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Abstract

The optimization problem behind neural networks is highly non-convex.
Training with stochastic gradient descent and variants requires careful
parameter tuning and provides no guarantee to achieve the global optimum.
In contrast we show under quite weak assumptions on the data that a
particular class of feedforward neural networks can be trained globally
optimal with a linear convergence rate with our nonlinear spectral method.
Up to our knowledge this is the first practically feasible method which
achieves such a guarantee. While the method can in principle be applied to
deep networks, we restrict ourselves for simplicity in this paper to one and
two hidden layer networks. Our experiments confirm that these models are
rich enough to achieve good performance on a series of real-world datasets.

1 Introduction

Deep learning [13, 16] is currently the state of the art machine learning technique in
many application areas such as computer vision or natural language processing. While the
theoretical foundations of neural networks have been explored in depth see e.g. [1], the
understanding of the success of training deep neural networks is a currently very active
research area [5, 6, 9]. On the other hand the parameter search for stochastic gradient descent
and variants such as Adagrad and Adam can be quite tedious and there is no guarantee that
one converges to the global optimum. In particular, the problem is even for a single hidden
layer in general NP hard, see [17] and references therein. This implies that to achieve global
optimality efficiently one has to impose certain conditions on the problem.
A recent line of research has directly tackled the optimization problem of neural networks
and provided either certain guarantees [2, 15] in terms of the global optimum or proved
directly convergence to the global optimum [8, 11]. The latter two papers are up to our
knowledge the first results which provide a globally optimal algorithm for training neural
networks. While providing a lot of interesting insights on the relationship of structured
matrix factorization and training of neural networks, Haeffele and Vidal admit themselves
in their paper [8] that their results are “challenging to apply in practice”. In the work of
Janzamin et al. [11] they use a tensor approach and propose a globally optimal algorithm
for a feedforward neural network with one hidden layer and squared loss. However, their
approach requires the computation of the score function tensor which uses the density of
the data-generating measure. However, the data generating measure is unknown and also
difficult to estimate for high-dimensional feature spaces. Moreover, one has to check certain
non-degeneracy conditions of the tensor decomposition to get the global optimality guarantee.
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In contrast our nonlinear spectral method just requires that the data is nonnegative which is
true for all sorts of count data such as images, word frequencies etc. The condition which
guarantees global optimality just depends on the parameters of the architecture of the network
and boils down to the computation of the spectral radius of a small nonnegative matrix.
The condition can be checked without running the algorithm. Moreover, the nonlinear
spectral method has a linear convergence rate and thus the globally optimal training of the
network is very fast. The two main changes compared to the standard setting are that we
require nonnegativity on the weights of the network and we have to minimize a modified
objective function which is the sum of loss and the negative total sum of the outputs. While
this model is non-standard, we show in some first experimental results that the resulting
classifier is still expressive enough to create complex decision boundaries. As well, we achieve
competitive performance on some UCI datasets. As the nonlinear spectral method requires
some non-standard techniques, we use the main part of the paper to develop the key steps
necessary for the proof. However, some proofs of the intermediate results are moved to the
supplementary material.

2 Main result
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Figure 1: Classification decision
boundaries in R2. (Best viewed in
colors.)

In this section we present the algorithm together with the
main theorem providing the convergence guarantee. We limit
the presentation to one hidden layer networks to improve the
readability of the paper. Our approach can be generalized
to feedforward networks of arbitrary depth. In particular, we
present in Section 4.1 results for two hidden layers.
We consider in this paper multi-class classification where d is
the dimension of the feature space and K is the number of
classes. We use the negative cross-entropy loss defined for label
y ∈ [K] := {1, . . . ,K} and classifier f : Rd → RK as

L
(
y, f(x)

)
= − log

(
efy(x)∑K
j=1 e

fj(x)

)
= −fy(x) + log

( K∑
j=1

efj(x)
)
.

