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Abstract

State-of-the-art learning based boundary detection
methods require extensive training data. Since labelling ob-
ject boundaries is one of the most expensive types of annota-
tions, there is a need to relax the requirement to carefully
annotate images to make both the training more affordable
and to extend the amount of training data. In this paper we
propose a technique to generate weakly supervised annota-
tions and show that bounding box annotations alone suffice
to reach high-quality object boundaries without using any
object-specific boundary annotations. With the proposed
weak supervision techniques we achieve the top perform-
ance on the object boundary detection task, outperforming
by a large margin the current fully supervised state-of-the-
art methods.

1. Introduction
Boundary detection is a classic computer vision prob-

lem. It is an enabling ingredient for many vision tasks such
as image/video segmentation [1, 12], object proposals [17],
object detection [37], and semantic labelling [2]. Rather
than image edges, many of these tasks require class specific
objects boundaries. These are the external boundaries of
object instances belonging to a specific class (or class set).

State-of-the-art boundary detection is obtained via ma-
chine learning which requires extensive training data. Yet,
instance-wise boundaries are amongst the most expensive
types of annotations. Compared to two clicks for a bound-
ing box, delineating an object requires a polygon with
20~100 points, i.e. at least 10× more effort per object.

In order to make the training of new object classes af-
fordable, and/or to increase the size of the models we train,
there is a need to relax the requirement of high-quality im-
age annotations. Hence the starting point of this paper is the
following question: is it possible to obtain object-specific
boundaries without having any object boundary annotations
at training time?

In this paper we focus on learning object boundaries in a
weakly supervised fashion and show that high quality object
boundary detection can be obtained without using any class-
specific boundary annotations. We propose several ways of
generating object boundary annotations with different levels

(a) Image (b) SE(VOC) (c) Det.+SE (VOC)

(d) SE(BSDS) (e) SE (weak) (f) Det.+SE (weak)

Figure 1: Object-specific boundaries 1a differ from generic
boundaries (such as the ones detected in 1d). The proposed
weakly supervised approach drives boundary detection to-
wards the objects of interest. Example results in 1e and 1f.
Red/green indicate false/true positive pixels, grey is missing
recall. All methods shown at 50% recall.

of supervision, from just using a bounding box oriented
object detector to using the boundary detector trained on
generic boundaries. For generating weak object boundary
annotations we consider different sources, fusing unsuper-
vised image segmentation [11] and object proposal meth-
ods [32, 25] with object detectors [14, 27]. We show that
bounding box annotations alone suffice to achieve objects
boundary estimates with high quality.

We present results using a decision forest [9] and a con-
vnet edge detector [35]. We report top performance on
Pascal object boundary detection [16, 10] with our weak-
supervision approaches already surpassing previously re-
ported fully supervised results.

Our main contributions are summarized below:
•We introduce the problem of weakly supervised object-

specific boundary detection.
• We show that good performance can be obtained on

BSDS, PascalVOC12, and SBD boundary estimation using
only weak-supervision (leveraging bounding box detection
annotations without the need of instance-wise object bound-
ary annotations).
• We report best known results on PascalVOC12, and

SBD datasets. Our weakly supervised results alone improve
over the previous fully supervised state-of-the-art.

The rest of this paper is organized as follows. Section 3
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describes different types of boundary detection and the con-
sidered datasets. In Section 4 we investigate the robustness
to annotation noise during training. We leverage our find-
ings and propose several approaches for generating weak
boundary annotations in Section 5. Sections 6-9 report res-
ults using the two different classifier architectures.

2. Related work

Generic boundaries Boundary detection has been re-
gained attention recently. Early methods are based on
a fixed prior model of what constitutes a boundary (e.g.
Canny [6]). Modern methods leverage machine learning to
push performance. From well crafted features and simple
classifiers (gPb [1]), to powerful decision trees over fixed
features (SE [9], OEF [15]), and recently to end-to-end
learning via convnets (DeepEdge [3], N4 [13], HFL [4],
BNF [5], HED [35]). Convnets are usually pre-trained on
large classification datasets, so as to be initialized with reas-
onable features. The more sophisticated the model, the
more data is needed to learn it.
Other than pure boundary detection, segmentation tech-
niques (such as F&H [11], gPb-owt-ucm [1], and MCG
[25]), can also be used to improve or to generate closed con-
tours.
A few works have addressed unsupervised detection of gen-
eric boundaries [19, 20]. PMI [19] detects boundaries by
modelling them as statistical anomalies amongst all local
image patches, reaching competitive performance without
the need for training. Recently [20] proposes to train edge
detectors using motion boundaries obtained from a large
corpus of video data in place of human supervision. Both
approaches reach similar detection performance.

