
Elementary Interpretations of NP vs. P

L. Gordeev A. Krebs

Tübingen University

Abstract

We translate the P/poly vs. NP problem into algebraic environment. This is done
by expressing the computation of a non-uniform polynomial time machine in terms
of polynomial sized systems of linear equations (or algebraic polynomials) over real
vector spaces (respectively finite fields). We reduce the question whether the co-NP
complete TAU3-problem is in P/poly to the question whether the set of solutions
of an exponentially sized system of linear equations (algebraic polynomial) is that
of a polynomial sized system (polynomial).

1 Introduction

In the paper we examine the open problem NP ⊂ P/poly. In particular, we
consider the question whether the co-NP-complete problem TAU3 ∈ P/poly,
where TAU3 is the set of all tautologies in 3-DNF, and construct the desired
algebraic characterizations C3L and C3F (see Conditions 36, 43 in the text).
Now C3L and C3F both restate the open problems NP ⊂ P/poly and
NP 6= P as purely algebraic questions over real vector spaces and finite fields,
respectively. To put it more exactly, we prove that C3L (C3F) infers NP 6= P,
whereas non-C3L (non-C3F) infers NP ⊂ P/poly (see Theorems 37, 38, 44,
Corollary 45 and Remark 46 in the text).

Loosely speaking, C3L (respectively C3F) characterizes P (in fact P/poly)
vs. NP question as classical algebraic question about zero-sets of “small” vs.
“large” systems of linear equations in the real spaces (respectively polynomials
in the finite field domains). To this end, we introduce two algebraic measures of
complexity - graph-complexity (a.k.a. circuit-complexity) and norm-complexity.

Email addresses: gordeew@informatik.uni-tuebingen.de (L. Gordeev),
mail@krebs-net.de (A. Krebs).

Preprint submitted to Elsevier Science 25 September 2004

The former provides us with purely syntactical characteristics of a term de-
scribing a computation, whereas the latter one refers to the bounds of the
term’s computational features.

In order to make the transition from computations to these algebraic condi-
tions, we use an intermediate condition C3 (see Condition 18 in the text) hav-
ing special combinatorial ingredients given by the “definition-by-cases” opera-
tion. We prove that C3 infers NP 6= P, whereas non-C3 infers NP ⊂ P/poly
(see Condition 18 and Theorems 21, 22 in the text). To this end, our first step
converts computations into C3, while using a special quasi-algebraic polyno-
mial, or quasi-polynomial, Φ?

n (see Definition 3 in the text) that characterizes
TAU3 problem in the algebraic language extended by the “definition-by-cases”
operation.

The second step is crucial for the proof - there we remove the combinato-
rial ingredient that is still used by C3, namely the “definition-by-cases”. To
achieve this goal, we on one hand investigate the topological structure of the
set of solutions to the TAU3-problem and use induction over the term struc-
ture to eliminate “definition-by-cases”, which results in the characterization
C3L. On the other hand, instead of using the real numbers, we develop the
corresponding characterizations over finite fields or the complex numbers and
replace “definition-by-cases” by multiplication, which results in the character-
ization C3F. In contrast to the familiar first-order characteriazations leading
to Bounded Arithmetic and related proof-theoretical open problems, ours are
elementary-algebraic (in the sense of Tarski), in that they refer to algebraic
structures whose algebraic semantic does not require quantifiers. This allows
us to hope that well-developed methods of linear algebra, algebraic geometry
and/or finite fields can better contribute to the desired solution of the open
problem NP ⊂ P/poly and/or NP 6= P.

Our paper is structured as follows. In section 2 we introduce the quasi-poly-
nomials that are used in C3. Section 3 contains the definitions and examples
of our measures of complexity. The translation from Turing machines to con-
dition C3 is done in section 4, and elimination of the “definition-by-cases”is
presented in section 5. In the final two section we consider characterizations
over the complex numbers (these are not properly elaborated yet) and finite
fields, respectively. Sections 1, 6, 7 and many simplifications of the basic for-
malisms are due to the second author, other parts are elaborated by the first
author.

Note: It turns out that C3L can be further reduced to purely combinatorial
Ramsey-style conditions which are sufficient for NP 6= P. This work will be
presented elsewhere.

2

2 Preliminaries

Symbol Meaning

N {0, 1, 2, · · · } the natural numbers

N+ {1, 2, · · · } the positive natural numbers

P the prime numbers

N|m| {x ∈ N : x ≤ m}
Z the integers

Z|m| {x ∈ Z : |x| ≤ m}
Zn Z�nZ

R the reals

C the complex numbers

K [x1, · · · , x`] the polynomials in x1, · · · , x` over K

K(1) [x1, · · · , x`] {f ∈ K [x1, · · · , x`] : deg (f) ≤ 1} the linear polynomials
(vectors) in x1, · · · , x` over K

[[α1, · · · , αm]] the linear combinations of α1, · · · , αm ∈ K [x1, · · · , x`]

Definition 1 Basic languages L?, L?
n. The algebraic language L? includes:

(1) variables
(2) one constant 1
(3) three binary operations +, −, ?

