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e Dag-complexity (or graph-complexity) of a given algebraic
term t is the minimal number of vertices in a rooted DAG
(not necessarily a tree!) that represents t. This definition can
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e Dag-complexity (or graph-complexity) of a given algebraic
term t is the minimal number of vertices in a rooted DAG
(not necessarily a tree!) that represents t. This definition can
be constructively specified, as follows.

Consider arbitrary algebraic language £ with individual variables,
constants and (w.l.0.g.) binary function symbols. The terms:

@ Individual variables and constants are terms of the depth 0,
also called atoms.

@ If 5, t are any terms and f any function symbol, then
f (s,t) is a term of the depth 1 4+ max {depth (s), depth(t)};

in the Lukasiewicz form we write fst instead of f (s, t).
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For any term t of £ we define the dag-complexity of t, 0 (t).
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For any term t of £ we define the dag-complexity of t, 0 (t).
Q o (t) :=0{t}.
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For any term t of £ we define the dag-complexity of t, 0 (t).

Q I (t) :=d{t}.
Q 0{t1, -, tk} :=F#{t1, - , 4}, if t1, ..., tx are atoms.
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For any term t of £ we define the dag-complexity of t, ¢ (t).
Q i(t):=d{t}
Q 0{t1, -, tk} :=F#{t1, - , 4}, if t1, ..., tx are atoms.
Q@ 5{f(s,t),t1, - ,tk}:=14+5{s,t,ts, -, tx}, if the depth of
f (s,t) is > than maximal depth of t;, 1 </ < k.
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For any term t of £ we define the dag-complexity of t, ¢ (t).
Q i(t):=d{t}
Q 0{t1, -, tk} :=F#{t1, - , 4}, if t1, ..., tx are atoms.
Q@ 5{f(s,t),t1, - ,tk}:=14+5{s,t,ts, -, tx}, if the depth of
f (s,t) is > than maximal depth of t;, 1 </ < k.

@ 0 (1) is easily computable e. g. in Maple.
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Consider term t = f (g (x, f (y, h(x,y))), h(x,y)) of the depth 4
in the language with variables x, y and function symbols f, g, h.
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Example

Consider term t = f (g (x, f (y, h(x,y))), h(x,y)) of the depth 4
in the language with variables x, y and function symbols f, g, h.

We have
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Example

Consider term t = f (g (x, f (y, h(x,y))), h(x,y)) of the depth 4
in the language with variables x, y and function symbols f, g, h.

We have

o(t) = 0{t} =1+65{g(xf(y,h(xy))),h(x,y)}
= 24+0{xf(y,h(xy)),h(xy)}

3+0{x,y,h(x,y), h(x,y)}

3+0{x,y,h(x,y)} =4+0{x,y,x,y}

= 440 {x,y}=4+#{x,y}

— 412=6
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Example

Consider term t = f (g (x, f (y, h(x,y))), h(x,y)) of the depth 4
in the language with variables x, y and function symbols f, g, h.

We have

o(t) = 0{t} =1+65{g(xf(y,h(xy))),h(x,y)}
= 24+0{xf(y,h(xy)),h(xy)}

3+0{x,y,h(x,y), h(x,y)}

3+0{x,y,h(x,y)} =4+0{x,y,x,y}

= 440 {x,y}=4+#{x,y}

— 412=6

Note that the ordinary Lukasiewicz length of tis 11.
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Define Fibonacci sequence of terms {F (i)}~ in the language Ly
with two individual constants 0, 1 and one function symbol +;
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L. Gordeev DAG Compressions



Term compression -4-

Example

Define Fibonacci sequence of terms {F (i)}~ in the language Ly
with two individual constants 0, 1 and one function symbol +;
(use standard infix notation s + t instead of tukasiewicz +st).

L. Gordeev DAG Compressions



Term compression -4-

Example

Define Fibonacci sequence of terms {F (i)}~ in the language Ly
with two individual constants 0, 1 and one function symbol +;
(use standard infix notation s + t instead of tukasiewicz +st).