Object-specific boundaries In many applications, there is
interest to focus on boundaries of specific object classes.
The class-specific object boundary detectors need then to be
trained or tuned to the classes of interest. This problem is
more recent and still relatively unexplored. [16] introduced
the SBD dataset to measure this task over the 20 pascal cat-
egories. [16] proposes to re-weight generic boundaries us-
ing the activation regions of a detector. [31] proposed to
train class-specific boundary detectors, and weighted them
at test time according to an image classifier. More recently
[4, 5] consider mixing a semantic labelling convnet with a
generic boundary detection convnet, to obtain class specific
boundaries.

Weakly supervised learning In this work we are inter-
ested in object-specific boundaries without using class spe-
cific boundary annotations. We only use bounding box
annotations, and in some experiments, generic boundaries
(from BSDS [1]). Multiple works have addressed weakly
supervised learning for object localization [23, 7], object
detection [26, 34], or semantic labelling [33, 36, 24]. To the

(a) BSDS [1] (b) VOC12 [10]

(c) COCO [21] (d) SBD [16]

Figure 2: Datasets considered.

best of our knowledge there is no previous work attempting
to learn object boundaries in a weakly supervised fashion.

3. Boundary detection tasks
In this work we distinguish three types of boundaries:

generic boundaries (“things” and “stuff”), instance-wise
boundaries (external object instance boundaries), and class
specific boundaries (object instance boundaries of a certain
semantic class). For detecting these three types of boundar-
ies we consider different datasets: BSDS500 [1, 22], Pascal
VOC12 [10], MS COCO [21], and SBD [16], where each
represents boundary annotations of a given boundary type
(see Figure 2).
BSDS We first present our results on the Berkeley Seg-
mentation Dataset and Benchmark (BSDS) [1, 22], the most
established benchmark for generic boundary detection task.
The dataset contains 200 training, 100 validation and 200
test images. Each image has multiple ground truth annota-
tions. For evaluating the quality of estimated boundaries
three measures are used: fixed contour threshold (ODS),
per-image best threshold (OIS), and average precision (AP).
Following the standard approach [9, 6] prior to evaluation
we apply a non-maximal suppression technique to bound-
ary probability maps to obtain thinned edges.
VOC For evaluating instance-wise boundaries we propose
to use the PASCAL VOC 2012 (VOC) segmentation dataset
[10]. The dataset contains 1 464 training and 1 449 valida-
tion images, annotated with contours for 20 object classes
for all instances. The dataset was originally designed for se-
mantic segmentation. Therefore only object interior pixels
are marked and the boundary location is recovered from the
segmentation mask. Here we consider only object bound-
aries without distinguishing the semantics, treating all 20
classes as one. For measuring the quality of predicted
boundaries the BSDS evaluation software is used. Follow-
ing [31] the maxDist (maximum tolerance for edge match)
is set to 0.01.
COCO To show generalization of the proposed method for
instance-wise boundary detection we use the MS COCO
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Figure 3: BSDS results. Canny and F&H points indicate the
boundaries used as noisy annotations. When trained over
noisy annotations, both SE and HED provide a large quality
improvement.