As for parentheses, we adopt usual abbreviations concerning + and −, and
assume that ? has priority over + and −; thus e.g. a term x?y?z+ u?z− v?w
is understood as ((x? (y?z)) + (u?z))− (v?w).

Terms of L? are called quasi-polynomials. Any quasi-polynomial with at
most m distinct variables is also called m-ary quasi-polynomial. By adding
zero-summands x − x for failing variables x we can just as well assume that
m-ary quasi-polynomials contain exactly m distinct variables.

For any n ∈ N+, denote by L?
n the sublanguage of L? that contains only 3n

variables {xi,j | 0 < i ≤ 3 ∧ 0 < j ≤ n}. By a natural renaming xi,j
 xi+3(j−1)

we can just as well consider the list of L?
n-variables {xk | 0 < k ≤ 3n}. It is

assumed that + is associative and commutative, while ? being only associative
(see the definition and lemma below).

3

Thus arbitrary terms of L?
n are 3n-ary quasi-polynomials. In L? (L?

n), we let 0
and −x be abbreviations of quasi-polynomials 1−1 and (1− 1)−x, respectively.

Definition 2 The following Φ?
n is a 3n-ary quasi-polynomial, where [n→ 3] :=

the set of all functions from n := {1, · · · , n} to 3 := {1, 2, 3}.

Φ?
n :=

∑
f∈[n→3]

(
???

i≤j∈n

(
xf(i),i + xf(j),j

))
?1

Example 3 For n = 2 this yields:

Φ?
2 = (x1,1 + x1,1)? (x1,2 + x1,2)? (x1,1 + x1,2)?1

+ (x1,1 + x1,1)? (x2,2 + x2,2)? (x1,1 + x2,2)?1
+ (x1,1 + x1,1)? (x3,2 + x3,2)? (x1,1 + x3,2)?1
+ (x2,1 + x2,1)? (x1,2 + x1,2)? (x2,1 + x1,2)?1
+ (x2,1 + x2,1)? (x2,2 + x2,2)? (x2,1 + x2,2)?1
+ (x2,1 + x2,1)? (x3,2 + x3,2)? (x2,1 + x3,2)?1
+ (x3,1 + x3,1)? (x1,2 + x1,2)? (x3,1 + x1,2)?1
+ (x3,1 + x3,1)? (x2,2 + x2,2)? (x3,1 + x2,2)?1
+ (x3,1 + x3,1)? (x3,2 + x3,2)? (x3,1 + x3,2)?1

And for n = 3:

Φ?
3 = (x1,1 + x1,1)? (x1,2 + x1,2)? (x1,3 + x1,3)

? (x1,1 + x1,2)? (x1,1 + x1,3)? (x1,2 + x1,3)?1
+ (x1,1 + x1,1)? (x1,2 + x1,2)? (x2,3 + x2,3)
? (x1,1 + x1,2)? (x1,1 + x2,3)? (x1,2 + x2,3)?1

· · · · · · · · · · · · · · ·
+ (x3,1 + x3,1)? (x3,2 + x3,2)? (x2,3 + x2,3)
? (x3,1 + x3,2)? (x3,1 + x2,3)? (x3,2 + x2,3)?1
+ (x3,1 + x3,1)? (x3,2 + x3,2)? (x3,3 + x3,3)
? (x3,1 + x3,2)? (x3,1 + x3,3)? (x3,2 + x3,3)?1

Definition 4 Semantics. A structure D of signature 〈1,+,−〉 is called ba-
sic domain iff D is an abelian group with respect to + and 0 := 1− 1 such
that 1 6= 0 and x−y = x+ (−y) = x+y−1. In any basic domain D, we extend
basic signature 〈+,−, 1〉 to the required L? -signature 〈+,−, ?, 1〉 by setting

x?y :=





0 if x = 0

y if x 6= 0

An integral domain (hence basic domain) D such that either char (D) = 0 or
else char (D) > m is called m -ary normal domain (or just normal domain,
if m is clear from the context). Furthermore, we call m-ary normed domain
any m-ary normal domain D supplied with an additive norm ‖ . ‖ : D → R

4

that satisfies 1-5 below.

(1) ‖ 0‖ = 0
(2) x 6= 0→ ‖ x ‖ > 0
(3) ‖x + y ‖ ≤ ‖ x ‖+ ‖ y‖
(4) ‖−x ‖ = ‖ x ‖
(5) ‖1 + · · ·+ 1‖︸ ︷︷ ︸

k

= k ∈ N+, provided that char (D) = 0 or else k ≤ m.

For any m ∈ N+, denote by Dm the class of all m -ary normed domains.

Example 5 Z and R with standard norm ‖ x‖ := |x| and C with standard
norm ‖ x+ i · y‖ :=

√
x2 + y2 are infinite m -ary normed domains, for all

m ∈ N+. Same holds true for standard k-dim normed vector spaces Rk, Ck.

