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Abstract

Trace regression models have received considerable attention in the context of
matrix completion, quantum state tomography, and compressed sensing. Esti-
mation of the underlying matrix from regularization-based approaches promoting
low-rankedness, notably nuclear norm regularization, have enjoyed great popular-
ity. In this paper, we argue that such regularization may no longer be necessary
if the underlying matrix is symmetric positive semidefinite (Spd) and the design
satisfies certain conditions. In this situation, simple least squares estimation sub-
ject to an spd constraint may perform as well as regularization-based approaches
with a proper choice of regularization parameter, which entails knowledge of the
noise level and/or tuning. By contrast, constrained least squares estimation comes
without any tuning parameter and may hence be preferred due to its simplicity.

1 Introduction

Trace regression models of the form

T .
v =tr(X, X)) +e, i=1,...,n, (1)
where ¥* € R™1%™2 ig the parameter of interest to be estimated given measurement matrices X; €
R™1*™m2 and observations y; contaminated by errors ¢;, i« = 1,...,n, have attracted considerable

interest in high-dimensional statistical inference, machine learning and signal processing over the
past few years. Research in these areas has focused on a setting with few measurements n << my-ms
and X* being (approximately) of low rank r < min{my,mz}. Such setting is relevant to problems
such as matrix completion [6, 23], compressed sensing [5, 17], quantum state tomography [11] and
phase retrieval [7]. A common thread in these works is the use of the nuclear norm of a matrix
as a convex surrogate for its rank [18] in regularized estimation amenable to modern optimization
techniques. This approach can be seen as natural generalization of /1 -norm (aka lasso) regularization
for the linear regression model [24] that arises as a special case of model (1) in which both ¥* and
{X;}?_, are diagonal. It is inarguable that in general regularization is essential if n < my - ma.

The situation is less clear if 3* is known to satisfy additional constraints that can be incorporated in
estimation. Specifically, in the present paper we consider the case in which m; = mg = m and ¥*
is known to be symmetric positive semidefinite (spd), i.e. ¥* € S with S7" denoting the positive
semidefinite cone in the space of symmetric real m x m matrices S™. The set S'* deserves specific
interest as it includes covariance matrices and Gram matrices in kernel-based learning [20]. It is
rather common for these matrices to be of low rank (at least approximately), given the widespread
use of principal components analysis and low-rank kernel approximations [28]. In the present paper,
we focus on the usefulness of the spd constraint for estimation. We argue that if X* is spd and the
measurement matrices { X; }? ; obey certain conditions, constrained least squares estimation
1 T$))2
in 5o Z(yl (X, %)) 2
i=1

may perform similarly well in prediction and parameter estimation as approaches employing nuclear
norm regularization with proper choice of the regularization parameter, including the interesting



regime n < d,,, where d,,, = dim(S™) = m(m + 1)/2. Note that the objective in (2) only consists
of a data fitting term and is hence convenient to work with in practice since there is no free parameter.
Our findings can be seen as a non-commutative extension of recent results on non-negative least
squares estimation for linear regression [16, 21].

Related work. Model (1) with ¥* € S'* has been studied in several recent papers. A good deal
of these papers consider the setup of compressed sensing in which the {X;}"_; can be chosen by
the user, with the goal to minimize the number of observations required to (approximately) recover
¥*. For example, in [27], recovery of ¥X* being low-rank from noiseless observations (g; = 0,
i = 1,...,n) by solving a feasibility problem over S is considered, which is equivalent to the
constrained least squares problem (1) in a noiseless setting.

In [3, 8], recovery from rank-one measurements is considered, i.e., for {xi}?zl C R™
i=1,...,n. 3)

As opposed to [3, 8], where estimation based on nuclear norm regularization is proposed, the present
work is devoted to regularization-free estimation. While rank-one measurements as in (3) are also in
the center of interest herein, our framework is not limited to this case. In [3] an application of (3) to
covariance matrix estimation given only one-dimensional projections {z;'— z;i }_ of the data points
is discussed, where the {z;}" ; are i.i.d. from a distribution with zero mean and covariance matrix
3>*. In fact, this fits the model under study with observations

yi =z X4 e; = tr( X, 8%) + &, with X; = zz;)
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yi = (x] z2)? =a] iz vi = 2] S+ ey, e =) {ziz] —XYa,i=1,...,n. 4
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Specializing (3) to the case in which ¥* = o*(c*) ', one obtains the quadratic model

yi = o] o * + & (5)