° F(0):=0,F(1):=1,F(i+2):=F(i)+ F(i+1)
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Example

Define Fibonacci sequence of terms {F (i)}~ in the language Ly
with two individual constants 0, 1 and one function symbol +;
(use standard infix notation s + t instead of tukasiewicz +st).

° F(0):=0,F(1):=1,F(i+2):=F(i)+ F(i+1)

@ The ordinary length of F (i) slightly exceeds the i*" Fibonacci
number, thus being exponential in /.

@ But the corresponding dag-complexity is merely linear in i :

d(F(0)=06(F(1))=1and §(F(i))=i+1 forall i > 1.
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@ Define reductions >¢, I>1, >2 on finite labeled rooted dag's
D with reflexive and transitive binary relation R on labels,
where D, := the sub-dag of z # y having a path z ~~ y.
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@ Define reductions >¢, I>1, >2 on finite labeled rooted dag's
D with reflexive and transitive binary relation R on labels,
where D, := the sub-dag of z # y having a path z ~~ y.

OD[>()D/:
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@ Define reductions >¢, I>1, >2 on finite labeled rooted dag's
D with reflexive and transitive binary relation R on labels,
where D, := the sub-dag of z # y having a path z ~~ y.

Q@ D r>q D' : D arises from D by identifying all leaves having
the same labels and all vertices x, y such that ¢ (x) = ¢(y)
and (x — y) € D. If not applicable, let D’ := D.
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§2. Generalizatons

@ Define reductions >¢, I>1, >2 on finite labeled rooted dag's
D with reflexive and transitive binary relation R on labels,
where D, := the sub-dag of z # y having a path z ~~ y.

Q@ D r>q D' : D arises from D by identifying all leaves having
the same labels and all vertices x, y such that ¢ (x) = ¢(y)
and (x — y) € D. If not applicable, let D’ := D.

@ D 1 D’ (contraction), where { is the labeling function:

o Let x, y be vertices in D closest to the root such that:
L(x)RL(y), (x = y) ¢ D, Ds, is a tree and x € Ds,,.
o D' :=replace in D whole path x ~ y by new edge x — y.
© D >, D’ (conglutination):

o Let x, y be vertices in D closest to the root such that:
L(x)Rl(y), D~y # 0 is a tree and x ¢ D-,,,.
o D’ := D plus new edge x — y minus z € D,,.
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Let #D be standard size of D. Clearlyly every t>; is size-reducing;:
@ Di>; D' = #D > #D', except i=0and D = D’.

@ > ;-irreducible dag's are called normal.

@ Let 7 be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T € T
there are chains of dag's T = Do >, --- >;, Dx >0 Dx41
(k > 0,ij = 1,2) with normal Dyyq. Clearly #Dy11 < #T.
Call these Dy41 normal dag-like compressions of T.

@ Let 6 (T) := min(#D) for D ranging over normal dag-like
compressions of T. Call §(T) the dag-complexity of T.

Q For any label T, let 6 (I') := min(é (T)) for T ranging over
T € T with root-label T.
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Let #D be standard size of D. Clearlyly every t>; is size-reducing;:
@ Di>; D' = #D > #D', except i=0and D = D’.

@ > ;-irreducible dag's are called normal.

@ Let 7 be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T € T
there are chains of dag's T = Do >, --- >;, Dx >0 Dx41
(k > 0,ij = 1,2) with normal Dyyq. Clearly #Dy11 < #T.
Call these Dy41 normal dag-like compressions of T.

@ Let 6 (T) := min(#D) for D ranging over normal dag-like
compressions of T. Call §(T) the dag-complexity of T.

Q For any label T, let 6 (I') := min(é (T)) for T ranging over
T € T with root-label I'. Call § (I') the dag-complexity of T.
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Dag-complexity problems

Problem
1. How to compute 6 (T) and/or 6 (I') ?

