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§1. Term compression -1-

Dag-complexity (or graph-complexity) of a given algebraic
term t is the minimal number of vertices in a rooted DAG
(not necessarily a tree!) that represents t. This definition can
be constructively specified, as follows.

Definition

Consider arbitrary algebraic language L with individual variables,
constants and (w.l.o.g.) binary function symbols. The terms:

1 Individual variables and constants are terms of the depth 0,
also called atoms.

2 If s, t are any terms and f any function symbol, then
f (s, t) is a term of the depth 1 + max {depth (s) , depth (t)};
in the  Lukasiewicz form we write f st instead of f (s, t).
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Term compression -2-

Definition

For any term t of L we define the dag-complexity of t, δ (t).

1 δ (t) := δ {t}.
2 δ {t1, · · · , tk} := # {t1, · · · , tk}, if t1, ..., tk are atoms.

3 δ {f (s, t) , t1, · · · , tk} := 1 + δ {s, t, t1, · · · , tk}, if the depth of
f (s, t) is ≥ than maximal depth of ti , 1 ≤ i ≤ k .

δ (t) is easily computable e. g. in Maple.
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Term compression -3-

Example

Consider term t = f (g (x , f (y , h (x , y))) , h (x , y)) of the depth 4
in the language with variables x , y and function symbols f , g , h.

We have

δ (t) = δ {t} = 1 + δ {g (x , f (y , h (x , y))) , h (x , y)}
= 2 + δ {x , f (y , h (x , y)) , h (x , y)}
= 3 + δ {x , y , h (x , y) , h (x , y)}
= 3 + δ {x , y , h (x , y)} = 4 + δ {x , y , x , y}
= 4 + δ {x , y} = 4 + # {x , y}
= 4 + 2 = 6

Note that the ordinary  Lukasiewicz length of t is 11.
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Term compression -4-

Example

Define Fibonacci sequence of terms {F (i)}i≥0 in the language Lf

with two individual constants 0, 1 and one function symbol +;
(use standard infix notation s + t instead of  Lukasiewicz +st).

F (0) := 0,F (1) := 1,F (i + 2) := F (i) + F (i + 1)

The ordinary length of F (i) slightly exceeds the i th Fibonacci
number, thus being exponential in i .

But the corresponding dag-complexity is merely linear in i :

δ (F (0)) = δ (F (1)) = 1 and δ (F (i)) = i + 1 for all i > 1.
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§2. Generalizatons

Define reductions B0,B1,B2 on finite labeled rooted dag’s
D with reflexive and transitive binary relation R on labels,
where D>y := the sub-dag of z 6= y having a path z  y .

1 D B0 D ′ : D ′ arises from D by identifying all leaves having
the same labels and all vertices x , y such that ` (x) = ` (y)
and (x → y) ∈ D. If not applicable, let D ′ := D.

2 D B1 D ′ (contraction), where ` is the labeling function:

Let x , y be vertices in D closest to the root such that:
` (x) R` (y), (x → y) /∈ D, D>y is a tree and x ∈ D>y .
D ′ := replace in D whole path x  y by new edge x → y .

3 D B2 D ′ (conglutination):

Let x , y be vertices in D closest to the root such that:
` (x) R` (y), D>y 6= ∅ is a tree and x /∈ D>y .
D ′ := D plus new edge x → y minus z ∈ D>y .
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the same labels and all vertices x , y such that ` (x) = ` (y)
and (x → y) ∈ D. If not applicable, let D ′ := D.

2 D B1 D ′ (contraction), where ` is the labeling function:

Let x , y be vertices in D closest to the root such that:
` (x) R` (y), (x → y) /∈ D, D>y is a tree and x ∈ D>y .
D ′ := replace in D whole path x  y by new edge x → y .

3 D B2 D ′ (conglutination):

Let x , y be vertices in D closest to the root such that:
` (x) R` (y), D>y 6= ∅ is a tree and x /∈ D>y .
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Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels.

For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1.

Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T .

Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ.

Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-compressions, dag-complexity

Let #D be standard size of D. Clearlyly every Bi is size-reducing:

D Bi D ′ ⇒ #D > #D ′, except i = 0 and D = D ′.

Definition

1 Bi -irreducible dag’s are called normal.

2 Let T be set of finite labeled rooted trees, R reflexive and
transitive binary relation on labels. For every tree T ∈ T
there are chains of dag’s T = D0 Bi1 · · · Bik Dk B0 Dk+1

(k ≥ 0, ij = 1, 2) with normal Dk+1. Clearly #Dk+1 ≤ #T .
Call these Dk+1 normal dag-like compressions of T .