Zp with ‖[x]‖ :=




x if 2x < p

p− x else





is a finite 3n- ary normed domain,

for any P 3 p > 6n. By the same token, so is any finite field of characteristic
p > 6n.

Lemma 6 The following conditions hold in every basic domain D.

(1) x? (y?z) = (x?y)?z
(2) x? (y ± z) = x?y ± x?z
(3) 0?x = x?0 = 0
(4) 1?x = x

(5) x?1 =





0 if x = 0

1 else

(6) y + x? (z − y) =




y if x = 0

z else

(7) x?y = 0↔ x = 0 ∨ y = 0
(8) 1− x?1 = 0↔ x 6= 0
(9) x?x + y?y + x?y − y?x = 0 ↔ x = 0 ∧ y = 0, provided that D 6= GF (2)

is normal.

(10) y1?y2? · · ·?yk?1 =





0 if y1 = 0 ∨ y2 = 0 ∨ · · · ∨ yk = 0

1 else

(11) Φ?
n = 0↔ (∀f ∈ [n→ 3]) (∃i, j ∈ n)

(
xf(i),i + xf(j),j = 0

)

(12)
〈
Z|m|,+,−

〉
is contained (modulo isomorphism) in D, provided that D ∈

Dm (this embedding must not preserve the norm ‖ . ‖).

Proof. 1-8 are readily seen. 10 follows by 5, 7. 11 follows by 10. Consider 9.
By 2, we have

5

x?x + y?y + x?y − y?x = x? (x+ y) + y? (y − x)

=





0 if x = 0

x + y if x 6= 0
+





0 if y = 0

y − x if y 6= 0

=





0 if x = 0 ∧ y = 0

y − x = y 6= 0 if x = 0 ∧ y 6= 0

x + y = x 6= 0 if x 6= 0 ∧ y = 0

2y 6= 0 if x 6= 0 ∧ y 6= 0

since 2y = 0↔ y = 0 holds in any integral domain D 6= GF (2) , and hence

x?x + y?y + x?y − y?x = 0↔ x = 0 ∧ y = 0

Consider 12. The required isomorphic embedding h : Z|m| → D is given by

h (z) :=





1 + · · ·+ 1︸ ︷︷ ︸
z

if z > 0

0 if z = 0

−h (−z) if z < 0

2

Corollary 7 Quasi-polynomials are closed under boolean operations.
To put it more precisely, the following holds. Let F be any propositional for-
mula with atoms s1 = 0, · · · , sk = 0, for any quasi-polynomials s1, · · · , sk
whose variables occur in the list −→x . There exists a quasi-polynomial t with
variables from −→x , such that F ↔ t = 0 in every basic domain D. Moreover,
if F is positive and 0 does not occur in s1, · · · , sk, i.e. s1, · · · , sk are constant-
free, then there is a constant-free t as above for which F ↔ t = 0 in every
field D.

Proof. This readily follows from 7-9 of the lemma. 2

Corollary 8 Arbitrary definitions-by-cases are admissible in L? .
That is, let t1, · · · , tq+1 and F1, · · · , Fq be quasi-polynomials and propositional
formulas (as above), respectively, whose variables occur in the list −→x . There
exists a quasi-polynomial t with variables from −→x , such that in every basic
domain D

t = {if F1 then t1, else if F2 then t2, ... , else if Fq then tq, else tq+1}

Proof. By induction on q from previous corollary and 6 of the lemma. 2

6

3 Notions of complexity

3.1 Graph-complexity

By the graph-complexity of a given algebraic term t we understand the minimal
number of vertices of a graph (not necessarily a tree!) that represents t. To
put it more exactly, this notion is specified as follows.

Definition 9 Graph-complexity. For any given quasi-polynomial t denote
by ∂ (t) (in words: graph-complexity of t) the minimal number of instances
of the canonical term-building rules:

(1) every atom (i.e. a variable or constant) is a term
(2) if s, r are terms then so is s+ r
(3) if s, r are terms then so is s− r
(4) if s, r are terms then so is s?r

which are required in order to obtain t. It is readily seen that ∂ (t) can be
equivalently defined by recursion on the ordinary complexity of t. For the sake
of brevity, consider an algebraic language L with arbitrary binary function
symbols, which we denote by f , g, h. Moreover, for any term t of L, denote by
SUB (t) the set of all subterms of t (in transitive sense and including t), while
as usual {· · · } denote sets, i.e. collections (of terms) modulo permutations and
contractions. The recursive clauses in question are as follows.

(1) ∂ (t) := ∂ {t}
(2) ∂ {a1, · · · , ak} := # {a1, · · · , ak}, provided that a1, · · · , ak are atoms
(3) ∂ {f (s, t) , r1, · · · , rk} := 1 + ∂ {s, t, r1, · · · , rk}, provided that f (s, t) /∈

SUB (r1) ∪ · · · ∪ SUB (rk)

Example 10 We compute graph-complexity according to the latter definition,
where f , g, h and x, y are distinct function symbols and variables, respectively.