The function class we are using is a feedforward neural network with one hidden layer with
n1 hidden units. As activation functions we use real powers of the form of a generalized
polyomial, that is for α ∈ Rn1 with αi ≥ 1, i ∈ [K], we define:

fr(x) = fr(w, u)(x) =
n1∑
l=1

wrl

( d∑
m=1

ulmxm

)αl
, (1)

where R+ = {x ∈ R |x ≥ 0} and w ∈ RK×n1
+ , u ∈ Rn1×d

+ are the parameters of the network
which we optimize. The function class in (1) can be seen as a generalized polynomial in the
sense that the powers do not have to be integers. Polynomial neural networks have been
recently analyzed in [15]. Please note that a ReLU activation function makes no sense in
our setting as we require the data as well as the weights to be nonnegative. Even though
nonnegativity of the weights is a strong constraint, one can model quite complex decision
boundaries (see Figure 1, where we show the outcome of our method for a toy dataset in R2).
In order to simplify the notation we use w = (w1, . . . , wK) for the K output units wi ∈ Rn1

+ ,
i = 1, . . . ,K. All output units and the hidden layer are normalized. We optimize over the set

S+ =
{

(w, u) ∈ RK×n1
+ × Rn1×d

+
∣∣ ‖u‖pu = ρu, ‖wi‖pw = ρw, ∀i = 1, . . . ,K

}
.

We also introduce S++ where one replaces R+ with R++ = {t ∈ R | t > 0}. The final
optimization problem we are going to solve is given as

max
(w,u)∈S+

Φ(w, u) with (2)

Φ(w, u) = 1
n

n∑
i=1

[
− L

(
yi, f(w, u)(xi)

)
+

K∑
r=1

fr(w, u)(xi)
]

+ ε
( K∑
r=1

n1∑
l=1

wr,l +
n1∑
l=1

d∑
m=1

ulm

)
,
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where (xi, yi) ∈ Rd+ × [K], i = 1, . . . , n is the training data. Note that this is a maximization
problem and thus we use minus the loss in the objective so that we are effectively minimizing
the loss. The reason to write this as a maximization problem is that our nonlinear spectral
method is inspired by the theory of (sub)-homogeneous nonlinear eigenproblems on convex
cones [14] which has its origin in the Perron-Frobenius theory for nonnegative matrices.
In fact our work is motivated by the closely related Perron-Frobenius theory for multi-
homogeneous problems developed in [7]. This is also the reason why we have nonnegative
weights, as we work on the positive orthant which is a convex cone. Note that ε > 0 in the
objective can be chosen arbitrarily small and is added out of technical reasons.
In order to state our main theorem we need some additional notation. For p ∈ (1,∞), we
let p′ = p/(p− 1) be the Hölder conjugate of p, and ψp(x) = sign(x)|x|p−1. We apply ψp to
scalars and vectors in which case the function is applied componentwise. For a square matrix
A we denote its spectral radius by ρ(A). Finally, we write ∇wiΦ(w, u) (resp. ∇uΦ(w, u)) to
denote the gradient of Φ with respect to wi (resp. u) at (w, u). The mapping

GΦ(w, u) =
(
ρwψp′w(∇w1Φ(w, u))
‖ψp′w(∇w1Φ(w, u))‖pw

, . . . ,
ρwψp′w(∇wKΦ(w, u))
‖ψp′w(∇wKΦ(w, u))‖pw

,
ρuψp′u(∇uΦ(w, u))
‖ψp′u(∇uΦ(w, u))‖pu

)
,

(3)
defines a sequence converging to the global optimum of (2). Indeed, we prove:
Theorem 1. Let {xi, yi}ni=1 ⊂ Rd+ × [K], pw, pu ∈ (1,∞), ρw, ρu > 0, n1 ∈ N and α ∈
Rn1 with αi ≥ 1 for every i ∈ [n1]. Define ρx, ξ1, ξ2 > 0 as ρx = maxi∈[n] ‖xi‖1, ξ1 =
ρw
∑n1
l=1(ρuρx)αl , ξ2 = ρw

∑n1
l=1 αl(ρuρx)αl and let A ∈ R(K+1)×(K+1)

++ be defined as

Al,m = 4(p′w − 1)ξ1, Al,K+1 = 2(p′w − 1)(2ξ2 + ‖α‖∞),
AK+1,m = 2(p′u − 1)(2ξ1 + 1), AK+1,K+1 = 2(p′u − 1)(2ξ2 + ‖α‖∞ − 1),

∀m, l ∈ [K].