3 Let δ (T ) := min(#D) for D ranging over normal dag-like
compressions of T . Call δ (T ) the dag-complexity of T .

4 For any label Γ, let δ (Γ) := min(δ (T )) for T ranging over
T ∈ T with root-label Γ. Call δ (Γ) the dag-complexity of Γ.

L. Gordeev DAG Compressions



Dag-complexity problems

Problem

1. How to compute δ (T ) and/or δ (Γ) ?

Problem

2. How to estimate δ (T ) and/or δ (Γ) ?

Term algebra (δ (T ) ∼= δ (Γ), see Chapter 1)

Problem 1: Easy (see Chapter 1).
Problem 2: Roughly #T ≥ δ (T ) ≥ log #T .
In most interesting cases #T exponential in δ (T )
(see Chapter 1).

Generalizations: Both problems are hard.
Proof theory provides most interesting applications.
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Proof-theoretic interpretation

Let S be given finite collection of axioms and inference rules,
as usual in proof theory.

Let T and D contain resp. tree-like and dag-like proofs (or
deductions) as S-generated trees, resp. dag’s, labeled by, say,
sequents (Γ, Γ′, etc.).

Let ΓRΓ′ :⇔ Γ′ = θ (Γ) for θ ∈ Hom(Seq → Seq),
provided that sequent-homomorpism θ preserves provability.

Define as above normal dag-like compressions D ∈ D of
T ∈ T obtained by the chains of Bi -reductions w.r.t. R.

These normal dag-like compressions are the desired smallest
dag-like deductions, while

δ (T ) is “true” dag-complexity of given tree-like deduction T .
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Proof search connections

Most interesting case: cutfree proof systems.

Let T contain cutfree tree-like deductions.

By Gentzen-style cut elimination results this is not really a
restriction (in pure logic, at least).
However there are significant proof complexity implications
(re: “speed-up”, to be discussed later).

Important advantage: cutfree tree-like proof systems admit
reasonable (semi-)automated semi-analytic proof search
(re: Gentzen-style subformula property).

Our dag-like compressions D preserve this advantage,
provided that R is sufficiently constructive.

However D may depend on the choice of B2 involved;
thus the sources T can have different normal forms.
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Propositional logic

Further specifications:

1 Classical propositional logic.

2 DNF logic.

3 Relation R as homomorphism generated by
variables → literals substitutions and suitable weakenings.

(1) is polynomially reducible to (2), so consider (2) & (3).

Example: Very efficient sequent calculus for DNF tautologies,
called SEQtau.
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§3. Example: SEQtau

Sequents: Γ = M1, · · · ,Ms where
Mi ⊂fin Z0 := Z−{0} such that (∀a, b ∈ Mi ) (a + b 6= 0)

Axiom ( A1) : {1} , {−1}
Weakening rules

(W1) :
Γ

M, Γ
, (W2) :

M ∪M ′, Γ

M, Γ

Substitution rule

(S) :
Γ

θ (Γ)
, where θ ∈ Hom (Seq→ Seq)

Main rule, where ±k /∈ Mi ,M
′
j , Γ

(Q) :
M1, · · · ,Mr , Γ M ′1, · · · ,M ′r ′ , Γ

{k} ∪M1, · · · , {k} ∪Mr , {−k} ∪M ′1, · · · , {−k} ∪M ′r ′ , Γ

Relation R := {W1,W2, S}∗ (transitive closure)
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SEQtau: Some special cases

“Perfect” special case of weakening (W0) :

Γ

{k} ∪M1, · · · , {k} ∪Mr , Γ

where ±k /∈ Mi , Γ

“Perfect” special case of Q whose side sequent (Γ) is empty,
i.e. the following rule Q0 :

M1, · · · ,Mr M ′1, · · · ,M ′r ′

{k} ∪M1, · · · , {k} ∪Mr , {−k} ∪M ′1, · · · , {−k} ∪M ′r ′

where
(
∀1 ≤ i ≤ r , 1 ≤ j ≤ r ′

) (
±k /∈ Mi ,M

′
j

)
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SEQtau: Examples

Example

(S)

(A1)

{1} , {−1}
(S)
� {4} , {−4}

{2} , {−2} {3} , {−3, 4} , {−3,−4}
(Q)

{1, 2} , {1,−2} , {−1, 3} , {−1,−3, 4} , {−1,−3,−4}
(Q)

Example

(Q0)
(S)

