Übungen zur Informatik III

Blatt 4

Prof. Dr. P. Schroeder-Heister

WS 2003/04

Abgabe am Donnerstag, den 13. November, in der Vorlesungspause

Aufgabe 19 (3 Punkte)

Sei $\Gamma = \langle \{S, A, B\}, \{0, 1, *\}, \Pi, S \rangle$, wobei Π durch folgende Produktionen gegeben ist:

$$\begin{array}{ccc} S & \longrightarrow & 1A \mid 1B \mid 0B \\ A & \longrightarrow & 1A \mid 1B \mid 0A \mid 0B \\ B & \longrightarrow & *S \mid \epsilon \end{array}$$

Konstruieren Sie einen regulären Ausdruck γ , mit $\langle \gamma \rangle = L(\Gamma)$.

Aufgabe 20 (3 Punkte)

Zeigen Sie, daß es zu jeder regulären Grammatik Γ eine äquivalente linksreguläre Grammatik Γ' mit $L(\Gamma) = L(\Gamma')$ gibt.

Aufgabe 21 (2+4+2 Punkte)

Sei $\Gamma_1 = \langle \{S,T\}, \{a,b\}, \Pi, S \rangle$, wobei Π durch folgende Produktionen gegeben ist:

$$\begin{array}{ccc} S & \longrightarrow & aS \mid aT \\ T & \longrightarrow & bS \mid b \end{array}$$

- (a) Konstruieren Sie einen NDEA A_1 , der die von Γ_1 erzeugte Sprache akzeptiert.
- (b) Konstruieren Sie einen zu A_1 äquivalenten DEA A_2 .
- (c) Definieren Sie, gemäß dem Beweis von Theorem 4.1, die dem Automaten A_2 korrespondierende Grammatik Γ_2 mit $L(\Gamma_2) = L(A_2)$.

Aufgabe 22 (3 Punkte)

Konstruieren Sie eine Grammatik, die alle (ungeordneten) Ausdrücke für Polynome beliebigen Grades aus $\mathbb{Z}[t]$ erzeugt. Beispiel:

$$t^10 - 11 * t + 1$$

Aufgabe 23 (3 Punkte, 2+2 Zusatzpunkte)

Konstruieren Sie, wenn möglich, eine Grammatik über dem Alphabet $\Gamma = \{a, b, c\}$, welche die Menge regulärer Ausdrücke γ erzeugt, die folgende Bedingung erfüllen:

(a)
$$\langle \gamma \rangle = \emptyset$$

(b)
$$\langle \gamma \rangle = \{ \epsilon \}$$

(c)
$$\langle \gamma \rangle = \{abc\}$$