If the spectral radius ρ(A) of A satisfies ρ(A) < 1, then (2) has a unique global maximizer
(w∗, u∗) ∈ S++. Moreover, for every (w0, u0) ∈ S++, there exists R > 0 such that

lim
k→∞

(wk, uk) = (w∗, u∗) and ‖(wk, uk)− (w∗, u∗)‖∞ ≤ Rρ(A)k ∀k ∈ N,

where (wk+1, uk+1) = GΦ(wk, uk) for every k ∈ N.

Note that one can check for a given model (number of hidden units n1, choice of α, pw, pu,
ρu, ρw) easily if the convergence guarantee to the global optimum holds by computing the
spectral radius of a square matrix of size K + 1. As our bounds for the matrix A are very
conservative, the “effective” spectral radius is typically much smaller, so that we have very
fast convergence in only a few iterations, see Section 5 for a discussion. Up to our knowledge
this is the first practically feasible algorithm to achieve global optimality for a non-trivial
neural network model. Additionally, compared to stochastic gradient descent, there is no
free parameter in the algorithm. Thus no careful tuning of the learning rate is required. The
reader might wonder why we add the second term in the objective, where we sum over all
outputs. The reason is that we need that the gradient of GΦ is strictly positive in S+, this is
why we also have to add the third term for arbitrarily small ε > 0. In Section 5 we show
that this model achieves competitive results on a few UCI datasets.

Choice of α: It turns out that in order to get a non-trivial classifier one has to choose
α1, . . . , αn1 ≥ 1 so that αi 6= αj for every i, j ∈ [n1] with i 6= j. The reason for this
lies in certain invariance properties of the network. Suppose that we use a permutation
invariant componentwise activation function σ, that is σ(Px) = Pσ(x) for any permutation
matrix P and suppose that A,B are globally optimal weight matrices for a one hidden layer
architecture, then for any permutation matrix P ,

Aσ(Bx) = APTPσ(Bx) = APTσ(PBx),
which implies that A′ = APT and B′ = PB yield the same function and thus are also
globally optimal. In our setting we know that the global optimum is unique and thus it has
to hold that, A = APT and B = PB for all permutation matrices P . This implies that
both A and B have rank one and thus lead to trivial classifiers. This is the reason why one
has to use different α for every unit.
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Dependence of ρ(A) on the model parameters: Let Q, Q̃ ∈ Rm×m+ and assume
0 ≤ Qi,j ≤ Q̃i,j for every i, j ∈ [m], then ρ(Q) ≤ ρ(Q̃), see Corollary 3.30 [3]. It follows
that ρ(A) in Theorem 1 is increasing w.r.t. ρu, ρw, ρx and the number of hidden units
n1. Moreover, ρ(A) is decreasing w.r.t. pu, pw and in particular, we note that for any
fixed architecture (n1, α, ρu, ρw) it is always possible to find pu, pw large enough so that
ρ(A) < 1. Indeed, we know from the Collatz-Wielandt formula (Theorem 8.1.26 in [10]) that
ρ(A) = ρ(AT ) ≤ maxi∈[K+1](AT v)i/vi for any v ∈ RK+1

++ . We use this to derive lower bounds
on pu, pw that ensure ρ(A) < 1. Let v = (pw − 1, . . . , pw − 1, pu − 1), then (AT v)i < vi for
every i ∈ [K + 1] guarantees ρ(A) < 1 and is equivalent to

pw > 4(K + 1)ξ1 + 3 and pu > 2(K + 1)(‖α‖∞ + 2ξ2)− 1, (4)
where ξ1, ξ2 are defined as in Theorem 1. However, we think that our current bounds are
sub-optimal so that this choice is quite conservative. Finally, we note that the constant R in
Theorem 1 can be explicitly computed when running the algorithm (see Theorem 3).