which (with complex-valued ¢*) is relevant to the problem of phase retrieval [14]. The approach
of [7] treats (5) as an instance of (1) and uses nuclear norm regularization to enforce rank-one
solutions. In follow-up work [4], the authors show a refined recovery result stating that imposing an
spd constraint — without regularization — suffices. A similar result has been proven independently
by [10]. However, the results in [4] and [10] only concern model (5). After posting an extended
version [22] of the present paper, a generalization of [4, 10] to general low-rank spd matrices has
been achieved in [13]. Since [4, 10, 13] consider bounded noise, whereas the analysis herein assumes
Gaussian noise, our results are not direclty comparable to those in [4, 10, 13].

Notation. M denotes the space of real d x d matrices with inner product (M, M') :=
tr(M T M'). The subspace of symmetric matrices S? has dimension 64 := d(d + 1)/2. M € S¢
has an eigen-decomposition M = UAU T = Z;l:l Aj(M)ujug , where Ay (M) = Aax(M) >
Ae(M) > ... > Aa(M) = Ain(M), A = diag(M (M), ..., \g(M)),and U = [uy ... ug]. For
q €[l,00)and M € S%, |M|, := (Z;l:l |\;(M)|9)/4 denotes the Schatten-g-norm (¢ = 1: nu-
clear norm; ¢ = 2 Frobenius norm || M|| p, ¢ = oo: spectral norm || M ||oo 1= maxi<j<q |A;(M))).
Let S1(d) = {M € S%: |M||; = 1} and 8] (d) = S1(d) N S%. The symbols =, <, =, < refer to
the semidefinite ordering. For a set A and @ € R, aA := {aa,a € A}.

It is convenient to re-write model (1) as y = X(X*) + ¢, where y = (y;)",, € = (g;); and
X : M™ — R" is a linear map defined by (X (M)); = tr(X,) M), i = 1,...,n, referred to as
sampling operator. Its adjoint X* : R™ — M™ is given by the map v — >, v; X;.

Supplement. The appendix contains all proofs, additional experiments and figures.

2 Analysis
Preliminaries. Throughout this section, we consider a special instance of model (1) in which
yi = tr(X;5*) +¢&;, where ©* € S”, X; €S™, and ¢; & N(0,0%),i=1,...,n. (6)

The assumption that the errors {¢;}}~; are Gaussian is made for convenience as it simplifies the
stochastic part of our analysis, which could be extended to sub-Gaussian errors.

Note that w.l.0.g., we may assume that {X;}_, C S™. In fact, since * € S™, for any M € M™
we have that tr(MX*) = tr(M®™%*), where M¥™ = (M + M ) /2.



In the sequel, we study the statistical performance of the constrained least squares estimator
~ . 1
> € argmin o[y — X(3)[3 )
sesyp 4N
under model (6). More specifically, under certain conditions on X', we shall derive bounds on
1 . N ~ )
(a) ~[[X(E") = XE)[3, and  (b) X =", ®)

where (a) will be referred to as “prediction error” below. The most basic method for estimating >*
is ordinary least squares (ols) estimation

~ 1
Y8 ¢ argmin 2—||y - x(3)|3, ®
sesm 4N

which is computationally simpler than (7). While (7) requires convex programming, (9) boils down
to solving a linear system of equations in d,, = m(m + 1)/2 variables. On the other hand, the
prediction error of ols scales as Op (dim(range(X))/n), where dim(range(X')) can be as large as
min{n, d,, }, in which case the prediction error vanishes only if d,,,/n — 0 as n — oo. Moreover,
the estimation error ||S° — $*||; is unbounded unless n > &,,. Research conducted over the past
few years has thus focused on methods dealing successfully with the case n < d,, as long as the
target >X* has additional structure, notably low-rankedness. Indeed, if ¥* has rank r < m, the
intrinsic dimension of the problem becomes (roughly) mr < d,,,. In a large body of work, nuclear
norm regularization, which serves as a convex surrogate of rank regularization, is considered as a
computationally convenient alternative for which a series of adaptivity properties to underlying low-
rankedness has been established, e.g. [5, 15, 17, 18, 19]. Complementing (9) with nuclear norm
regularization yields the estimator

~ 1
St € argmin - ly — X (D)3 + A%, (10)
Tesm <l
where A > 0 is a regularization parameter. In case an spd constraint is imposed (10) becomes

a 1
S e argmin —|ly — X(2)|3 + A tr(%). (11)
ZEST 2n

Our analysis aims at elucidating potential advantages of the spd constraint in the constrained least
squares problem (7) from a statistical point of view. It turns out that depending on properties of
X, the behaviour of £ can range from a performance similar to the least squares estimator S8 on
the one hand to a performance similar to the nuclear norm regularized estimator S+ with properly
chosen/tuned A on the other hand. The latter case appears to be remarkable: ) may enjoy similar

adaptivity properties as nuclear norm regularized estimators even though ¥ is obtained from a pure
data fitting problem without explicit regularization.

