, noise is not present. The issues raised here are caused by a wrong spec-

ification of Φ. The presence of noise may lead to an amplification of the

effects one observes here.

Due to its frequent occurrence, ’peak splitting’ requires a correction − oth-

erwise, the output of any sparse recovery scheme would be only of limited

practical use. The only possible way to address this issue within the sparse

recovery framework would be to place templates less densely. However, this

would come at the expense of reduced accuracy in estimating the positions

{µ∗k}sk=1, which is not an option since it could hamper the biological valida-

tion of the output. In Slawski et al. (2012), a post-processing procedure is

proposed that not only corrects peak-splitting, but that also tries to obtain

even more accurate estimations for the positions. As detailed in Algorithm

1.3, all selected templates of the same charge that are within a neighbour-

hood whose size is proportional to the average spacing of two sampling points

are merged to form a group. For each group of templates, precisely one new

template is returned that comes closest to the fit when combining all tem-

plates of the group, thereby reducing the number of templates returned to
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Figure 1.8: Systematic errors in the template model: consequences of an
incorrectly specified spread. The right half of the plot displays the solution
path of the non-negative lasso.

Algorithm 1.3 Post-processing

Input: Output β̂ of a sparse recovery algorithm obtained from a template matrix Φ and
intensities y.

Ŝz ← {j : β̂z,j > 0}, z = 1, . . . , Z.
for z = 1, . . . , Z do
µz ← 0, βz ← 0.
Partition Ŝz into Gz groups Gz,1, . . . ,Gz,Gz by merging adjacent positions
{µj : ∈ Sz}.
for m = 1, . . . , Gz do

Using numerical integration, solve the nonlinear least squares problem

(µz,m, βz,m) = argmin
µ,β

∥∥∥∥∥β · φz,µ − ∑
l∈Gm

β̂z,lφz,l

∥∥∥∥∥
2

L2

,

where φz,µ(x) = (ψ ? ι)(x− µ) is a template at position µ.
end for

end for
return{µz}Zz=1 and {βz}Zz=1.

only one per detected pattern. By taking into account the coefficients of the

templates assigned before post-processing, the accuracy of the position es-

timates can be considerably improved. For the situation depicted in Figure

1.7, the post-processing procedure returns a position roughly in the middle

of the interval defined by the two sampling points. By choosing the size of

the neighbourhood of a magnitude that is of the same order as the spacing

between two sampling points, we ensure that the procedure does not erro-

neously merge templates that actually belong to different patterns, i.e. no
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false negatives are introduced at that stage.

Scope of the standard sparse recovery framework. As argued in the in-

troduction, applying sparse modeling techniques is a reasonable way to per-

form feature extraction for protein mass spectra. On the other hand, in view

of the preceding discussion, the notion of support recovery commonly con-

sidered in theory (cf. Theorem 1.2) is not meaningful. But even if the linear

model were free of any kind of mis-specification, the incoherence conditions

employed for the analysis of non-negative least squares (cf. Section 1.3) and

the lasso (Wainwright, 2009) would require a constant distance of the posi-

tions of the support templates from those of the off-support templates. As

the sampling rate increases, however, one can hope to locate the positions of

the patterns more accurately by accordingly placing templates more densely,

so that incoherence approaches zero as n tends to infinity − an obvious con-

tradiction. On the other hand, suitable post-processing in form of Algorithm

1.3 permits us to overcome this limitation of the standard sparse recovery

framework.

Choice of the loss function. MS data are contaminated by various kinds

of noise arising from sample preparation and the measurement process.

Apparently, the assumption of additive random noise with zero mean is

not realistic, since the intensities {yi}ni=1 are non-negative. Second, chemical

noise generates a baseline which is much more regular than random noise. For

this reason, we have not made explicit the relation between the intensities

{y∗i }ni=1 in (1.2) and their noisy counterparts {yi}ni=1. Finding a realistic

noise model is out of the scope of the paper, yet we would like to discuss

alternatives to squared loss.

Robust loss. Eventually, model mis-specifications as described above can

be absorbed by a general additive error term. The fact that drastic mis-

specifications are not rare may make absolute loss a more suitable choice

than squared loss which is known not to be robust to gross errors.