• Suppose t = f (x, x). We have ∂ (t) = ∂ {t} = ∂ {f (x, x)} = 1+ ∂ {x, x} =
1 + # {x, x} = 1 + 1 = 2

• Suppose t = f (x, y). We have ∂ (t) = ∂ {t} = ∂ {f (x, y)} = 1+ ∂ {x, y} =
1 + # {x, y} = 1 + 2 = 3

• Suppose t = f (g (x, h (x, y)) , h (x, y)). We have ∂ (t) = ∂ {t} =
∂ {f (g (x, h (x, y)) , h (x, y))} = 1 + ∂ {g (x, h (x, y)) , h (x, y)} =
2 + ∂ {x, h (x, y) , h (x, y)} = 2 + ∂ {x, h (x, y)} = 3 + ∂ {x, x, y} = 3 +

{x, y} = 3 + 2 = 5
• Suppose t = f (g (x, f (y, h (x, y))) , h (x, y)). We have ∂ (t) = γ {t} =

∂ {f (g (x, f (y, h (x, y))) , h (x, y))} = 1+∂ {g (x, f (y, h (x, y))) , h (x, y)} =
2 + ∂ {x, f (y, h (x, y)) , h (x, y)} = 3 + ∂ {x, y, h (x, y) , h (x, y)} = 3 +

7

Fig. 1. Graph complexity of the Fibonacci numbers

∂ {x, y, h (x, y)} = 4 + ∂ {x, y, x, y} = 4 + # {x, y} = 4 + 2 = 6

Remark 11 Recall that Fibonacci numbers are defined by recursive clauses:

F (0) := 0, F (1) := 1, F (i+ 2) := F (i) + F (i+ 1)

Thus F (i) is the ith member in the sequence 0, 1, 1, 2, 3, 5, 8, · · · . Let t be a
quasi-polynomial that represents F (6) = 8. We have

t = (1− 1)+1+(1− 1)+1+1+(1− 1)+1+(1− 1)+1+1+(1− 1)+1+1

and hence the ordinary complexity of t (= total number of all occurrences of
1, + and −) is 35. However, the graph-complexity of t, ∂ (t), is merely 7 (see
Figure 1). Furthermore, let t (i) be a quasi-polynomial corresponding to F (i).
By the same token, it is readily seen that the ordinary complexity of t (i) is
growing exponentially in ∂ (t (i)).

Lemma 12 The graph-complexity of Φ?
n essentially exceeds 3n, i.e. ∂

(
Φ?
n

)
�

3n.

Proof. Strictly speaking, the shape of Φ?
n depends on the chosen ordering of

[n→ 3] and {〈i, j〉 ∈ N2 | i ≤ j ≤ n} , as well as the associative order in which
+ and ? are used; this refers to the hidden parentheses in Φ?

n. However, we wish

to merely estimate the lower bound of ∂
(
Φ?
n

)
. To this end, first observe that for

different f ∈ [n→ 3] the summands
(

?
i≤j∈n

(
xf(i),i + xf(j),j

))
?1 are different

terms which, moreover, do not occur as subterms in the others. Hence different
f ∈ [n→ 3] have different vertices in any chosen graph-representations of Φ?

n

(cf. recursive definition of ∂ (t), above). This yields ∂
(
Φ?
n

)
≥ # ([n→ 3]) =

3n. Furthermore, with different a, b ≤ 3, i ≤ j ≤ n are associated different
terms xa,i + xb,j, and hence different vertices in graph-representations of Φ?

n.

8

Besides, there are 3n+ 1 different atomic vertices for all variables and 1. This
yields ∂

(
Φ?
n

)
≥ 3n + 32 · 1

2
n (n− 1) + 3n + 1 = 3n + 3

2
n (3n− 1) + 1. Finally,

there are more than 1
2
n (n− 1)−1 different vertices corresponding to different

composite proper subterms of ???
i≤j∈n

(
xf(i),i + xf(j),j

)
. Summing up, this yields

∂
(
Φ?
n

)
> 3n + 3

2
n (3n− 1) + 1

2
n (n− 1) = 3n + 5n2 − 2n� 3n. 2

3.2 Norm-complexity

Definition 13 Norm-complexity. Consider any m-ary quasi-polynomial t =
t (−→x) and D ∈ Dm. Let V := Dm be the m-dim vector space over D, under ex-
tended norm ‖υ‖ = ‖υ1, · · · , υm‖ := max

i≤m
‖υi‖, for any υ = (υ1, · · · , υm) ∈ V .

Regard t = t (−→x) as a functional t : V → D where t (υ) = t (−→x := −→υ).

With t are correlated two quasi-norms ‖t‖D := sup
‖υ‖≥1

‖t(υ)‖
‖υ‖ and %D (t) :=

max {‖s‖D | s ∈ SUB (t)}. Furthermore, call % (t) := sup
D∈Dm

%D (t) the norm-

complexity of t.

Lemma 14 The norm-complexity of Φ?
n is 3n, i.e. %

(
Φ?
n

)
= 3n.