2.1 Negative result

We first discuss a negative example of X’ for which the spd-constrained estimator S does not im-

prove (substantially) over the unconstrained estimator S0l At the same time, this example provides
clues on conditions to be imposed on X to achieve substantially better performance.

Random Gaussian design. Consider the Gaussian orthogonal ensemble (GOE)
iid. iid.

GOE(m) = {X = (zjx), {zj;}j21 ~ N(0,1), {zjr = Tij}1<jc<k<m ~ N(0,1/2)}.
Gaussian measurements are common in compressed sensing. It is hence of interest to study mea-
surements { X;}7_, "~° GOE(m) in the context of the constrained least squares problem (7). The
following statement points to a serious limitation associated with such measurements.

Proposition 1. Consider X; -~ GOE(m),i=1,...,n. Foranye > 0, ifn < (1 —€)d,,/2, with
probability at least 1 — 32 exp(—e20,,), there exists A € ST, A # 0 such that X (A) = 0.

Proposition 1 implies that if the number of measurements drops below 1/2 of the ambient dimension
dm, estimating ©* based on (7) becomes ill-posed; the estimation error |3 — 3X*||; is unbounded,
irrespective of the rank of ¥*. Geometrically, the consequence of Proposition 1 is that the convex
cone Cxy = {z € R": z = X(A), A € ST} contains 0. Unless 0 is contained in the boundary
of Cx (we conjecture that this event has measure zero), this means that Cy = R", i.e. the spd
constraint becomes vacuous.



2.2 Slow Rate Bound on the Prediction Error

We present a positive result on the spd-constrained least squares estimator S} under an additional
condition on the sampling operator X'. Specifically, the prediction error will be bounded as

1 * @ * 1 *
~[X(E) = XG5 = OQol=" 1 +A5),  where Ao = —[[X"(e) [, (12)

with \g typically being of the order O(1/m/n) (up to log factors). The rate in (12) can be a sig-

nificant improvement of what is achieved by 3° if |[S*||; = tr(2*) is small. If Ag = o([|=*||1)
that rate coincides with those of the nuclear norm regularized estimators (10), (11) with regulariza-
tion parameter A > \g, cf. Theorem 1 in [19]. For nuclear norm regularized estimators, the rate
O(Xo||X*]|1) is achieved for any choice of X" and is slow in the sense that the squared prediction
error only decays at the rate n~'/2 instead of =1

Condition on X.  In order to arrive at a suitable condition to be imposed on X" so that (12) can
be achieved, it makes sense to re-consider the negative example of Proposition 1, which states that

as long as n is bounded away from d,,/2 from above, there is a non-trivial A € S/ such that
X (A) = 0. Equivalently, dist(Px,0) = minAesj(m)HX(A)h = 0, where

Py :={z€R": z=X(A), AeSF(m)}, and S (m):={AeST: tr(A) =1}
In this situation, it is impossible to derive a non-trivial bound on the prediction error as dist(Px, 0) =

0 may imply Cx = R™ so that [|X(Z*) — X(2)|2 = |]|2. To rule this out, the condition
dist(Px,0) > 0 is natural. More strongly, one may ask for the following:

1
There exists a constant 7 > 0 such that 75 (X) := min —||X(A)|3 > 72 (13)
AEST (m) N

An analogous condition is sufficient for a slow rate bound in the vector case, cf. [21]. However, the
condition for the slow rate bound in Theorem 1 below is somewhat stronger than (13).
Condition 1. There exist constants R, > 1, 7. > 0s5.t. 72(X, R,) > 72, where for R € R
1
(X, R) = dist*(RPx,Px)/n= min —|X(A) - X(B)|3.

AERS{ (m) M
BeS; (m)

The following condition is sufficient for Condition 1 and in some cases much easier to check.
all2 < 1, and constants 0 < ¢min < Gmax S-1.