Problem
2. How to estimate 6 (T) and/or 6 (T') 7

e Term algebra (0 (T) =6 ('), see Chapter 1)

o Problem 1: Easy (see Chapter 1).

o Problem 2: Roughly #T > 6(T) > log #T.
In most interesting cases # T exponential in § (T)
(see Chapter 1).

o Generalizations: Both problems are hard.
Proof theory provides most interesting applications.
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@ Let S be given finite collection of axioms and inference rules,
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@ Let 7 and D contain resp. tree-like and dag-like proofs (or
deductions) as S-generated trees, resp. dag's, labeled by, say,
sequents (T, T, etc.).
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@ Let S be given finite collection of axioms and inference rules,
as usual in proof theory.

@ Let 7 and D contain resp. tree-like and dag-like proofs (or
deductions) as S-generated trees, resp. dag's, labeled by, say,
sequents (T, T, etc.).

o Let TRI" : & " =6(T) for 6 € Hom(Seq — Seq),
provided that sequent-homomorpism 6 preserves provability.

@ Define as above normal dag-like compressions D € D of
T € T obtained by the chains of >;-reductions w.r.t. R.

@ These normal dag-like compressions are the desired smallest
dag-like deductions, while

@ §(T)is “true” dag-complexity of given tree-like deduction T.
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Proof search connections

Most interesting case: cutfree proof systems.
@ Let 7 contain cutfree tree-like deductions.
e By Gentzen-style cut elimination results this is not really a
restriction (in pure logic, at least).

e However there are significant proof complexity implications
(re: “speed-up”, to be discussed later).

@ Important advantage: cutfree tree-like proof systems admit
reasonable (semi-)automated semi-analytic proof search
(re: Gentzen-style subformula property).

@ Our dag-like compressions D preserve this advantage,
provided that R is sufficiently constructive.

e However D may depend on the choice of >; involved;
thus the sources T can have different normal forms.
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Propositional logic

Further specifications:
@ C(lassical propositional logic.
@ DNF logic.
© Relation R as homomorphism generated by

variables — literals substitutions and suitable weakenings.

@ (1) is polynomially reducible to (2), so consider (2) & (3).
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Propositional logic

Further specifications:
@ Classical propositional logic.
@ DNF logic.

© Relation R as homomorphism generated by
variables — literals substitutions and suitable weakenings.

@ (1) is polynomially reducible to (2), so consider (2) & (3).

o Example: Very efficient sequent calculus for DNF tautologies,
called SEQqu.
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L. Gordeev DAG Compressions



§3. Example: SEQq4y

@ Sequents: ' = My, .-, Ms where
M; Cqn Zo := Z— {0} such that (Va, b € M;)(a+ b # 0)
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§3. Example: SEQq4y

@ Sequents: [ = My, -, Ms where
M; Cqn Zo := Z— {0} such that (Va, b € M;)(a+ b # 0)
e Axiom (A1): {1},{-1}
o Weakening rules
r MuM. T
(Wy) : M : (Wa) : M
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§3. Example: SEQq4y

@ Sequents: ' = My, .-, Ms where

M; Cqn Zo := Z— {0} such that (Va, b € M;)(a+ b # 0)
e Axiom (A1) {1},{-1}
o Weakening rules

r MuM. T
Wosae o el Ty
@ Substitution rule
r

(S): Gk where 6 € Hom (Seq — Seq)
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§3. Example: SEQq4y

@ Sequents: ' = My, .-, Ms where

M; Cqn Zo := Z— {0} such that (Va, b € M;)(a+ b # 0)
e Axiom (A1) {1},{-1}
o Weakening rules

r MuUM,T

(Wy) : MT ) (W2) : VT

@ Substitution rule

r
O 5w

e Main rule, where +k ¢ M;, Mj, r

, where § € Hom (Seq — Seq)

