
Proof-theoretic conservations
of weak weak intuituonistic

constructive set theories

L. Gordeev
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§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



§1. Introduction -1-

J. Myhill [1975], H. Friedman [1977]: Constructively
meaningful principles of weak Set Theory.

L. G. [1977],[1982]: Constructive interpretations of Set
Theory that are compatible with Recursive Analysis.

H. Friedman [1977]: Intuitionistic extensional set theories

T1 ⊂ T2 ⊂ T3 ⊂ T4

whose proof theoretic strengths are between (those of)
classical first and second order arithmetic:

|PA| = |HA| = |T1| < |T2| < |T3| < |T4| = |HA2| = |PA2|

which justifies designation weak.

Despite proof-theoretic weakness, these intuitionistic set
theories have great expressive power.

L. Gordeev Proof-theoretic conservationsof weak weak intuituonisticconstructive set theories



Introduction -2-

Example

Zermelo’s power-set axiom

Pow ≡ ∃℘ (x) = {y : y ⊂ x}

is replaced in T1 , T2 , T3 , T4 by the exponentiation axiom

Exp ≡ ∃ (xy) = {f : f ⊂ x × y ∧ (∀u ∈ x) (∃!v ∈ y) (〈u, v〉 ∈ f )}

In classical set theory: Pow⇔ Exp.

However intuitionistically Exp is weaker than Pow.

Hint: think of xy as (possibly enumerable) set of constructive
functions from x to y (e. g. algorithms).
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Apart from Exp, theories T1 , T2 , T3 also include:

1 Ext (Cantor’s axiom of extensionality).

2 ∆0-Sep (restricted separation schema).

Arguably ∆0-Sep is predicative.

Other axioms to be discussed later.

T1 , T2 , T3 regarded as being constructive.

T4 contains full separation and is not really constructive.
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Conservative extensions, i-conservation

Assume HA ⊂ S intuitionistic theory with decent proof theory.

|S | = sup {α : S ` TIAr (α)} = proof-theoretic strength of S .
So for any arithmetical sentence A,
HA + TIAr (< |S |) ` A⇒ S ` A.

Definition

Call S i-conservative iff S is a conservative extension of
HA + TIAr (< |S |), i.e. for any arithemetical sentence A,
HA + TIAr (< |S |) ` A⇔ S ` A. In particular if |S | = ε0, then
S is i-conservative ⇔ S is conservative extension of HA.

Meaning: if S is i-conservative, then its arithmetical part is
“correct”, i.e. based on standard intuitionistic principles only.
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Problem

H. Friedman [1977]: Are T1 , T2 , T3 , T4 conservative extensions

of HA , Σ1
1-AC(i), ID

(i)
1 , HA2, respectively? Dropping T4, consider

equivalent question: Are T1 , T2 , T3 i-conservative?

Solution

L. G. [1982,1988]: Yes, T1 , T2 , T3 are i-conservative. Note
that |T1| = ε0 , |T2| = ϕε0 (0) , |T3| = Howard ordinal ϕεΩ+1

(0) .
Hence in particular T1 is conservative extension of HA.
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More on T1 − T3

1 T1 , T2 , T3 all include Fnd (Foundation) and SC (Strong
Collection) :

Fnd ≡ Trans (x) ∧ (∀y ∈ x) (y ⊂ z → y ∈ z)→ x ⊂ z

SC ≡ (∀x ∈ a)∃yϕ (x , y)→
∃z ((∀x ∈ a) (∃y ∈ z)ϕ (x , y) ∧ (∀y ∈ z) (∃x ∈ a)ϕ (x , y))

2 T1 includes only set-restricted arithmetic induction (Ind0).

3 T2 includes full arithmetic induction (Ind) and full Relative
Dependent Choice (RDC).

4 T3 includes both Ind and RDC, as well as full ∈-induction
(Ind∈).
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2 T1 includes only set-restricted arithmetic induction (Ind0).

3 T2 includes full arithmetic induction (Ind) and full Relative
Dependent Choice (RDC).

4 T3 includes both Ind and RDC, as well as full ∈-induction
(Ind∈).
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§2. Recent developments

K. Sato [2009]: classical weak weak set theory Basic and
beyond. We consider Basic+Ext and its extensions.

K. Sato [2009] (basic results):
|Basic + Ext| = ε0 , |Basic + Ext + ∆0-Sep| = Γ0 .
Remember: these are theories with classical logic.

Problem

What about intuitionistic counterparts
Basic(i)+Ext and Basic(i) + Ext + ∆0-Sep ?

Solution∣∣Basic(i) + Ext
∣∣ =

∣∣Basic(i) + Ext + ∆0-Sep
∣∣ = ε0 .

Moreover Basic(i) + Ext + ∆0-Sep is i-conservative,
and hence conservative extension of HA.
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Generalizations

Note that Basic includes Clps (Collapsing) :

Clps ≡ Ord (x) ∧ (∀s, t ∈ x) (〈s, t〉 ∈ r ↔ 〈s, t〉 /∈ r ′) ∧
WF (x , r)→ (∃f , y) TrClps (f , x , r , y)

but the rest is much weaker than Friedman’s T1.

Also consider Sato’s strengthening Anti-Reg that is not in
Basic (clearly Fnd and Anti-Reg are incompatible):

Anti-Reg ≡ Ord (x) ∧ (∀s, t ∈ x) (〈s, t〉 ∈ r ↔ 〈s, t〉 /∈ r ′)→
(∃f , y) TrClps (f , x , r , y) .