Family Method ODS OIS AP ∆AP%

Unsupervised
Canny 58 62 55 -
F&H 64 67 64 -
PMI 74 77 78 -

Trained
on

ground truth

gPb-owt-ucm 73 76 73 -
SE(BSDS) 74 76 79 -
HED(BSDS) noncons. 75 77 80 -
HED(BSDS) cons. 79 81 84 -

Trained
on

unsupervised
boundary
estimates

SE (Canny) 64 67 64 38
SE (F&H) 71 74 76 80
SE (SE (F&H)) 72 74 76 80
SE(PMI) 72 75 77 -
HED (F&H) 69 72 73 56
HED (SE (F&H)) 73 76 75 69

Table 1: Detailed BSDS results, see Figure 3 and Section 4.
Underline indicates ground truth baselines, and bold are our
best weakly supervised results. (·) denotes the data used for
training. ∆AP% indicates the ratio between the same model
trained on ground truth, and the noisy input boundaries. The
closer to 100%, the lower the drop due to using noisy inputs
instead of ground truth.

(COCO) dataset [21]. The dataset provides semantic seg-
mentation masks for 80 object classes. For our experi-
ments we consider only images that contain the 20 Pascal
classes and objects larger than 200 pixels. The subset of
COCO that contains Pascal classes consists of 65 813 train-
ing and 30 163 validation images. For computational reas-
ons we limit evaluation to 5 000 randomly chosen images
of the validation set. The BSDS evaluation software is used
(maxDist = 0.01). Only object boundaries are evaluated
without distinguishing the semantics.
SBD We use the Semantic Boundaries Dataset (SBD) [16]
for evaluating class specific object boundaries. The dataset
consists of 11 318 images from the trainval set of the PAS-
CAL VOC2011 challenge, divided into 8 498 training and
2 820 test images. This dataset has object instance boundar-
ies with accurate figure/ground masks that are also labeled
with one of 20 Pascal VOC classes. The boundary detec-

tion accuracy for each class is evaluated using the official
evaluation software [16]. During the evaluation process all
internal object-specific boundaries are set to zero and the
maxDist is set to 0.02. We report the mean ODS F-measure
(F), and average precision (AP) across 20 classes.

Note that VOC and SBD datasets have overlap between
their train and test sets. When doing experiments across
datasets we make sure not to re-use any images included in
the test set considered.

Baselines For our experiments we consider two different
types of boundary detectors - SE [9] and HED [35] - as
baselines.
SE is at the core of multiple related methods (SCG, MCG,
OEF). SE [9] builds a “structured decision forest” which is
a modified decision forest, where the leaf outputs are local
boundary patches (16 × 16 pixels) that are averaged at test
time, and the split nodes are built taking into account the
local segmentation of the ground truth input patches. It
uses binary comparison over hand-crafted edge and self-
similarity features as split decisions. By construction this
method requires closed contours (i.e. segmentations) as
training input. This detector is reasonably fast to train/test
and yields good detection quality.
HED [35] is currently the top performing convnet for BSDS
boundaries. It builds upon a VGG16 network pre-trained on
ImageNet [30], and exploits features from all layers to build
its output boundary probability map. By also exploiting the
lower layers (which have higher resolution) the output is
more detailed, and the fine-tuning is more effective (since
all layers are guided directly towards the boundary detec-
tion task). To reach top performance, HED is trained using
a subset of the annotated BSDS pixels, where all annotat-
ors agree [35]. These are so called “consensus” annotations
[18], and correspond to sparse ∼15% of all true positives.

4. Robustness to annotation noise
We start by exploring weakly supervised training for

generic boundary detection, as considered in BSDS.
Model based approaches such as Canny [6] and F&H

[11] are able to provide low quality boundary detections.
We notice that correct boundaries tend to have consistent
appearance, while erroneous detections are mostly incon-
sistent. Robust training methods should be able to pick-up
the signal in such noisy detections.

SE In Figure 3 and Table 1 we report our results when
training a structured decision forest (SE) and a convnet
(HED) with noisy boundary annotations. By (·) we de-
note the data used for training. When training SE using
either Canny (“SE (Canny)”) or F&H (“SE (F&H)”) we ob-
serve a notable jump in boundary detection quality. Com-
paring SE trained with the BSDS ground truth (fully su-
pervised, SE (BSDS)), with the noisy labels from F&H,



(a) Ground truth (b) F&H (c) F&H ∩ BBs (d) GrabCut ∩ BBs (e) SeSe ∩ BBs

(f) MCG ∩ BBs (g) cons. MCG ∩ BBs (h) SE(SeSe ∩ BBs) (i) cons. S&G∩BBs (j) cons. all methods ∩ BBs

Figure 4: Different generated boundary annotations. Cyan/black indicates positive/ignored boundaries.