Proof Strategy: The following main part of the paper is devoted to the proof of the
algorithm. For that we need some further notation. We introduce the sets

V+ = RK×n1
+ × Rn1×d

+ , V++ = RK×n1
++ × Rn1×d

++

B+ =
{

(w, u) ∈ V+
∣∣ ‖u‖pu ≤ ρu, ‖wi‖pw ≤ ρw, ∀i = 1, . . . ,K},

and similarly we define B++ replacing V+ by V++ in the definition. The high-level idea of
the proof is that we first show that the global maximum of our optimization problem in (2)
is attained in the “interior” of S+, that is S++. Moreover, we prove that any critical point of
(2) in S++ is a fixed point of the mapping GΦ. Then we proceed to show that there exists a
unique fixed point of GΦ in S++ and thus there is a unique critical point of (2) in S++. As
the global maximizer of (2) exists and is attained in the interior, this fixed point has to be
the global maximizer.
Finally, the proof of the fact that GΦ has a unique fixed point follows by noting that GΦ

maps B++ into B++ and the fact that B++ is a complete metric space with respect to the
Thompson metric. We provide a characterization of the Lipschitz constant of GΦ and in turn
derive conditions under which GΦ is a contraction. Finally, the application of the Banach
fixed point theorem yields the uniqueness of the fixed point of GΦ and the linear convergence
rate to the global optimum of (2). In Section 4 we show the application of the established
framework for our neural networks.

3 From the optimization problem to fixed point theory

Lemma 1. Let Φ : V → R be differentiable. If ∇Φ(w, u) ∈ V++ for every (w, u) ∈ S+, then
the global maximum of Φ on S+ is attained in S++.

We now identify critical points of the objective Φ in S++ with fixed points of GΦ in S++.
Lemma 2. Let Φ : V → R be differentiable. If ∇Φ(w, u) ∈ V++ for all (w, u) ∈ S++, then
(w∗, u∗) is a critical point of Φ in S++ if and only if it is a fixed point of GΦ.

Our goal is to apply the Banach fixed point theorem to GΦ : B++ → S++ ⊂ B++. We recall
this theorem for the convenience of the reader.
Theorem 2 (Banach fixed point theorem e.g. [12]). Let (X, d) be a complete metric space
with a mapping T : X → X such that d(T (x), T (y)) ≤ q d(x, y) for q ∈ [0, 1) and all x, y ∈ X.
Then T has a unique fixed-point x∗ in X, that is T (x∗) = x∗ and the sequence defined as
xn+1 = T (xn) with x0 ∈ X converges limn→∞ xn = x∗ with linear convergence rate

d(xn, x∗) ≤ qn

1− q d(x1, x0).

So, we need to endow B++ with a metric µ so that (B++, µ) is a complete metric space. A
popular metric for the study of nonlinear eigenvalue problems on the positive orthant is the
so-called Thompson metric d : Rm++ × Rm++ → R+ [18] defined as

d(z, z̃) = ‖ ln(z)− ln(z̃)‖∞ where ln(z) =
(

ln(z1), . . . , ln(zm)
)
.
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Using the known facts that (Rn++, d) is a complete metric space and its topology coincides
with the norm topology (see e.g. Corollary 2.5.6 and Proposition 2.5.2 [14]), we prove:
Lemma 3. For p ∈ (1,∞) and ρ > 0, ({z ∈ Rn++ | ‖z‖p ≤ ρ}, d) is a complete metric space.

Now, the idea is to see B++ as a product of such metric spaces. For i = 1, . . . ,K, let
Bi++ = {wi ∈ Rn1

++ | ‖wi‖pw ≤ ρw} and di(wi, w̃i) = γi‖ ln(wi) − ln(w̃i)‖∞ for some
constant γi > 0. Furthermore, let BK+1

++ = {u ∈ Rn1×d
++ | ‖u‖pu ≤ ρu} and dK+1(u, ũ) =

γK+1‖ ln(u)− ln(ũ)‖∞. Then (Bi++, di) is a complete metric space for every i ∈ [K + 1] and
B++ = B1

++ × . . .×BK++ ×BK+1
++ . It follows that (B++, µ) is a complete metric space with

µ : B++ ×B++ → R+ defined as

µ
(
(w, u), (w̃, ũ)

)
=

K∑
i=1

γi‖ ln(wi)− ln(w̃i)‖∞ + γK+1‖ ln(u)− ln(ũ)‖∞.