Theorem

Basic(i) + Ext + ∆0-Sep + Exp + SC + Fnd and
Basic(i) + Ext + ∆0-Sep + Exp + SC + Anti-Reg
are both conservative extensions of HA.

Stronger results to be discussed later.
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§3. More on Basic + Ext + ∆0-Sep

Theorem

K. Sato [2009]: |Basic + Ext + ∆0-Sep| ≥ Γ0 (in fact = Γ0).

Proof.

Crucial inconstructive argument: all ordinals are comparable, and
hence so are countable well-orderings, which in Basic can be
collapsed to ordinals. Let Ord (α) ∧ Ord (β). It suffices to show
(∀γ ∈ α + 1) (∀δ ∈ β + 1) (γ ∈ δ ∨ γ = δ ∨ γ 3 δ), via ∆0-Sep,
WO (α + 1) ,WO (β + 1). So (∀γ′ ∈ γ) (γ′ ∈ δ ∨ γ′ = δ ∨ γ′ 3 δ),
(∀δ′ ∈ δ) (γ ∈ δ′ ∨ γ = δ′ ∨ γ 3 δ′), by IH. Now δ ∈ γ follows from
(∃γ′ ∈ γ) (γ′ = δ ∨ γ′ 3 δ). Thus δ ∈ γ or γ ⊂ δ, and similarly
γ ∈ δ or δ ⊂ γ.∗) So γ ∈ δ ∨ (γ ⊂ δ ∧ δ ⊂ γ) ∨ γ 3 δ, which by
Ext yields γ ∈ δ ∨ γ = δ ∨ γ 3 δ. Hence α ∈ β ∨ α = β ∨ α 3 β.
∗ Classical inconstructive tautology:
∀x (A (x) ∨ B (x)) ∧ (∃xB (x)→ C )→ ∀xA (x) ∨ C , where
x /∈ FV (C )
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§4. Stronger results

Theorem∣∣Basic(i) + Ext
∣∣ =

∣∣Basic(i) + Ext + ∆0-Sep + Exp
∣∣ = ε0 .

Actually we have: Basic(i) + Ext + ∆0-Sep + Θ + Fnd and
Basic(i) + Ext + ∆0-Sep + Θ + Cpl are both conservative
extensions of HA, where Θ := Ful + AC! + SC + Enm and:

Cpl ≡ r ⊂ x × x → (∃f , y) TrClps (f , x , r , y),

Enm ≡ (∃y ⊂ ω) (∃f ) Surj (f , y , x),

AC! ≡ (∀u ∈ x) (∃!v ∈ y)ψ (u, v)→
∃f (Func (f , x , y) ∧ (∀u ∈ x)ψ (u, f (u)))

,

Ful ≡
(∃z)

(
(∀r ∈ z) Tot (r , x , y) ∧ ∀r

(
Tot (r , x , y)→ (∃s ∈ z)
(s ⊂ r ∧ Tot (s, x , y))

))
,

Tot (r , x , y) ≡ r ⊂ x × y ∧ (∀u ∈ x) (∃v ∈ y) (〈u, v〉 ∈ r).
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Remarks

Basic(i) + Ext + ∆0-Sep + Θ + Fnd is a proper extension of
Friedman’s T1.

Within Basic(i)+ ∆0-Sep + SC, Ful implies Exp (but not
otherwise), both being much weaker than Pow.

Within Basic(i)+ ∆0-Sep + Enm :
Cpl is equivalent to Anti-Reg.

For brevity we use standard constructive version of Ord (x) :

Ord (x) ≡ POrd (x) ∧ ∅ ∈ x∧
(∀u) ((∀y ∈ x) (y ⊂ u ↔ y ∈ u)→ x ⊂ u)

.
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§5. Academic question

Q. Wanted ? with
∣∣∣Basic(i)+Ext + ∆0-Sep + ?

∣∣∣ = Γ0.

A. Take e.g. ? := E(xtended)H(igman)T(heorem) where

EHT ≡
Ord (x) ∧ (f : ω → Seq [x ])→

(∃i < j ∈ ω)

(
f (i)

hom→
sym.gap

f (j)

)
(cf. L. G. [1987]).

Theorem∣∣Basic(i) + Ext + ∆0-Sep + EHT (+Exp)
∣∣ =

|Basic + Ext + ∆0-Sep + EHT| = Γ0.
Moreover Basic(i) + Ext + ∆0-Sep + EHT (+Exp) is
i-conservative, i.e. conservative over HA + TIAr (< Γ0).
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§6. On proofs -1-

The proofs run along the lines of L. G. [1982,1988] in 3
steps:

1 Realizability bisimulation-interpretation of chosen extensional
set theory T within suitable Feferman-style applicative
intensional intuitionistic theory of functions and classes AFC

2 Constructive cut elimination in AFC (most difficult part of
proof).

3 Realizability elimination via forcing in explicit intuitionistic
arithmetic AHA (along the lines of M. Beeson [1979]).
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On proofs -2-

This yields for any arithmetical sentence A :

1 T ` A⇒ AFC ` (A realizable),

2 AFC ` (A realizable)⇒ AHA ` (A realizable),

3 AHA ` (A realizable)⇒ HA ` A, as desired.
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Appendix: Stronger constructive set theories

Consider Aczel-Rathjen’s CZF [2000/2001] possibly extended by
Sato’s Clps.

Theorem∣∣CZF(i) (+Clps)
∣∣ = (Howard ordinal) ϕεΩ+1

(0) = |T3 (+Clps)|.
Moreover CZF(i) (+Clps) and T3 (+Clps) are i-conservative.
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