SE (F&H) closes up to 80% of the gap between SE (F&H)
and SE (BSDS) (∆AP% column in Table 1).
Since the training data of our weak supervision contains
label noise (errors), we do not expect results to match the
fully supervised case. Still, SE (F&H) is only 3 AP percent
points behind from the fully supervised case (76 vs. 79).
We believe that the strong noise robustness of SE can be at-
tributed to the way it builds its leaves. The final output of
each leaf is the medoid of all segments reaching it. If the
noisy boundaries are randomly spread in the image appear-
ance space, the medoid selection will be robust.

HED The HED convnet [35] reaches top quality when
trained over consensus annotations. When using all annota-
tions (“non consensus”), its performance is comparable to
other convnet alternatives. When trained over F&H the re-
lative improvement is smaller than for the SE case, when
combined with SE (denoted “HED(SE (F&H))”) it reaches
69 ∆AP% . HED (SE (F&H)) provides better boundaries
than SE (F&H) alone, and reaches quality comparable to
the classic gPb method [1] (75 vs. 73).

On BSDS the unsupervised PMI methods provides better
boundaries than our weakly supervised variants. However
PMI cannot be adapted to provide object-specific boundar-
ies. For this we need to rely on methods than can be trained,
such as SE and HED.

Conclusion SE is surprisingly robust to annotation noise
during training. HED is also robust but to a lesser de-
gree. By using noisy boundaries generated from unsuper-
vised methods, we can reach a performance comparable to
the bulk of current methods.

5. Weakly supervised boundary annotations

Based on the observations in Section 4, we propose to
train boundary detectors using data generated from weak
annotations. Our weakly supervised models are trained in
a regular fashion, but use generated (noisy) training data as
input instead of human annotations.

We consider boundary annotations generated with three
different levels of supervision: fully unsupervised, using
only detection annotations, and using both detection annota-
tions and BSDS boundary annotations (e.g. using generic
boundary annotation, but zero object-specific boundaries).
In this section we present the different variants of weakly
supervised boundary annotations. Some of them are illus-
trated in Figure 4.

BBs We use the bounding box annotations to train a class-
specific object detector [27, 14]. We then apply this detector
over the training set (and possibly a larger set of images),
and retain boxes with confidence scores above 0.8. We
saw no noticeable difference when using directly the ground
truth annotations, see supplementary material for details.

F&H As a source of unsupervised boundaries we consider
the classical graph based image segmentation technique
proposed by [11] (F&H). To focus the training data on the
classes of interest, we intersect these boundaries with de-
tection bounding boxes from [27] (F&H ∩ BBs). Only the
boundaries of segments that are contained inside a bounding
box are retained.

GrabCut Boundaries from F&H will trigger on any kind
of boundary, including the internal boundaries of objects.
A way to exclude internal object boundaries, is to extract
object contours via figure-ground segmentation of the de-
tection bounding box. We use GrabCut [28] for this
purpose. We also experimented with DenseCut [8] and
CNN+GraphCut [29], but did not obtain any gain; thus we
report only GrabCut results.
For the experiments reported below, for GrabCut ∩ BBs a
segment is only accepted if a detection from [27] has the
intersection-over-union score (IoU) ≥ 0.7. If a detection
bounding boxes has no matching segment, the whole region
is marked as ignore (see Figure 4e) and not used during the
training of boundary detectors.

Object proposals Another way to bias generation of
boundary annotations towards object contours is to consider
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[48] Det. + SE(VOC)
[48] SB(VOC)
[44] SB(VOC) orig.
[43] SE(VOC) orig.
[43] SE(VOC)
[40] SE(BSDS)

Figure 5: VOC12 results, fully supervised SE models. (·)
denotes the data used for training. Continuous/dashed line
indicates models using/not using a detector at test time. Le-
gend indicates AP numbers.