The motivation for introducing the weights γ1, . . . , γK+1 > 0 is given by the next theorem.
We provide a characterization of the Lipschitz constant of a mapping F : B++ → B++ with
respect to µ. Moreover, this Lipschitz constant can be minimized by a smart choice of γ.
For i ∈ [K], a, j ∈ [n1], b ∈ [d], we write Fwi,j and Fuab to denote the components of F such
that F = (Fw1,1 , . . . , Fw1,n1

, Fw2,1 , . . . , FwK,n1
, Fu11 , . . . , Fun1d

).

Lemma 4. Suppose that F ∈ C1(B++, V++) and A ∈ R(K+1)×(K+1)
+ satisfies〈

|∇wkFwi,j (w, u)|, wk
〉
≤ Ai,k Fwi,j (w, u),

〈
|∇uFwi,j (w, u)|, u

〉
≤ Ai,K+1 Fwi,j (w, u)

and
〈|∇wkFuab(w, u)|, wk〉 ≤ AK+1,k Fuab(w, u), 〈|∇uFuab(w, u)|, u〉 ≤ AK+1,K+1 Fuab(w, u)

for all i, k ∈ [K], a, j ∈ [n1], b ∈ [d] and (w, u) ∈ B++. Then, for every (w, u), (w̃, ũ) ∈ B++
it holds

µ
(
F (w, u), F (w̃, ũ)

)
≤ U µ

(
(w, u), (w̃, ũ)

)
with U = max

k∈[K+1]

(AT γ)k
γk

.

Note that, from the Collatz-Wielandt ratio for nonnegative matrices, we know that the
constant U in Lemma 4 is lower bounded by the spectral radius ρ(A) of A. Indeed, by
Theorem 8.1.31 in [10], we know that if AT has a positive eigenvector γ ∈ RK+1

++ , then

max
i∈[K+1]

(AT γ)i
γi

= ρ(A) = min
γ̃∈RK+1

++

max
i∈[K+1]

(AT γ̃)i
γ̃i

. (5)

Therefore, in order to obtain the minimal Lipschitz constant U in Lemma 4, we choose the
weights of the metric µ to be the components of γ. A combination of Theorem 2, Lemma 4
and this observation implies the following result.
Theorem 3. Let Φ ∈ C1(V,R) ∩ C2(B++,R) with ∇Φ(S+) ⊂ V++. Let GΦ : B++ → B++

be defined as in (3). Suppose that there exists a matrix A ∈ R(K+1)×(K+1)
+ such that GΦ and

A satisfies the assumptions of Lemma 4 and AT has a positive eigenvector γ ∈ RK+1
++ . If

ρ(A) < 1, then Φ has a unique critical point (w∗, u∗) in S++ which is the global maximum of
the optimization problem (2). Moreover, the sequence

(
(wk, uk)

)
k
defined for any (w0, u0) ∈

S++ as (wk+1, uk+1) = GΦ(wk, uk), k ∈ N, satisfies limk→∞(wk, uk) = (w∗, u∗) and

‖(wk, uk)− (w∗, u∗)‖∞ ≤ ρ(A)k
(

µ
(
(w1, u1), (w0, u0)

)(
1− ρ(A)

)
min

{γK+1
ρu

,mint∈[K]
γt
ρw

}) ∀k ∈ N,

where the weights in the definition of µ are the entries of γ.

4 Application to Neural Networks

In the previous sections we have outlined the proof of our main result for a general objective
function satisfying certain properties. The purpose of this section is to prove that the
properties hold for our optimization problem for neural networks.

5



We recall our objective function from (2)

Φ(w, u) = 1
n

n∑
i=1

[
− L

(
yi, f(w, u)(xi)

)
+

K∑
r=1

fr(w, u)(xi)
]

+ ε
( K∑
r=1

n1∑
l=1

wr,l +
n1∑
l=1

d∑
m=1

ulm

)
and the function class we are considering from (1)

fr(x) = fr(w, u)(x) =
n1∑
l=1

wr,l

( d∑
m=1

ulmxm

)αl
,

The arbitrarily small ε in the objective is needed to make the gradient strictly positive on
the boundary of V+. We note that the assumption αi ≥ 1 for every i ∈ [n1] is crucial in the
following lemma in order to guarantee that ∇Φ is well defined on S+.
Lemma 5. Let Φ be defined as in (2), then ∇Φ(w, u) is strictly positive for any (w, u) ∈ S+.