Proof. Consider any D ∈ D3n and notice Φ?
n : V = D3n → {i ∈ N | i ≤ 3n}.

Moreover, there are 3n summands in the term Φ?
n, which, regardless of the

input υ, take values 0 or 1 (see above Lemma 6 (10)). Furthermore, every
summand in question is a ? -product, whose subterms take values υι, υι + υκ,
0 or 1. Hence for any s ∈ SUB

(
Φ?
n

)
we have

‖s‖D ≤ sup
‖υ‖≥1

max (2 ‖υ‖ , 3n)

‖υ‖ ≤ max

(
2, sup
‖υ‖≥1

3n

‖υ‖

)
≤ 3n

This yields %D
(
Φ?
n

)
≤ 3n. Now let υ := (1, · · · , 1)︸ ︷︷ ︸

3n

and observe that for this

input, all summands in Φ?
n take the value 1, while ‖υ‖ = 1. Arguing as above,

this yields
∥∥∥Φ?

n

∥∥∥
Z
≥
∥∥∥Φ?

n (υ)
∥∥∥ = Φ?

n (υ) = 3n. Hence %
(
Φ?
n

)
= 3n, Q.E.D. 2

Remark 15 The complexities ∂ (t) and % (t) are mutually incomparable. To
put it more precisely, it can happen that % (t) is exponential in ∂ (t), and vice
versa, ∂ (t) can be exponential in % (t). The former is e.g. the case of a slightly
modified Fibonacci sequence (cf. Remark 7 above): t1 := 1, t1 := x, t3 := t1+t2,
· · · , tk+2 := tk+ tk+1, · · · . The latter applies e.g. to the sequence: t1 := x−x,
t2 := (x− x) + (x− x), · · · , tk+1 := (x− x) + · · ·+︸ ︷︷ ︸

k

(x− x), · · · .

9

3.3 Computational complexity

Definition 16 Alebraic complexity. Let t be any quasi-polynomial. We
call max (∂ (t) , % (t)) the algebraic complexity (or just complexity) of t.
For any m, c ∈ N+, denote by Q(c)

m the set of m-ary quasi-polynomials whose
algebraic complexity does not exceed mc.

The class P/poly contains the PTIME Turing machines that get a polynomi-
nal size advice that depends only on the size of the input. The exact definition
is given in [Ka].

Lemma 17 (Soundness) There is a Turing machine M in P/poly such
that the value t (z) ∈ Z is computable by M

Proof. Recall that by definition we have ‖zi‖ = |zi|, and hence ‖z‖ =
max

1≤i≤3n
|zi|. Since ∂ (t) ≤ nc, the graph of t (z) has at most nc vertices. Since

%Z (t) ≤ % (t) ≤ nc, all vertices of t (z) are supplied with integers ≤ ‖z‖ · nc.
The computation of the value t (z) runs by graph-recursion on t:

(1) fix the leafs
(2) take the next vertex of the shape f (r, s)
(3) go to the (at most two distinct) subterm vertices r, s
(4) take previously defined values of r (z), s (z) and compute the value f (r, s) (z)
(5) stop after computing the root value t (z)

By standard methods, the above procedure 1-5 can be implemented by a
register machine 1 M of the weight O (nc), which is uniquely determined
by t. Actually, only the times loops are required in M. Furthermore, the
entirely computing steps 4 refer to the operations + and − with integer inputs
and outputs ≤ ‖z‖ · nc. Other steps refer merely to the search of appropriate
vertices among the given ≤ nc ones. Hence by previous observations, the
number ofM-steps required for the computation of the value t (z) with input
z does not exceed O (nc) ·O (‖z‖ · nc) = O (nc · ‖z‖ · nc) = O (‖z‖ · n2c). This
completes the proof, since O (nc) < nc+1 and O (‖z‖ · n2c) < ‖z‖·n2 c+1 holds
for sufficiently large n, Q.E.D. 2

Note that by Lemmata 12, 14 the algebraic complexity (and in fact both
the graph- and norm-component) of Φ?

n is exponential in n. In the sequel we
discuss this feature in the context of NP vs. P problem.

1 A register machine is represented by a finite list of registers (variables) x1, ..., xk, a
finite list of orders xi:=0, xi:=xj, xi:=xj+1, xi:=xj-1, and a finite list of while-loops
in parentheses form WHILE xi=0 DO, OD. Actually in the proof we can weaken
while-loops to the times-loops DO xi TIMES, OD. The weight of a given register
machine is total length of its representation.