Family Method Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

GT SE VOC 43 35 - 48 41 -

Other
GT

SE COCO 44 37 2 49 42 1
SE

BSDS
40 29 -6 47 39 -2

MCG 41 28 -7 48 39 -2

Weakly
super-
vised

SE

F&H ∩ BBs 40 29 -6 46 36 -5
GrabCut ∩ BBs 41 32 -3 47 39 -2

SeSe ∩ BBs 42 35 0 46 39 -2
SeSe+ ∩ BBs 43 36 +1 46 39 -2
MCG ∩ BBs 43 34 -1 47 39 -2

MCG+ ∩ BBs 43 35 0 48 40 -1
Unsuper-

vised
F&H

-
34 15 -20 41 25 -16

PMI 41 29 -6 47 38 -3

Table 2: VOC results for SE models, see Figures 5 and 6.
Bold indicates our best weakly supervised results.

object proposals. SeSe [32] is based on the F&H [11] seg-
mentation (thus it is fully unsupervised), while MCG [25]
employs boundaries estimated via SE (BSDS) (thus uses
generic boundary annotations).

Similar to GrabCut∩BBs, SeSe∩BBs and MCG∩BBs
are generated by matching proposals to bounding boxes (if
IoU ≥ 0.9). BBs come from [14] with the corresponding
object proposals. When more than one proposal is matched
to a detection bounding box we use the union of the pro-
posal boundaries as positive annotations. This maximizes
the recall of boundaries, and somewhat imitates the mul-
tiple human annotators in BSDS. We also experimented us-
ing only the highest overlapping proposal, but the union
provides marginally better results; thus we report only the
latter. Since proposals matching a bounding box might have
boundaries outside it, we consider them all since the bound-
ing box itself might not cover well the underlying object.
Consensus boundaries As pointed out in Table 1, HED
requires consensus boundaries to reach good performance.
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[47] Det. + PMI
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[41] SE(GrabCut BBs)
[41] PMI
[40] SE(BSDS)

Figure 6: VOC12 results, weakly supervised SE models.
(·) denotes the data used for training. Continuous/dashed
line indicates models using/not using a detector at test time.
Legend indicates AP numbers.

Thus rather than taking the union between proposal bound-
aries, we consider using the consensus between object pro-
posal boundaries. The boundary is considered to be present
if the agreement is higher than 70%, otherwise the bound-
ary is ignored. We denote such generated annotations as
“cons.”, e.g. cons. MCG ∩ BBs (see Figure 4g).
Another way to generate sparse (consensus-like) boundar-
ies, is to threshold the boundary probability map out of
SE (·) model. SE (SeSe ∩ BBs) uses the top 15% quantile
per image as weakly supervised annotations.
Finally, other than consensus between proposals, we can
also do consensus between methods. cons. S&G ∩
BBs is the intersection between SE (SeSe ∩ BBs), SeSe
and GrabCut boundaries (fully unsupervised); while
cons. all methods∩BBs is the intersection between MCG,
SeSe and GrabCut (uses BSDS data).

Datasets Since we generate boundary annotations in a
weakly supervised fashion, we are able to generate bound-
aries over arbitrary image sets. In our experiments we con-
sider SBD, VOC (segmentation), and VOC+ (VOC plus im-
ages from Pascal VOC12 detection task). Methods using
VOC+are denoted using ·+ (e.g. SE (SeSe+ ∩ BBs)).

6. Structured forest VOC boundary detection

In this section we analyse the variants of weakly super-
vised methods for object boundary detection proposed in
Section 5 as opposed to the fully supervised ones. From
now on we are interested in external boundaries of objects.
Therefore we employ the Pascal VOC12, treating all 20 Pas-
cal classes as one. See details of the evaluation protocol in
Section 3. We start by discussing results using SE; convnet
results are presented in Section 7.
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[62] HED(VOC)
[59] Det. + HED(VOC)
[53] HED(cons. all methods BBs)
[53] Det. + HED(cons. all methods BBs)
[53] Det. + HED(BSDS)
[52] Det. + HED(cons. S&G BBs)
[51] HED(cons. S&G BBs)
[48] Det. + SE(VOC)
[48] HED(BSDS)
[47] Det. + SE(BSDS)

Figure 7: VOC12 HED results. (·) denotes the data used
for training. Continuous/dashed line indicates models us-
ing/not using a detector at test time. Legend indicates AP
numbers.