Next, we derive the matrix A ∈ R(K+1)×(K+1) in order to apply Theorem 3 to GΦ with
Φ defined in (2). As discussed in its proof, the matrix A given in the following theorem
has a smaller spectral radius than that of Theorem 1. To express this matrix, we consider
Ψα
p,q : Rn1

++ × R++ → R++ defined for p, q ∈ (1,∞) and α ∈ Rn1
++ as

Ψα
p,q(δ, t) =

([∑
l∈J

(δl tαl)
p q

q−αp

]1−αpq + max
j∈Jc

(δj tαj )p
)1/p

, (6)

where J = {l ∈ [n1] | αlp ≤ q}, Jc = {l ∈ [n1] | αlp > q} and α = minl∈J αl.
Theorem 4. Let Φ be defined as above and GΦ be as in (3). Set Cw = ρw Ψα

p′w,pu
(1, ρuρx),

Cu = ρw Ψα
p′w,pu

(α, ρuρx) and ρx = maxi∈[n] ‖xi‖p′u . Then A and GΦ satisfy all assumptions
of Lemma 4 with

A = 2 diag
(
p′w − 1, . . . , p′w − 1, p′u − 1

)(Qw,w Qw,u
Qu,w Qu,u

)
where Qw,w ∈ RK×K++ , Qw,u ∈ RK×1

++ , Qu,w ∈ R1×K
++ and Qu,u ∈ R++ are defined as

Qw,w = 2Cw11T , Qw,u = (2Cu + ‖α‖∞)1,
Qu,w = (2Cw + 1)1T , Qu,u = (2Cu + ‖α‖∞ − 1).

In the supplementary material, we prove that Ψα
p,q(δ, t) ≤

∑n1
l=1 δlt

αl which yields the weaker
bounds ξ1, ξ2 given in Theorem 1. In particular, this observation combined with Theorems 3
and 4 implies Theorem 1.

4.1 Neural networks with two hidden layers

We show how to extend our framework for neural networks with 2 hidden layers. In future
work we will consider the general case. We briefly explain the major changes. Let n1, n2 ∈ N
and α ∈ Rn1

++, β ∈ Rn2
++ with αi, βj ≥ 1 for all i ∈ [n1], j ∈ [n2], our function class is:

fr(x) = fr(w, v, u)(x) =
n2∑
l=1

wr,l

( n1∑
m=1

vlm

( d∑
s=1

umsxs

)αm)βl
and the optimization problem becomes

max
(w,v,u)∈S+

Φ(w, v, u) where V+ = RK×n2
+ × Rn2×n1

+ × Rn1×d
+ , (7)

S+ = {(w1, . . . , wK , v, u) ∈ V+ | ‖wi‖pw = ρw, ‖v‖pv = ρv, ‖u‖pu = ρu} and

Φ(w, v, u) = 1
n

n∑
i=1

[
−L
(
yi, f(xi)

)
+

K∑
r=1

fr(xi)
]
+ε
( K∑
r=1

n2∑
l=1

wr,l+
n2∑
l=1

n1∑
m=1

vlm+
n1∑
m=1

d∑
s=1

ums

)
.
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The map GΦ : S++ → S++ = {z ∈ S+ | z > 0}, GΦ = (GΦ
w1
, . . . , GΦ

wK , G
Φ
v , G

Φ
u ), becomes

GΦ
wi(w, v, u) = ρw

ψp′w(∇wiΦ(w, u))
‖ψp′w(∇wiΦ(w, v, u))‖pw

∀i ∈ [K] (8)

and

GΦ
v (w, v, u) = ρv

ψp′v (∇vΦ(w, v, u))
‖ψp′v (∇vΦ(w, v, u))‖pv

, GΦ
u (w, v, u) = ρu

ψp′u(∇uΦ(w, v, u))
‖ψp′u(∇uΦ(w, v, u))‖pu

.