Additive vs. multiplicative noise. Both squared loss and absolute loss rely

on an additive noise model. In view of strong local discrepancies of noise and

intensity levels, it might be more adequate to think in terms of relative

instead of absolute error. In this direction, we have experimented with

a Poisson-like model belonging to the family of generalized linear models
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(McCullagh and Nelder, 1989). The corresponding loss function reads

L(β) =

n∑
i=1

{(Φβ)i − yi log((Φβ)i)} . (1.8)

with the convention 0 · log(0) = 0. Noting that yi ≥ 0, i = 1, . . . , n, L is

seen to be convex with domain {β : (Φβ)i > 0 ∀i with yi > 0}, which fits

well into a non-negativity framework. Assuming that the {yi}ni=1 are integers

following a Poisson distributions with means {(Φβ)i}ni=1, (1.8) equals the

resulting negative log-likelihood. While the intensities {yi}ni=1 are actually

real-valued, they are obtained from a detector which basically counts the

number of arriving molecules within a certain period. From the expression

one obtains for the gradient of L, one can deduce (McCullagh and Nelder

(1989), Chapter 2.2) that the model underlying the loss function postulates

that E[yi|Φ,β] = var[yi|Φ,β] = (Φβ)i, i = 1, . . . , n, that is the variance

grows linearly with the mean. The influence of a similar error model on the

performance of the lasso has recently been studied in Jia et al. (2013). In

that paper, the authors show that sparse recovery fails if the ratio of the

maximum to the minimum non-zero entry of the target β∗ is large in absolute

value. In an experiment where this ratio equals 20, we generate an artificial

spectrum in which the {yi}ni=1 result from a combination of two templates

and a perturbation by multiplicative noise, that is for i = 1, . . . , n = 600,

yi = (10φ1(xi) + 0.5φ2(xi))(1 + εi), {xi}ni=1 equi-spaced in [2000, 2006],

where the {εi}ni=1 are drawn from a Gaussian distribution with standard

deviation 0.3. The data are fitted with a dictionary of templates placed

evenly in [2000, 2006] with a spacing of 0.25. The highest peaks of the

templates φ1 and φ2 are located at 2002 and 2002.5, respectively. The

aim is to find the correct sparse representation by using the fitting-plus-

thresholding approach of Section 1.3, once using non-negative least squares,

once the Poisson-like loss (pll) given in (1.8), where β̂pll is determined as

a minimizer of L(β) subject to the non-negativity constraint β ≥ 0. A

necessary condition for thresholding to succeed is that the coefficients of the

noise templates included in the dictionary are smaller than the one of φ2.

This may not be accomplished in cases where the inclusion of off-support

templates serves to compensate for misfit in φ1 arising from noise as shown in

Figure 1.9. Table 1.1 suggests that the Poisson-like loss is preferable in this

regard. For the real world MALDI-TOF Myoglobin spectrum (cf. Figure

1.6), we do not observe any improvement, as shown in Figure 1.10. This

conforms to the hypothesis that the structure of the noise is too complex to

be modelled welll by a simple multiplicative error term.
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Figure 1.9: An instance of the experiment comparing squared loss and
Poisson-like loss in the presence of low multiplicative noise. Top: Fit of non-
negative least squares. Bottom: Fit of the Poisson-like loss. In the upper panel,
the coefficient of the off-support template exceeds that of φ2 such that sparse
recovery via thresholding is not possible.
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Figure 1.10: Performance of the three loss functions for the MALDI-TOF
Myoglobin spectrum: squared loss (nnls), absolute loss (nnlad) and poisson-
like loss (pll) in conjunction with the fitting-plus-thresholding approach. The
precision-recall curve for nnls identical to that in Figure 1.6.

‖β̂Sc‖1 ‖β̂Sc‖∞ I(‖β̂Sc‖∞ > β̂2)

nnls 0.36 (0.04) 0.33 (0.04) 0.26 (0.04)

pll 0.17 (0.02) 0.15 (0.02) 0.10 (0.03)

Table 1.1: Results of the experiment comparing squared loss and Poisson-
like loss in the presence of low multiplicative noise. We denote by β̂Sc the
coefficient vector of the off-support templates. Displayed are averages over 100
iterations, with standard errors in parentheses. The right column indicates
that sparse recovery fails in a considerably higher fraction of cases when
squared loss is used.

Summary. In this chapter, we have discussed how to apply sparse recovery

methods to feature extraction for protein mass spectra. While the chapter

addresses a specific kind of data, we believe that various issues raised in our

exposition have implications for other fields of applications where decon-

volution, sparsity in connection with non-negativity and heteroscedasticity,

which are the dominant themes of the chapter, play an important role.
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