Family Method Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

GT
SE

VOC
43 35 - 48 41 -

HED 62 61 26 59 58 17
Other
GT HED

BSDS 48 41 6 53 48 7
COCO 59 60 25 56 55 14

Weakly
super-
vised

SE MCG ∩ BBs 43 34 -1 47 39 -2

HED

SE(SeSe ∩ BBs) 45 37 3 49 40 -1
MCG ∩ BBs 50 44 9 48 42 1

cons. S&G ∩ BBs 51 46 +11 52 47 +8
cons. MCG ∩ BBs 53 50 15 52 49 8

cons. all methods∩BBs 53 50 +15 53 50 +9

Table 3: VOC results for HED models, see Figure 7. Bold
indicates our best weakly supervised results.

6.1. Training models with ground truth

SE Figure 5 and Table 2 show results of SE trained over the
ground truth of different datasets (dashed lines). Our results
of SE (VOC) are on par to the ones reported in [31]. The
gap between SE (VOC) and SE (BSDS) reflects the differ-
ence between generic boundaries and boundaries specific to
the 20 VOC object categories (see also Figure 1).

SB To improve object-specific boundary detection, the
situational boundary method SB [31], trains 20 class-
specific SE models. These models are combined at test time
using a convnet image classifier. The original SB results
and our re-implementation SB (VOC) are shown in Figure
5. Our version obtains better results (4 percent points gain
in AP) due to training the SE models with more samples per
image, and using a stronger image classifier [30].

Detector + SE Rather than training and testing with 20 SE
models plus an image classifier, we propose to leverage the
same training data using a single SE model together with a
detector [14]. By computing a per-pixel maximum among

all detection bounding boxes and their score, we construct
an “objectness map” that we multiply with the boundary
probability map from SE. False positive boundaries are thus
down-scored, and boundaries in high confidence regions for
the detector get boosted. The detector is trained with the
same per object boundary annotations used to train the SE
model, no additional data is required.

Our Det.+SE (VOC) obtains the same detection quality
as SB (VOC) while using only a single SE model. These
are the best reported results on this task (top of Table 2),
when using the fully supervised training data.

At the cost of more expensive training and test, one could
in principle also combine object detection with the situ-
ational boundary method [31], this is out of scope of this
paper and considered as future work.

6.2. Training models using weak annotations

Given the reference performance of Det.+SE (VOC),
can we reach similar boundary detection quality without us-
ing the boundary annotations from VOC?
SE (·) First we consider using a SE model alone at test
time. Using only the BSDS annotations leads to rather low
performance (see SE (BSDS) in Figure 6). PMI shows a
similar gap. The same BSDS data can be used to generate
MCG object proposals over the VOC training data, and a de-
tector trained on VOC bounding boxes can generate bound-
ing boxes over the same images. We combined them to-
gether to generate boundary annotations via MCG ∩ BBs,
as described in Section 5. The weak supervision from the
bounding boxes can be used to improve the performance of
SE (BSDS). By extending the training set to additional pas-
cal images (SE (MCG+ ∩ BBs) in Table 2) we can reach the
same performance as when using the VOC ground truth.
We also consider variants that do not leverage the BSDS
boundary annotations, such as SeSe and GrabCut. SeSe
provides essentially the same result as MCG. Note that
both MCG and SeSe are tuned on VOC. Comparing to
GrabCut ∩ BBs, a “pascal-agnostic” method, we can see
that this bias has a minor impact.
Det.+SE (·) Applying object detection at test time
squashes the differences among all weakly supervised
methods. Det.+PMI shows strong results, but (since not
trained on boundaries) fails to reach high precision. The
high quality of Det.+BSDS indicates that BSDS annota-
tions, despite being in principle “generic boundaries” in
practice reflect well object boundaries, at least in the prox-
imity of an object. This is further confirmed in Section 7.
Compared to Det.+BSDS our weakly supervised annota-
tion variants further close the gap to Det.+SE (VOC) (es-
pecially in high precision area), even when not using any
BSDS data.
Conclusion Based only on bonding box annotations, our
weakly supervised boundary annotations enable the Det.+