We have the following equivalent of Theorem 1 for 2 hidden layers.
Theorem 5. Let {xi, yi}ni=1 ⊂ Rd+× [K], pw, pv, pu ∈ (1,∞), ρw, ρv, ρu > 0, n1, n2 ∈ N and
α ∈ Rn1

++, β ∈ Rn2
++ with αi, βj ≥ 1 for all i ∈ [n1], j ∈ [n2]. Let ρx = maxi∈[n] ‖xi‖p′u ,

θ = ρvΨα
p′v,pu

(1, ρuρx), Cw = ρwΨβ
p′w,pv

(1, θ), Cv = ρwΨβ
p′w,pv

(β, θ), Cu = ‖α‖∞Cv,

and define A ∈ R(K+2)×(K+2)
++ as

Am,l = 4(p′w − 1)Cw, Am,K+1 = 2(p′w − 1)(2Cv + ‖β‖∞)
Am,K+2 = 2(p′w − 1)

(
2Cu + ‖α‖∞‖β‖∞

)
, AK+1,l = 2(p′v − 1)

(
2Cw + 1

)
AK+1,K+1 = 2(p′v − 1)

(
2Cv + ‖β‖∞ − 1

)
, AK+1,K+2 = 2(p′v − 1)

(
2Cu + ‖α‖∞‖β‖∞

)
AK+2,l = 2(p′u − 1)(2Cw + 1), AK+2,K+1 = 2(p′u − 1)(2Cv + ‖β‖∞),

AK+2,K+2 = 2(p′u − 1)(2Cu + ‖α‖∞‖β‖∞ − 1) ∀m, l ∈ [K].

If ρ(A) < 1, then (7) has a unique global maximizer (w∗, v∗, u∗) ∈ S++. Moreover, for every
(w0, v0, u0) ∈ S++, there exists R > 0 such that

lim
k→∞

(wk, vk, uk) = (w∗, v∗, u∗) and ‖(wk, vk, uk)−(w∗, v∗, u∗)‖∞ ≤ Rρ(A)k ∀k ∈ N

where (wk+1, vk+1, uk+1) = GΦ(wk, vk, uk) for every k ∈ N and GΦ is defined as in (8).

As for the case with one hidden layer, for any fixed architecture ρw, ρv, ρu > 0, n1, n2 ∈ N
and α ∈ Rn1

++, β ∈ Rn2
++ with αi, βj ≥ 1 for all i ∈ [n1], j ∈ [n2], it is possible to derive lower

bounds on pw, pv, pu that guarantee ρ(A) < 1 in Theorem 5. Indeed, it holds

Cw ≤ ζ1 = ρw

n2∑
j=1

[
ρv

n1∑
l=1

(ρuρ̃x)αl
]βj

and Cv ≤ ζ2 = ρw

n2∑
j=1

βj

[
ρv

n1∑
l=1

(ρuρ̃x)αl
]βj

,

with ρ̃x = maxi∈[n] ‖xi‖1. Hence, the two hidden layers equivalent of (4) becomes

pw > 4(K+2)ζ1+5, pv > 2(K+2)
[
2ζ2+‖β‖∞

]
−1, pu > 2(K+2)‖α‖∞(2ζ2+‖β‖∞)−1. (9)

5 Experiments
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Figure 2: Training score (left) w.r.t. the optimal score p∗
and test error (right) of NLSM1 and Batch-SGD with different
step-sizes.

Table 1: Test accuracy on UCI datasets

Dataset NLSM1 NLSM2 ReLU1 ReLU2 SVM

Cancer 96.4 96.4 95.7 93.6 95.7
Iris 90.0 96.7 100 93.3 100
Banknote 97.1 96.4 100 97.8 100
Blood 76.0 76.7 76.0 76.0 77.3
Haberman 75.4 75.4 70.5 72.1 72.1
Seeds 88.1 90.5 90.5 92.9 95.2
Pima 79.2 80.5 76.6 79.2 79.9