10

4 Condition C3 and P-NP connections

Condition 18 Denote by C3 the following sentence. For every c ∈ N+ there
are arbitrarily large n ∈ N+ such that no 3n-ary quasi-polynomial whose alge-
braic complexity does not exceed (3n)c has the same zero-set as Φ?

n in every
(3n)c -ary normed domain. That is, C3 reads:

(∀c ∈ N+) (∀N ∈ N+) (∃n > N)
(
∀t ∈ Q

(c)
3n

) (
∃D ∈ D(3n)c

)(
Φ?
n = 0 <

D
t = 0

)

where Φ?
n = 0 <

D
t = 0 stands for (∃υ ∈ D3n)

(
Φ?
n (υ) = 0 = t (υ) = 0

)

For any fixed D ∈ D(3n)c , denote by C3 [D] the corresponding specification

(
∀c ∈ N+

) (
∀N ∈ N+

)
(∃n > N)

(
∀t ∈ Q

(c)
3n

)(
Φ?
n = 0 <

D
t = 0

)

Definition 19 Denote by TAU3 ∈ P/poly the following sentence. There ex-
ists c ∈ N+ such that for sufficiently large n ∈ N+ there exists a register

machine M whose weight does not exceed nc and such that the following
holds. For any k ∈ N+ and any (3× n)-dim disjunctive normal form (abbr.:
DNF) ∆ with boolean variables from the set {ϑ1, · · · , ϑk}, the corresponding
tautology problem TAU(∆) is decidable by M in at most k · n c steps.

Remark 20 TAU3 ∈ P/poly is weaker than the conjecture TAU3 ∈ P (in
words: the tautology problem of DNF with 3 literals per clause is decidable by a
Turing machine in polynomial time), since M in question might depend on
the number of clauses. However, practical consequences of TAU3 ∈ P/poly
hardly differ from the ones of TAU3 ∈ P. Hence TAU3 ∈ P/poly is hardly
more plausible than the conjecture NP = P.

4.1 Soundness theorem

Theorem 21 Soundness. If C3 fails, then TAU3 ∈ P/poly.

Proof. Since C3 [Z] is stronger than C3, ¬C3 [Z] is weaker than ¬C3. So
it will suffice to prove that ¬C3 [Z] infers TAU3 ∈ P/poly. By definition,
¬C3 [Z] reads: There are c, N ∈ N+ such that for every n > N there exists

quasi-polynomial t ∈ Q
(c)
3n such that Φ?

n = 0 ⇔
Z
t = 0, i.e. Φ?

n = 0 ⇔ t = 0

holds in Z. Let L be the following integers-as-literals interpretation of Z in

11

the propositional language with boolean variables ϑ1, ϑ2, · · · .

Z 3 z 7→ L (z) :=





ϑz if z > 0

> if z = 0

¬ϑ−z if z < 0

Take c, N as above, and let n > N . Consider any (3× n)-dim DNF

∆ =
n∨

j=1

(L1,j ∧ L2,j ∧ L3,j)

where each Li,j ∈ {>} ∪ {ϑι | ι ≤ k} ∪ {¬ϑι | ι ≤ k} for a minimal k ∈ N
of this kind. By the above interpretation, this yields Li,j = L (zi,j) for the

uniquely determined zi,j ∈ Z|k|. Let z = (z1, · · · , z3n) ∈ Z3n
|k| :=

(
Z|k|

)3n
where

zi+3(j−1) := zi,j, for all 0 < i ≤ 3, 0 < j ≤ n. Hence

∆ =
n∨
j=1

(L (z1,j) ∧ L (z2,j) ∧ L (z3,j))

=
n∨
j=1

(
L
(
z3(j−1)+1

)
∧ L

(
z3(j−1)+2

)
∧ L (z3j)

)
=: ∆ (z)

By Lemma 6 (11), we have

Φ?
n (z) = 0

↔ (∀f ∈ [n→ 3]) (∃i, j ∈ n)
(
zf(i),i + zf(j),j = 0

)

↔ (∀f ∈ [n→ 3]) (∃i, j ∈ n)
(
L
(
zf(i),i

)
= ¬L

(
zf(j),j

))

↔
n∨
j=1

(L (z1,j) ∧ L (z2,j) ∧ L (z3,j)) ≡ >
↔ ∆ = ∆ (z) ≡ >

Hence TAU (∆) holds iff Φ?
n (z) = 0. Now suppose t ∈ Q

(c)
3n be such that Φ?

n =
0⇔
Z
t = 0, and hence TAU (∆)↔ TAU (∆ (z))↔ t (z) = 0. By the soundness

lemma (see above), the value t (z) can be uniformly computed by a register

machine of the weight ≤ nc+1 < n2c+1 in at most ‖z‖ ·n2c+1 ≤ k ·n2c+1 steps,
provided that n is sufficiently large. Hence ¬C3 [Z] infers TAU3 ∈ P/poly,
Q.E.D. 2

4.2 Sufficiency

In the rest of this section we will establish a following inversion of the sound-
ness theorem.

12

Theorem 22 Sufficiency. If C3 holds, then TAU3 /∈ P and hence NP 6=
P.

4.2.1 Collapsing

Lemma 23 Collapsing. If n is sufficiently large, then there exist 3n quasi-
polynomials t1, · · · , t3n ∈ Q

(3)
3n such that for every ι ≤ 3n, D ∈ D(3n)3 , v =

(υ1, · · ·υ3n) ∈ D3n, t (v) = (t1 (v) , · · · , t3n (v)), the following conditions hold.