Proposition 2. Suppose there exists a € R",
Amin (072 X7(0)) > bmin,  and Amax(n™2X7(a)) < Gumax.
Then for any ¢ > 1, X satisfies Condition 1 with R, = ((¢max/Pmin) and 72 = ({ — 1)2¢2

max-*

The condition of Proposition 2 can be phrased as having a positive definite matrix in the image of
the unit ball under X*, which, after scaling by 1/4/n, has its smallest eigenvalue bounded away
from zero and a bounded condition number. As a simple example, suppose that X; = /nl. In-
voking Proposition 2 with @ = (1,0,...,0) and ¢ = 2, we find that Condition 1 is satisfied with
R. = 2 and 72 = 1. A more interesting example is random design where the {X;}7 ; are (sam-
ple) covariance matrices, where the underlying random vectors satisfy appropriate tail or moment
conditions.

Corollary 1. Let 7w, be a probability distribution on R™ with second moment matrix I' :=
E.r, [22"] satisfying Amin(T') > 0. Consider the random matrix ensemble

iid.
M) = {50y 2], (b, % mn ) (14)
Suppose that { X}, Ha M (T, q) and let T, := LS X and 0 < €, < Amin(T). Under the
event {||T' — T'y,||co < €n}, X satisfies Condition 1 with

2(Amax (L) + €n)

R, =
)\min (F) — €n

and 72 = Amax(I) + €,)2.



It is instructive to spell out Corollary 1 with 7, as the standard Gaussian distribution on R™. The
matrix fn equals the sample covariance matrix computed from N = n - ¢ samples. It is well-known
[9] that for m, N large, )\max(fn) and \in (fn) concentrate sharply around (1+7,,)? and (1—n,)?,
respectively, where n,, = \/m/N. Hence, for any v > 0, there exists C., > 1 so thatif N > C,m,
it holds that R, < 2 + . Similar though weaker concentration results for |’ — I',|| o exist for the
broader class of distributions 7,,, with finite fourth moments [26]. Specialized to ¢ = 17 Colrollary 1

,i=1,...,nm,

yields a statement about X made up from random rank-one measurements X; = z;z;
cf. (3). The preceding discussion indicates that Condition 1 tends to be satisfied in this case.

Theorem 1. Suppose that model (6) holds with X satisfying Condition 1 with constants R, and T2.
We then have

1 - . R\’
~[| X)) - x5 SmaX{2(1+R*)AoIIE*II1, 200271 + 8 (AOT—) }

where, for any 11 > 0, with probability at least 1 — (2m)~#

Mo < oy/(1+ m2logm) . where V2= 1T, X2 .

n ? i=

Remark: Under the scalings R, = O(1) and 72 = (1), the bound of Theorem 1 is of the
order O(X\o||X*||1 + A3) as announced at the beginning of this section. For given X, the quantity
72(X, R) can be evaluated by solving a least squares problem with spd constraints. Hence it is
feasible to check in practice whether Condition 1 holds. For later reference, we evaluate the term
V.2 for M(7y, q) with 7, as standard Gaussian distribution. As shown in the supplement, with
high probability, V,2 = O(mlogn) holds as long as m = O(ngq).

2.3 Bound on the Estimation Error

In the previous subsection, we did not make any assumptions about ¥* apart from X* € S7. Hence-
forth, we suppose that ¥* is of low rank 1 < r < m and study the performance of the constrained
least squares estimator (7) for prediction and estimation in such setting.

Preliminaries. Let ¥* = UAU " be the eigenvalue decomposition of ¥*, where

U= U|| UJ_ :| |: Ar Orx(mfr)

mxr mx(m—=r) | |Om-r)xr O@m—r)x(m-r)
where A, is diagonal with positive diagonal entries. Consider the linear subspace
T ={MecS™: M=U, AU, AcS" "}
From U | ¥*U, = 0, it follows that ©* is contained in the orthogonal complement
T={MecS": M=UB+B'U/, BeR*™},
of dimension mr — r(r — 1)/2 < §,, if r < m. The image of T under X is denoted by 7.

Conditions on X. We introduce the key quantities the bound in this subsection depends on.
Separability constant.

(T) = %distQ (T, Px), Px:={2€R": 2=2X(A), AcT-nS(m)}

. 1
= min ~[X(©) — X(A)]3
O€T, AeS (m)NT+ T

Restricted eigenvalue.
2
20— i YOI/
o£AeT  ||A|)?
As indicated by the following statement concerning the noiseless case, for bounding || — $*|, it is
inevitable to have lower bounds on the above two quantities.