(Q) M17"'7Mr)r M]/_a"'7M,/'/7r
kUM, (kUM {—kJ UM, {—k} UM, T
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§3. Example: SEQq4y

@ Sequents: ' = My, .-, Ms where

M; Cqn Zo := Z— {0} such that (Va, b € M;)(a+ b # 0)
e Axiom (A1) {1},{-1}
o Weakening rules

r MuUM,T

(Wy) : MT ) (W2) : VT

@ Substitution rule

r
O 5w

e Main rule, where +k ¢ M;, Mj, r

, where § € Hom (Seq — Seq)

(Q) M17"'7Mr)r M]/_,"'7M’/,/,r
kUM, (kUM {—kJ UM, {—k} UM, T

e Relation R := {W;, W5, S}" (transitive closure)




SEQqay: Some special cases
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SEQqay: Some special cases

e "Perfect” special case of weakening (Wp) :

r
{k}UM17"'7{k}UMrar

where +k ¢ M;, T
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SEQqay: Some special cases

e "Perfect” special case of weakening (Wp) :

r
{k}UM17"'7{k}UMrar

where +k ¢ M;, T

e "Perfect” special case of Q whose side sequent (I') is empty,
i.e. the following rule Qo :

My, -, M, My, M
{k} UMy, - {k}UM, {=k} UM, - {—k}UM,
where (Vl <i<rnl<j< r') (ikg&f M,-,I\/IJ{)
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SEQrsy: Examples

- = 4.4
2.2 B34, (34
{1,2} ,{1,-2},{-1,3},{-1,-3,4},{-1,-3, -4}

(A1)
{1}, {-1}

(Q)

(Q)




SEQrsy: Examples

ey ©) 4}, {4}
O e DR DR
{1,2},{1,—2},{—1,3},{—1,—3,4},{—1,—3,—4}

s
(Al)gj

(A1)
G s 2428 G (W)
(Q) By =24}, {24 ~ (23].{-234).{35,(-3,5/.(-2-4 (@ Q)
(120,11, —2,4T {-1,2.30,{-1,-2,3,4},{—1,—3,5},{—1,—3,-5], {—2,—4}

(Q)
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Semantics of SEQ.u

S
FT=My, - Mg — () :=V (/\ @-) € DNF,
i=1 \JjEM;
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Semantics of SEQ.u

S
Fr=M, - Ms— o)=YV (/\@) € DNF, where

i=1 \jeM;
0 e 5% if j>0
Tl xy if j<0
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Semantics of SEQ.u

Fr=M, - Ms— ()= \S/ ( A £j> € DNF, where
i=1 \jeM;
0 e { 5% if j>0
Tl xy if j<0
Denote by TAU the set of ' such that ¢ (I) is valid (as DNF).
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Semantics of SEQ.u
IS}
Fr=My, - ,Ms—o():=V | A ¢ | € DNF, where
=1 jEM,'
0 e { 5% if j>0

X if j<O0°
Denote by TAU the set of ' such that ¢ (I) is valid (as DNF).
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Semantics of SEQ.u
IS}
Fr=M, - Ms— o)=YV ( A €j> € DNF, where
J

=1 .EM,'

PP if j>0
X if j<O0°

Denote by TAU the set of ' such that ¢ (I) is valid (as DNF).

Q T is tree-like provable in SEQrsy
iff T is dag-like provable in SEQqy.
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Semantics of SEQ.u
IS}
Fr=M, - Ms— o)=YV ( A €j> € DNF, where
J

=1 .EM,'

PP if j>0 _
' -x_j if j<O0

Denote by TAU the set of ' such that ¢ (I) is valid (as DNF).

Q T is tree-like provable in SEQrsy
iff T is dag-like provable in SEQqy.

@ T s tree-like provable in SEQ,y iffT € TAU.
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Semantics of SEQ.u
IS}
Fr=M, - Ms— o)=YV ( A €j> € DNF, where
J

=1 .EM,'

PP if j>0 _
' -x_j if j<O0

Denote by TAU the set of ' such that ¢ (I) is valid (as DNF).