(1) tι (v) ∈ Z|3n|
(2) Φ?

n (v) = 0↔ Φ?
n (t (v)) = 0

Proof. The required t (v) will preserve the structure {υj = υk, υj = −υk}j,k
of v, which we denote by v ∼= t (v). Thus (y1, · · · , y3n) ∼= (z1, · · · , z3n) ⇔
(∀i, j) ((yi = yj ↔ zi = zj) ∧ (yi = −yj ↔ zi = −zj)). Clearly, v ∼= t (v) yields
the condition 3. The corresponding collapsing algorithm v 7→ t (v) will pre-
serve 0, while recursively replacing other values by successive small integers.
Example: n = 4, 3n = 12, v = (15,−47, 1, 3, 8,−102, 0,−15,−1,−8, 47, 543)
We transform v as follows.

Step 1. (1,−47, 15, 3, 8,−102, 0,−1,−15,−8, 47, 543)
// 15 7→ 1, 1 7→ 15,−15 7→ −1,−1 7→ −15

Step 2. (1, 2, 15, 3, 8,−102, 0,−1,−15,−8,−2, 543)
// −47 7→ 2, 47 7→ −2

Step 3. (1, 2, 3, 15, 8,−102, 0,−1,−3,−8,−2, 543)
// 15 7→ 3, 3 7→ 15,−15 7→ −3

Step 4. (1, 2, 3, 4, 8,−102, 0,−1,−3,−8,−2, 543)
// 15 7→ 4

Step 5. (1, 2, 3, 4, 5,−102, 0,−1,−3,−5,−2, 543)
// 8 7→ 5,−8 7→ −5

Step 6. (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 543)
// −102 7→ 6

Step 7-11. (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 543)
// no change

Step 12. (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 12)
// 543 7→ 12

This yields the result t (v) = (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 12). Obviously,
v ∼= t (v) and |t1 (v)| , · · · , |t12 (v)| ≤ 12 = 3n. Generally speaking, this pro-
cedure can be formalized by a suitable recursive definition (see Algorithm 22
below for the corresponding Maple program). We wish to express it in our
basic language L?

n. To this end, first note that υj = υk and υj = −υk can be
expressed by υj−υk = 0 and υj +υk = 0, respectively. Now consider variables
x1, · · · , x3n and Xi,j,k for all indices 0 ≤ i ≤ 1, 0 < k, 0 ≤ j ≤ k ≤ 3n. Having

13

in mind an interpretation Xi,j,k := coll ([x1, · · · , x3n] , i, j, k) (see Algorithm
24) we set:

(1) X0,0,k := 0 X1,0,k := xk

(2) X1,j,j :=





0 if xj = 0

j else if X0,j−1,j = 0

X1,j−1,j else





if 0 < j

(3) X0,j,k :=





1 if

X0,j−1,k − 1 = 0

∨ X1,j−1,k −X1,j−1,j = 0

∨ X1,j−1,k +X1,j−1,j = 0

0 else





if 0 < j

(4) X1,j,k :=





0 if xk = 0

X1,j,j else if X1,j−1,k −X1,j−1,j = 0

−X1,j,j else if X1,j−1,k +X1,j−1,j = 0

X1,j−1,j else if X1,j−1,k −X1,j,j = 0

−X1,j−1,j else if X1,j−1,k +X1,j,j = 0

X1,j−1,k else





if 0 < j < k

Recall that we have a 1-1 embedding xi+3(j−1) � xi,j of x1, · · · , x3n into the
variables of L?

n. Furthermore, let x, y, z, u be arbitrary fixed distinct variables
of L?

n (we assume that n > 1). Now by Corollary 6, there are quasi-polynomials
s1,j, s2, s3 (0 < j ≤ 3n) with variables from the list x, y, z, u, such that the
following hold.

s1,j =





0 if x = 0

j else if y = 0

z else

s2 =





1 if y − 1 = 0 ∨ z − u = 0 ∨ z + u = 0

0 else

14

s3 =





0 if x = 0

u else if y − z = 0

−u else if y + z = 0

z else if y − u = 0

−z else if y + u = 0

y else

In fact, the most complex among them can be defined by

s3 := x?(u + (y − z)?(1− 1− u− u + (y + z)?(z + u + (y − u)?(1− 1− z−
z + (y + u)? (y + z)))))

Having this we can extend s1, s2, s3 to the composite quasi-polynomials Ti,j,k
such that the recursive clauses 1-4 hold for Ti,j,k, instead of Xi,j,k, in all basic
domains. These Ti,j,k are obtained by successive substitutions of previous ones
for variables y, z, u, and variables (corresponding to) xj, xk for x, according to
the notations used in 1-4. Note that there are 9n2 + 3n variables Xi,j,k, while
the graph-complexity of each sι, ι = 1, 2, 3, does not exceed 26. Therefore
the graph-complexity of every Ti,j,k does not exceed 26 · (9n2 + 3n) ≤ 312n2.
(Warning: the ordinary term-complexity of Ti,j,k is exponential in n.) Consider
the norm-complexity. Let v be any input. It is readily seen that the norm of
every subterm involved in the computation of any Ti,j,k (v) does not exceed
max (3n, 2 ‖v‖), and hence 3n ‖v‖, provided that ‖v‖ ≥ 1. Now for every
ι = 1, · · · , 3n set tι := T1,ι,ι. This yields tι ∈ Z|3n| (cf. the example above),
while by previous considerations we conclude that the algebraic complexity of
every tι does not exceed (3n)3, provided that n ≥ 12. Q.E.D. 2