Proposition 3. Consider the trace regression model (1) withe; = 0,1 =1,...,n. Then

1
argmin — || X (Z*) — X(2)|3 = {&*} forall £* € TNSY
Tesy 2n

if and only if it holds that 7*(T) > 0 and ¢*(T) > 0.

Correlation constant. Moreover, we use of the following the quantity. It is not clear to us if it is
intrinsically required, or if its appearance in our bound is for merely technical reasons.

w(T) = max {2 (X(A), X(A")): |A1 <1,A€T, A eS8 (m)nT+}.

We are now in position to provide a bound on ||& — £*||;.

Theorem 2. Suppose that model (6) holds with 3* as considered throughout this subsection and let
Ao be defined as in Theorem 1. We then have

$ v < maxd sn AT (3 u(T) 1 1
s {8%72@)«%) (3+$m) + 2 (zm * =)

o (o a8k
sty (1 5w T2<T>}'

Remark.  Given Theorem 2 an improved bound on the prediction error scaling with A2 in place
of A\ can be derived, cf. (26) in Appendix D.

The quality of the bound of Theorem 2 depends on how the quantities 72(T), ¢*(T) and p(T) scale
with n, m and r, which is design-dependent. Accordingly, the estimation error in nuclear norm
can be non-finite in the worst case and O(Agr) in the best case, which matches existing bounds for
nuclear norm regularization (cf. Theorem 2 in [19]).

e The quantity 72(T) is specific to the geometry of the constrained least squares problem
(7) and hence of critical importance. For instance, it follows from Proposition 1 that for
standard Gaussian measurements, 72(T) = 0 with high probability once n < §,,/2. The
situation can be much better for random spd measurements (14) as exemplified for mea-

surements X; = 2z, with z; N (0,7) in Appendix H. Specifically, it turns out that
72(T) = Q(1/r) aslong as n. = Q(m - 7).

e It is not restrictive to assume ¢?(T) is positive. Indeed, without that assumption, even an
oracle estimator based on knowledge of the subspace T would fail. Reasonable sampling
operators X’ have rank min{n, d,,, } so that the nullspace of X only has a trivial intersection
with the subspace T as long as n > dim(T) = mr —r(r — 1)/2.

e For fixed T, computing x(T) entails solving a biconvex (albeit non-convex) optimization
problemin A € T and A’ € S;F (m)NT+. Block coordinate descent is a practical approach
to such optimization problems for which a globally optimal solution is out of reach. In
this manner we explore the scaling of (T) numerically as done for 72(T). We find that
w(T) = O(dm /1) so that p(T) = O(1) apart from the regime n/d,,, — 0, without ruling
out the possibility of undersampling, i.e. n < dy,.

3 Numerical Results

In this section, we empirically study properties of the estimator $. In particular, its performance
relative to regularization-based methods is explored. We also present an application to spiked co-
variance estimation for the CBCL face image data set and stock prices from NASDAQ.

Comparison with regularization-based approaches. We here empirically evaluate ||& — $*||;
relative to well-known regularization-based methods.

Setup. We consider rank-one Wishart measurement matrices X; = ziziT s zi“f\Jd'N (0,1, i =
1,...,n, fix m = 50and let n € {0.24,0.26,...,0.36,0.4,...,0.56} - m? and r € {1,2,...,10}
vary. Each configuration of (n,r) is run with 50 replications. In each of these, we generate data

yi = tr(X;X") +o0e4, 0=01, i=1,...,n, (15)
where ¥* is generated randomly as rank » Wishart matrices and the {¢;}}"_; are i.i.d. N(0,1).

6
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Figure 1: Average estimation error (over 50 replications) in nuclear norm for fixed m = 50 and
certain choices of n and 7. In the legend, “LS” is used as a shortcut for “least squares”. Chen et
al. refers to (16). “#”indicates an oracular choice of the tuning parameter. “oracle” refers to the ideal

error or+/m/n. Best seen in color.