Q T is tree-like provable in SEQrsy
iff T is dag-like provable in SEQqy.

@ T s tree-like provable in SEQ,y iffT € TAU.

Easy. O
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More on SEQray

@ Well-known “hard” tautologies have polynomial size dag-like
proofs in SEQq,, obtained by basic proof search (see below).
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More on SEQray

@ Well-known “hard” tautologies have polynomial size dag-like
proofs in SEQq,, obtained by basic proof search (see below).

These examples include e.g.:

@ Doubling names tautologies by Takeuti and Statman.

@ Fibonacci-style tautology by Haeusler and Pereira.

© Pigeonhole principle.

© Clique coloring principle (k-clique tautology).
Hence neither resolution nor cutting planes p-simulate SEQay.

There are I' € TAU such that for all tree-like deductions T of T,
#T is exponential in #I', whereas ¢ (') is polynomial in #T .
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Reminder: Clique coloring principle
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Reminder: Clique coloring principle

Clique coloring principle:
No n-element graph G, |G| = n, has a (k — 1)-colored k-element
clique K C G such that 2 < k = |K| < n and there is no edge (in
G ) between any pair of vertices (in K) having the same color.
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Basic dag-like proof search in SEQ,y

Consider any given sequent . Starting with [y reduce sequents
by inverting the rules (Wp) and (Q) repeatedly, while
simultaneously analyzing pairs of new sequents [';,[; thus obtained
which are not axioms and occur in different branches:
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Basic dag-like proof search in SEQ,y

Consider any given sequent . Starting with [y reduce sequents
by inverting the rules (Wp) and (Q) repeatedly, while
simultaneously analyzing pairs of new sequents [';,[; thus obtained
which are not axioms and occur in different branches:
Q If {1},{—1} RI; (resp. {1},{—1} RT}), then add arrow
(A1) — T (resp. (A1) — ;) and close the corresponding
branch.
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Basic dag-like proof search in SEQ,y

Consider any given sequent . Starting with [y reduce sequents
by inverting the rules (Wp) and (Q) repeatedly, while
simultaneously analyzing pairs of new sequents [';,[; thus obtained
which are not axioms and occur in different branches:
Q If {1},{—1} RI; (resp. {1},{—1} RT}), then add arrow
(A1) — T (resp. (A1) — ;) and close the corresponding
branch.
@ If [';RI; (resp. [';RT;), then add arrow I'; — T (resp.
[; — Ij) and don't reduce I'; (resp. I';) anymore.
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Basic dag-like proof search in SEQ,y

Consider any given sequent . Starting with [y reduce sequents
by inverting the rules (Wp) and (Q) repeatedly, while
simultaneously analyzing pairs of new sequents [';,[; thus obtained
which are not axioms and occur in different branches:

Q If {1},{—1} RI; (resp. {1},{—1} RT}), then add arrow
(A1) — T (resp. (A1) — ;) and close the corresponding
branch.

@ If [';RI; (resp. [';RT;), then add arrow I'; — T (resp.

[; — Ij) and don't reduce I'; (resp. I';) anymore.
This reduction procedure terminates. Consider the resulting
sequent dag D and let D >¢ D'.
If all leaves of D are axioms, then D’ is a desired dag-like
deduction of I'. Otherwise I is invalid.
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Dag-compression vs CUT

@ It is well-known that adding cut rule to cutfree proof systems
can exponentially accelerate propositional provability (re:
propositional speed-up). However proof systems with (CUT)
or modus ponens or similar non-analytic inferences, known as
general Frege systems, don't admit reasonable poor search.
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substitution rules provides analogous acceleration of
provability (either by dag-compression or direct proof search)
— in all most familiar cases of cut-like speed-up.