(A1)
{1},{−1}
{4},{−4}

{2},{−2,4},{−2,−4}
{2},{−2,4},{−2,−4}

(A1)
(S)
�

{5},{−5}
{5},{−5},{−2,−4} (Ws)

{2,3},{−2,3,4},{−3,5},{−3,−5},{−2,−4} (Q)

{1,2},{1,−2,4},{−1,2,3},{−1,−2,3,4},{−1,−3,5},{−1,−3,−5}, {−2,−4} (Q)
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Semantics of SEQtau

Definition

Γ = M1, · · · ,Ms ↪→ ϕ (Γ) :=
s∨

i=1

( ∧
j∈Mi

`j

)
∈ DNF , where

`j :=

{
xj if j > 0
¬x−j if j < 0

.

Denote by TAU the set of Γ such that ϕ (Γ) is valid (as DNF).

Theorem

1 Γ is tree-like provable in SEQtau

iff Γ is dag-like provable in SEQtau.

2 Γ is tree-like provable in SEQtau iff Γ ∈ TAU.

Proof.

Easy.
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More on SEQtau

Well-known “hard” tautologies have polynomial size dag-like
proofs in SEQtau obtained by basic proof search (see below).

These examples include e.g.:

1 Doubling names tautologies by Takeuti and Statman.

2 Fibonacci-style tautology by Haeusler and Pereira.

3 Pigeonhole principle.

4 Clique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate SEQtau.

Theorem

There are Γ ∈ TAU such that for all tree-like deductions T of Γ,
#T is exponential in #Γ, whereas δ (Γ) is polynomial in #Γ.
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Reminder: Clique coloring principle

Theorem

Clique coloring principle:
No n-element graph G , |G | = n, has a (k − 1)-colored k-element
clique K ⊆ G such that 2 ≤ k = |K | ≤ n and there is no edge (in
G ) between any pair of vertices (in K ) having the same color.
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Basic dag-like proof search in SEQtau

Consider any given sequent Γ0. Starting with Γ0 reduce sequents
by inverting the rules (W0) and (Q) repeatedly, while
simultaneously analyzing pairs of new sequents Γi , Γj thus obtained
which are not axioms and occur in different branches:

1 If {1} , {−1}RΓi (resp. {1} , {−1}RΓj), then add arrow
(A1)→ Γi (resp. (A1)→ Γj) and close the corresponding
branch.

2 If ΓiRΓj (resp. ΓjRΓi ), then add arrow Γi → Γj (resp.
Γj → Γi ) and don’t reduce Γj (resp. Γi ) anymore.

This reduction procedure terminates. Consider the resulting
sequent dag D and let D B0 D ′.
If all leaves of D are axioms, then D ′ is a desired dag-like
deduction of Γ. Otherwise Γ is invalid.
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Dag-compression vs CUT

It is well-known that adding cut rule to cutfree proof systems
can exponentially accelerate propositional provability (re:
propositional speed-up). However proof systems with (CUT)
or modus ponens or similar non-analytic inferences, known as
general Frege systems, don’t admit reasonable poor search.

Dag-like cutfree calculus SEQtau shows that adding dag-like
substitution rules provides analogous acceleration of
provability (either by dag-compression or direct proof search)
– in all most familiar cases of cut-like speed-up.
But SEQtau preserves good proof search options.

By familiar cut-elimination arguments, any Frege system is
reducible to tree-like, and hence also dag-like version of
SEQtau without substitution. Can analogous cut elimination
with substitution be done with sub-exponential growth of the
resulting dag-like deductions in SEQtau?
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“Academic” Conjectures C1, C2

Definition

1 “Academic” Conjecture C1: For every Γ ∈ TAU, δ (Γ) is
polynomial in #Γ.

2 “Academic” Conjecture C2: Every Γ ∈ TAU has dag-like
SEQtau-deduction D such that #D is polynomial in #Γ.

Theorem

1 C1 implies C2.

2 C2 implies NP = coNP.

Proof.

Clear.
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Appendix: P-NP connections

Definition

Let SEQ0
tau be subsystem of SEQtau that includes only special

case (Q0) of the main rule in which side sequent Γ = ∅.
Let TAU

(n)
0 be the set of sequents with at most n + 1 clauses with

at most n literals in each clause, which are derivable in SEQ0
tau.

Lemma

TAU
(n)
0 ∈ NP.

Definition

Plausible Conjecture C3:

TAU
(n)
0 is not representable in a certain concrete (simple) algebra

An by a term whose length is polynomial in n.

Theorem

C3 implies P < NP.
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