Übungen zur Mathematischen Logik I Blatt 7

Aufgabe 27: Zeigen Sie im Kalkül NK', dass die Peircesche Tautologie ohne Annahmen ableitbar ist; dass also für beliebige Formeln $\phi, \psi \in PROP$ gilt: $\vdash ((\phi \to \psi) \to \phi) \to \phi$.

Setzen Sie ab hier voraus, dass die Formeln in PROP mithilfe der vollständigen Junktorenmenge $\mathfrak{J} := \{\bot, \to, \land\}$ gebildet werden.

Aufgabe 28: Geben Sie explizit eine Aufzählungsfunktion $f : \mathbb{N} \to PROP$ für die Menge aller Formeln an, die rekursiv über dem Formelaufbau definiert und auch effizient zu berechnen ist.

Hinweis: Verwenden Sie für die Kodierung von zwei Zahlen die Funktion $K: \langle x,y \rangle \mapsto K(\langle x,y \rangle) := (x+y)(x+y-1)/2 - y + 1$; durch Multiplikation mit einer Konstanten und anschließender Addition können Fälle unterschieden werden.

DEF (Vollständigkeit/ Unabhängigkeit): Eine Formelmenge $\Gamma \subseteq PROP$ heißt *vollständig*, falls für jedes $\phi \in PROP$ gilt $\Gamma \vdash \phi$ oder $\Gamma \vdash \neg \phi$. Falls Γ nicht vollständig ist, gibt es Formeln $\phi \in PROP$ mit $\Gamma \not\vdash \phi$ und $\Gamma \not\vdash \neg \phi$. Diese Formeln werden *unabhängig von* Γ genannt.

Aufgabe 29: Es sei für jedes $k \in \mathbb{N}$ die Formel $\lambda_k \in \{p_k, \neg p_k\}$ ein Literal.

Zeigen Sie mit Induktion über den Formelaufbau, dass die Formelmenge $\Lambda := \{\lambda_k; \ k \in \mathbb{N}\} \subseteq PROP$ vollständig ist. Argumentieren Sie hierbei rein syntaktisch.

Zeigen Sie zudem unter Verwendung des Vollständigkeitssatzes, dass die Menge Λ konsistent ist.

Aufgabe 30: Sei $\Gamma \subseteq \operatorname{PROP}$ konsistente Formelmenge. Zeigen Sie, dass der deduktive Abschluss $\operatorname{Ded}(\Gamma) := \{\phi; \ \Gamma \vdash \phi\}$ von Γ genau dann maximal-konsistent ist, wenn Γ vollständig ist.

Zeigen Sie zudem, dass es für jede vollständige, widerspruchsfreie Menge Γ genau eine Menge Λ wie in Aufgabe (29) gibt mit $\mathrm{Ded}(\Gamma) = \mathrm{Ded}(\Lambda)$. Geben Sie dann zwei unvollständige Formelmengen und je zwei unabhängige Formeln an.

Argumentieren Sie in dieser Aufgabe syntaktisch ohne Verwendung des Vollständigkeitssatzes.

Hinweis: Sie können sich die Argumentation vereinfachen, wenn Sie zunächst beweisen, dass $\operatorname{Ded}(\operatorname{Ded}(\Gamma)) = \operatorname{Ded}(\Gamma)$ gilt.

Aufgabe 31 (Zusatzaufgabe): Lösen Sie die Aufgaben 26 (c) – (e) vom letzten Blatt.

Abgabe der Aufgaben am Do. 10.12.2009 nach der Vorlesung