But SEQq,y preserves good proof search options.
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Dag-compression vs CUT

@ It is well-known that adding cut rule to cutfree proof systems
can exponentially accelerate propositional provability (re:
propositional speed-up). However proof systems with (CUT)
or modus ponens or similar non-analytic inferences, known as
general Frege systems, don't admit reasonable poor search.

@ Dag-like cutfree calculus SEQr,y shows that adding dag-like
substitution rules provides analogous acceleration of
provability (either by dag-compression or direct proof search)
— in all most familiar cases of cut-like speed-up.

But SEQq,y preserves good proof search options.

@ By familiar cut-elimination arguments, any Frege system is
reducible to tree-like, and hence also dag-like version of
SEQq,u without substitution. Can analogous cut elimination
with substitution be done with sub-exponential growth of the
resulting dag-like deductions in SEQ,y?
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“Academic” Conjectures C1, C2

Definition
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“Academic” Conjectures C1, C2

Definition

@ “Academic” Conjecture C1: For every I' € TAU, §(I') is
polynomial in #TI.
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polynomial in #TI.
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SEQau-deduction D such that #D is polynomial in #.
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@ “Academic” Conjecture C1: For every I' € TAU, §(I') is
polynomial in #TI.

@ “Academic” Conjecture C2: Every I' € TAU has dag-like
SEQau-deduction D such that #D is polynomial in #.

v
Theorem

L. Gordeev DAG Compressions



“Academic” Conjectures C1, C2
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v
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“Academic” Conjectures C1, C2

@ “Academic” Conjecture C1: For every I' € TAU, §(I') is
polynomial in #TI.

@ “Academic” Conjecture C2: Every I' € TAU has dag-like
SEQau-deduction D such that #D is polynomial in #.

v
Theorem

Q@ (1 implies C2.
@ (2 implies NP = coNP.
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“Academic” Conjectures C1, C2

@ “Academic” Conjecture C1: For every I' € TAU, §(I') is
polynomial in #TI.

@ “Academic” Conjecture C2: Every I' € TAU has dag-like
SEQau-deduction D such that #D is polynomial in #.

v
Theorem

Q@ (1 implies C2.
@ (2 implies NP = coNP.

A\

Clear.
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Appendix: P-NP connections

Definition

Let SEQ%AU be subsystem of SEQq,y that includes only special
case (Qo) of the main rule in which side sequent I' = ().

L. Gordeev DAG Compressions



Appendix: P-NP connections

Definition
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Let TAU(()n) be the set of sequents with at most n + 1 clauses with
at most n literals in each clause, which are derivable in SEQY, .
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Appendix: P-NP connections

Let SEQ%AU be subsystem of SEQq,y that includes only special
case (Qo) of the main rule in which side sequent I' = ().

Let TAU(()n) be the set of sequents with at most n + 1 clauses with
at most n literals in each clause, which are derivable in SEQY, .

Lemma

TAUY)  NP.

A\
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Appendix: P-NP connections

Let SEQ%AU be subsystem of SEQq,y that includes only special
case (Qo) of the main rule in which side sequent I' = ().

Let TAU(()n) be the set of sequents with at most n + 1 clauses with
at most n literals in each clause, which are derivable in SEQY, .

Lemma

TAUY)  NP.

Plausible Conjecture C3:
TAUS") is not representable in a certain concrete (simple) algebra

2, by a term whose length is polynomial in n.

A\

L. Gordeev DAG Compressions



Appendix: P-NP connections

Definition

Let SEQ%AU be subsystem of SEQq,y that includes only special
case (Qp) of the main rule in which side sequent I' = (.

Let TAU(()n) be the set of sequents with at most n + 1 clauses with
at most n literals in each clause, which are derivable in SEQY, .

Lemma

TAUY)  NP.

Definition

Plausible Conjecture C3:

TAUS") is not representable in a certain concrete (simple) algebra
2, by a term whose length is polynomial in n.

Theorem
C3 implies P < NP.
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