The shown experiments should be seen as a proof of concept. We do not have yet a
good understanding of how one should pick the parameters of our model to achieve good
performance. However, the other papers which have up to now discussed global optimality
for neural networks [11, 8] have not included any results on real datasets. Thus, up to our
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Nonlinear Spectral Method for 1 hidden layer
Input: Model n1 ∈ N, pw, pu ∈ (1,∞), ρw, ρu > 0, α1, . . . , αn1 ≥ 1, ε > 0 so that the
matrix A of Theorem 1 satisfies ρ(A) < 1. Accuracy τ > 0 and (w0, u0) ∈ S++.
1 Let (w1, u1) = GΦ(w0, u0) and compute R as in Theorem 3
2 Repeat
3 (wk+1, uk+1) = GΦ(wk, uk)
4 k ← k + 1
5 Until k ≥ ln

(
τ/R

)
/ ln

(
ρ(A)

)
Output: (wk, uk) fulfills ‖(wk, uk)− (w∗, u∗)‖∞ < τ .
With GΦ defined as in (3). The method for two hidden layers is similar: consider GΦ

as in (8) instead of (3) and assume that the model satisfies Theorem 5.

knowledge, we show for the first time a globally optimal algorithm for neural networks that
leads to non-trivial classification results.
We test our methods on several low dimensional UCI datasets and denote our algorithms as
NLSM1 (one hidden layer) and NLSM2 (two hidden layers). We choose the parameters of our
model out of 100 randomly generated combinations of (n1, α, ρw, ρu) ∈ [2, 20]× [1, 4]× (0, 1]2
(respectively (n1, n2, α, β, ρw, ρv, ρu) ∈ [2, 10]2 × [1, 4]2 × (0, 1]2) and pick the best one based
on 5-fold cross-validation error. We use Equation (4) (resp. Equation (9)) to choose pu, pw
(resp. pu, pv, pw) so that every generated model satisfies the conditions of Theorem 1 (resp.
Theorem 5), i.e. ρ(A) < 1. Thus, global optimality is guaranteed in all our experiments.
For comparison, we use the nonlinear RBF-kernel SVM and implement two versions of the
Rectified-Linear Unit network - one for one hidden layer networks (ReLU1) and one for
two hidden layers networks (ReLU2). To train ReLU, we use a stochastic gradient descent
method which minimizes the sum of logistic loss and L2 regularization term over weight
matrices to avoid over-fitting. All parameters of each method are jointly cross validated.
More precisely, for ReLU the number of hidden units takes values from 2 to 20, the step-sizes
and regularizers are taken in {10−6, 10−5, . . . , 102} and {0, 10−4, 10−3, . . . , 104} respectively.
For SVM, the hyperparameter C and the kernel parameter γ of the radius basis function
K(xi, xj) = exp(−γ‖xi − xj‖2) are taken from {2−5, 2−4 . . . , 220} and {2−15, 2−14 . . . , 23}
respectively. Note that ReLUs allow negative weights while our models do not. The results
presented in Table 1 show that overall our nonlinear spectral methods achieve slightly worse
performance than kernel SVM while being competitive/slightly better than ReLU networks.
Notably in case of Cancer, Haberman and Pima, NLSM2 outperforms all the other models.
For Iris and Banknote, we note that without any constraints ReLU1 can easily find an
architecture which achieves zero test error while this is difficult for our models as we impose
constraints on the architecture in order to prove global optimality.
We compare our algorithms with Batch-SGD in order to optimize (2) with batch-size being
5% of the training data while the step-size is fixed and selected between 10−2 and 102.
At each iteration of our spectral method and each epoch of Batch-SGD, we compute the
objective and test error of each method and show the results in Figure 2. One can see that
our method is much faster than SGDs, and has a linear convergence rate. We noted in
our experiments that as α is large and our data lies between [0, 1], all units in the network
tend to have small values that make the whole objective function relatively small. Thus, a
relatively large change in (w, u) might cause only small changes in the objective function
but performance may vary significantly as the distance is large in the parameter space. In
other words, a small change in the objective may have been caused by a large change in the
parameter space, and thus, largely influences the performance - which explains the behavior
of SGDs in Figure 2.
The magnitude of the entries of the matrix A in Theorems 1 and 5 grows with the number
of hidden units and thus the spectral radius ρ(A) also increases with this number. As we
expect that the number of required hidden units grows with the dimension of the datasets
we have limited ourselves in the experiments to low-dimensional datasets. However, these
bounds are likely not to be tight, so that there might be room for improvement in terms of
dependency on the number of hidden units.
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