Image Ground truth SE(BSDS) SB(VOC) Det.+SE (VOC) Det.+SE (weak) Det.+HED (weak)

Figure 8: Qualitative results on VOC. (·) denotes the data used for training. Red/green indicate false/true positive pixels, grey
is missing recall. All methods are shown at 50% recall. Det.+SE (weak) refers to the model Det.+SE (SeSe+ ∩ BBs) Det.+
HED (weak) refers to Det.+HED (cons. S&G ∩ BBs). Object-specific boundaries differ from generic boundaries (such as
the ones detected by SE(BSDS)). By using an object detector we can suppress non-object boundaries and focus boundary
detection on the classes of interest. The proposed weakly supervised techniques allow to achieve high quality boundary
estimates that are similar to the ones obtained by fully supervised methods.

Method Family Data
Without BBs With BBs
F AP ∆AP F AP ∆AP

SE

GT COCO 40 32 - 45 37 -
Other GT BSDS 34 23 -9 43 33 -4
Weakly

supervised
SeSe+ ∩ BBs 40 31 -1 44 35 -2
MCG+ ∩ BBs 39 30 -2 44 35 -2

HED

GT COCO 60 59 27 56 55 18
Other GT BSDS 44 34 2 49 42 5
Weakly

supervised
cons. S&G∩BBs 47 39 7 48 42 5

cons. all methods∩BBs 49 43 +11 50 44 +7

Table 4: COCO results, curves in supplementary material.
Bold indicates our best weakly supervised results.

SE model to match the fully supervised case, improving
over the best reported results on the task. We also observe
that BSDS data allows to train models that describe well
object boundaries.

7. Convnet VOC boundary detection results
This section analyses the performance of the HED [35]

trained with the weakly supervised variants proposed in
Section 5. We use our re-implementation of HED which is
on par performance with the original (see Figure 3). We use
the same evaluation setup as in the previous section. Figure
7 and Table 3 show the results.

HED (·) The HED(VOC) model outperforms the SE(VOC)
model by a large margin. We observe in the test images that
HED manages to suppress well the internal object boundar-
ies, while SE fails to do so due to its more local nature. Note
that HED also leverages the ImageNet pre-training [35].

Even though trained on the generic boundaries
HED(BSDS) achieves high performance on the object
boundary detection task. HED(BSDS) is trained on the
“consensus” annotations and they are closer to object-like
boundaries as the fraction of annotators agreeing on the
presence of external object boundaries is much higher than

for non-object or internal object boundaries.
For training HED, in contrast to SE model, we do not

need closed contours and can use the consensus between
different weak annotation variants. This results in bet-
ter performance. Using the consensus between boundar-
ies of MCG proposals HED(cons. MCG ∩ BBs) improves
AP by 6% compared to using the union of object proposals
HED(MCG ∩ BBs) (see Table 3) .

The HED models trained with weak annotations outper-
form the fully supervised SE(VOC) and do not reach the
performance of HED(VOC). As has been shown in Section
4 the HED detector is less robust to noise than SE.
Det.+HED (·) Combining an object detector with
HED(VOC) (see Det.+HED (VOC) in Figure 7) is not
beneficial to the performance as the HED detector already
has notion of objects and their location due to pixel-to-pixel
end-to-end learning of the network.

For HED models trained with the weakly supervised
variants, employing an object detector at test time brings
only a slight improvement of the performance in the high
precision area. The reason for this is that we already use
information from the bounding box detector to generate the
annotation and the convnet method is able to learn it during
training.

Det.+HED (MCG ∩ BBs) outperforms Det.+
HED (BSDS) (see Table 3). Note that the HED
trained with the proposed annotations, generated
without using boundary ground truth, performs on par
with the HED model trained on generic boundaries
(Det.+HED (cons. S&G∩BBs) and Det.+HED (BSDS)in
Figure 7).