Regularization-based approaches. We compare ¥ to the corresponding nuclear norm regularized
estimator in (11). Regarding the choice of the regularization parameter A, we consider the grid
A« -{0.01,0.05,0.1,0.3,0.5,1, 2,4, 8,16}, where A, = o1/m/n as recommended in [17] and pick
A so that the prediction error on a separate validation data set of size n generated from (15) is
minimized. Note that in general, neither ¢ is known nor an extra validation data set is available. Our
goal here is to ensure that the regularization parameter is properly tuned. In addition, we consider
an oracular choice of A where A is picked from the above grid such that the performance measure
of interest (the distance to the target in the nuclear norm) is minimized. We also compare to the
constrained nuclear norm minimization approach of [8]:

min tr(¥) subjectto T =0, and [ly — X(V)[l < A (16)

For A, we consider the grid no+/2/7 - {0.2,0.3,...,1,1.25}. This specific choice is motivated by

the fact that E[||ly — X (X*)||1] = E[|le|]1] = noy/2/w. Apart from that, tuning of X is performed
as for the nuclear norm regularized estimator. In addition, we have assessed the performance of the
approach in [3], which does not impose an spd constraint but adds another constraint to (16). That
additional constraint significantly complicates optimization and yields a second tuning parameter.
Thus, instead of doing a 2D-grid search, we use fixed values given in [3] for known o. The results
are similar or worse than those of (16) (note in particular that positive semidefiniteness is not taken
advantage of in [3]) and are hence not reported.

Discussion of the results. We conclude from Figure 1 that in most cases, the performance of
the constrained least squares estimator does not differ much from that of the regularization-based
methods with careful tuning. For larger values of r, the constrained least squares estimator seems to
require slightly more measurements to achieve competitive performance.

Real Data Examples. We now present an application to recovery of spiked covariance matrices
which are of the form ¥* = 3>"_) Ajujuj + 0°I, where r < mand \; > 0® > 0,j =1,...,7.
This model appears frequently in connection with principal components analysis (PCA).

Extension to the spiked case. So far, we have assumed that >* is of low rank, but it is straight-
forward to extend the proposed approach to the case in which ¥* is spiked as long as o2 is known or

an estimate is available. A constrained least squares estimator of ¥* takes the form S+ 02 , where

o 1
3 € argmin —— |y — X (X + a?I)|[3. (17
EEST 2n

The case of o2 unknown or general (unknown) diagonal perturbation is left for future research.
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Figure 2: Average reconstruction errors log, || — $*||  in dependence of n/(mr) and the param-
eter 5. “oracle” refers to the best rank r-approximation 3,..

Data sets. (i) The CBCL facial image data set [1] consist of N = 2429 images of 19 x 19 pixels
(i.e., m = 361). We take X* as the sample covariance matrix of this data set. It turns out that
3* can be well approximated by ¥,, » = 50, where ¥, is the best rank r approximation to >*
obtained from computing its eigendecomposition and setting to zero all but the top r eigenvalues.
(i1) We construct a second data set from the daily end prices of m = 252 stocks from the technology
sector in NASDAQ), starting from the beginning of the year 2000 to the end of the year 2014 (in
total N = 3773 days, retrieved from finance.yahoo.com). We take X* as the resulting sample
correlation matrix and choose » = 100.

Experimental setup. As in preceding measurements, we consider n random Wishart mea-
surements for the operator X', where n = C(mr), where C ranges from 0.25 to 12. Since
IZ, — 2*||p/||Z*||F &~ 1073 for both data sets, we work with 02 = 0 in (17) for simplicity.
To make recovery of ¥.* more difficult, we make the problem noisy by using observations

yi:tr(XiSi), i:l,...,n, (18)

where S; is an approximation to ¥* obtained from the sample covariance respectively sample cor-
relation matrix of SN data points randomly sampled with replacement from the entire data set,
i =1,...,n, where 8 ranges from 0.4 to 1/N (S; is computed from a single data point). For each
choice of n and 3, the reported results are averages over 20 replications.

Results. For the CBCL data set, as shown in Figure 2, ¥ accurately approximates >* once the
number of measurements crosses 2mr. Performance degrades once additional noise is introduced to
the problem by using measurements (18). Even under significant perturbations (8 = 0.08), reason-
able reconstruction of >* remains possible, albeit the number of required measurements increases
accordingly. In the extreme case 8 = 1/N, the error is still decreasing with n, but millions of
samples seems to be required to achieve reasonable reconstruction error.

The general picture is similar for the NASDAQ data set, but the difference between using measure-
ments based on the full sample correlation matrix on the one hand and approximations based on
random subsampling (18) on the other hand are more pronounced.

4 Conclusion

We have investigated trace regression in the situation that the underlying matrix is symmetric posi-
tive semidefinite. Under restrictions on the design, constrained least squares enjoys similar statistical
properties as methods employing nuclear norm regularization. This may come as a surprise, as reg-
ularization is widely regarded as necessary in small sample settings.
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