The qualitative results are presented in Figure 8 and sup-
port the quantitative evaluation.
Conclusion Similar to other computer vision tasks deep
convnet methods show superior performance. Due to the



Family Method mF mAP

Other GT Hariharan et al. [16] 28 21

SE

GT
SB(SBD) orig. [31] 39 32
SB(SBD) 43 37
Det.+SE (SBD) 51 45

Other
GT

Det.+SE (BSDS) 51 44
Det.+MCG (BSDS) 50 42

Weakly
super-
vised

SB(SeSe ∩ BBs) 40 34
SB (MCG ∩ BBs) 42 35
Det.+SE (SeSe ∩ BBs) 48 42
Det.+SE (MCG ∩ BBs) 51 45

HED

GT
HED (SBD) 44 41
Det.+HED (SBD) 49 45

Other
GT

HED(BSDS) 38 32
Det.+HED (BSDS) 49 44

Weakly
super-
vised

HED(cons. MCG ∩ BBs) 41 37
HED (cons. S&G ∩ BBs) 44 39
Det.+HED (cons. MCG ∩ BBs) 48 44
Det.+HED (cons. S&G ∩ BBs) 52 47

Table 5: SBD results. Results are mean F(ODS)/AP across
all 20 categories. (·) denotes the data used for training. See
also Figure 9. Bold indicates our best weakly supervised
results.
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Figure 9: SBD results per class. (·) denotes the data used
for training. Det.+HED (weak) refers to the model Det.+
HED (cons. S&G ∩ BBs).

pixel-to-pixel training and global view of the image the con-
vnet models have a notion of object and its location which
allows to omit the use of the detector at test time. With our
weakly supervised boundary annotations we can gain fair
performance without using any instance-wise object bound-
ary or generic boundary annotations and leave out object
detection at test time by feeding object bounding box in-
formation during training.

8. COCO boundary detection results

Additionally we show the generalization of the proposed
weakly supervised variants for object boundary detection
on the COCO dataset. We use the same evaluation protocol
as for VOC. For weakly supervised cases the results are
shown with the models trained on VOC, without re-training
on COCO.

The results are summarized in Table 4. On the COCO
benchmark for both SE and HED the models trained on the

proposed weak annotations perform as well as the fully su-
pervised SE models. Similar to the VOC benchmark the
HED model trained on ground truth shows superior per-
formance.

9. SBD boundary detection results
In this section we analyse the performance of the pro-

posed weakly supervised boundary variants trained with SE
and HED on the SBD dataset [16]. In contrast to the VOC
benchmark we move from object boundaries to class spe-
cific object boundaries. We are interested in external bound-
aries of all annotated objects of the specific semantic class
and all internal boundaries are ignored during evaluation
following the benchmark [16]. The results are presented
in Figure 9 and in Table 5.
Fully supervised Applying SE model plus object detection
at test time outperforms the class specific situational bound-
ary detector (for both [31] and our re-implementation) as
well as the Inverse Detectors [16]. The model trained with
SE on ground truth performs as well as the HED detector.
Both of the models are good at detecting external object
boundaries; however SE, being a more local, triggers more
on internal boundaries than HED. In the VOC evaluation
detecting internal object boundaries is penalized, while in
SBD these are ignored. This explains the small gap in the
performance between SE and HED on this benchmark.
Weakly supervised The models trained with the proposed
weakly-supervised boundary variants perform on par with
the fully supervised detectors, while only using bounding
boxes or generic boundary annotations. We show in Table
5 the top result with the Det. + HED(cons. S&G∩BBs)
model, achieving the state-of-the-art performance on the
SBD benchmark. As Figure 9 shows our weakly super-
vised approach considerably outperforms [31, 16] on all 20
classes.

Conclusion
The presented experiments show that when using the

bounding box annotations for training an object detector,
one can also train a high quality object boundary detector
without additional annotation effort.

Using boxes alone, our proposed weak-supervision tech-
niques improve over previously reported fully supervised
results for object-specific boundaries. When using generic
boundary or ground truth annotations, we also achieve the
top performance on the object boundary detection task, out-
performing previously reported results by a large margin.

To facilitate future research all the resources of this pro-
ject - source code, trained models and results - will be made
publicly available.
Acknowledgements We thank J. Hosang for help with Fast
R-CNN training; S. Oh and B. Pepik for valuable feedback.
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