Algorithm 1
collapse:= x->[seq(coll(x,1,i,i),i=1..nops(x))];

coll:= proc(x::list, i::nonnegint, j::nonnegint, k::nonnegint)

option remember;

if j=0 then

if i=0 then 0

else x[k]

fi

elif i=1 and j=k then

if x[j]=0 then 0

elif coll(x,0,j-1,j)=0 then j

else coll(x,1,j-1,j)

fi

elif i=0 then

if coll(x,0,j-1,k)-1=0 or coll(x,1,j-1,k)-coll(x,1,j-1,j)=0

15

or coll(x,1,j-1,k)+coll(x,1,j-1,j)=0 then 1

else 0

fi

elif i=1 and j<k then

if x[k]=0 then 0

elif coll(x,1,j-1,k)-coll(x,1,j-1,j)=0 then coll(x,1,j,j)

elif coll(x,1,j-1,k)+coll(x,1,j-1,j)=0 then -coll(x,1,j,j)

elif coll(x,1,j-1,k)-coll(x,1,j,j)=0 then coll(x,1,j-1,j)

elif coll(x,1,j-1,k)+coll(x,1,j,j)=0 then -coll(x,1,j-1,j)

else coll(x,1,j-1,k)

fi

fi

end;

--

x:=[15,-47,1,3,8,-102,0,-15,-1,-8,47,543];

collapse(x)=[1, 2, 3, 4, 5, 6, 0, -1, -3, -5, -2, 12]

Remark 24 This collapsing algorithm can be further optimized, in order to
obtain minimal coordinates of the vector t (v). In the above example this would
provide us with the optimal output (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 7) instead
of (1, 2, 3, 4, 5, 6, 0,−1,−3,−5,−2, 12). By an obvious specification of the al-
gorithm, the lemma is also true of the corresponding optimization.

Remark 25 In the sequel we need a slight modification of Lemma 23. It is
obtained in an obvious way by replacing every tι by two quasi-polynomials
s′ι, t

′
ι ∈ Q

(3)
3n such that for every v ∈ D3n, s′ι (v) ∈ {1, 2, 3}, 3n ≥ t′ι (v) ∈ N

and

tι (v) = 0↔ s′ι (v) = 1 ∧ t′ι (v) = 0
tι (v) > 0↔ s′ι (v) = 2 ∧ t′ι (v) = tι (v)
tι (v) < 0↔ s′ι (v) = 3 ∧ t′ι (v) = −tι (v)

4.2.2 Notations

Definition 26 A cell of a given Post-Turing input (output) τ , is called an
outer cell iff it belongs to one of the two infinite τ -empty tape intervals;
other cells are called inner cells of τ . The number of all inner cells of τ
is called the length of (written part of) τ and denoted by # (τ). It is as-
sumed that cells can be identified with integers and thus preserve the under-
lying order of Z. Moreover, 0 is called the scanning cell (see [G] for more
detailed tape descriptions). Generally, we express inputs (outputs) τ as fi-
nite strings of letters (of a given finite alphabet) printed in finite intervals
[−m, k] = [−m, · · · ,−1, 0, 1, · · · , k] ⊂ Z and put in box the scanning letter

that is printed in the scanning cell, e.g. τ = ∅a b bcad∅ (abbr.: τ = a b bcad)

16

for m = 1, k = 4,# (τ) = 6.

Definition 27 Consider any given (finite) tape alphabet A and any ` ∈ N. By
obvious encoding, we can just as well assume A = {0} ∪m = {0, 1, · · · , m},
where 0 denotes the empty tape symbol. A sequence

ρ = 〈b−`, x−`〉 , · · · , 〈b0, x0〉 , · · · , 〈b`, x`〉 ∈ (A× N+)
2`+1

is called a (A, `)-code iff the following holds.

(∀i ∈ [−`, `− 1]) (bi = bi+1 → i = −1 ∨ (i < −1 ∧ (∀j ∈ [−`, i]) (bj = 0))
∨ (i ≥ 0 ∧ (∀j ∈ [i+ 1, `]) (bj = 0)))

Furthermore, let `− ∈ [−`, 0] and `+ ∈ [−1, `] be respectively the largest and
smallest indices such that (∀ι < `−) (bι = 0) and (∀ι > `+) (bι = 0). Call |ρ| :=
` and lth (ρ) := 1 + `+ − `− the scope and length of ρ , respectively. Define
the correlated input (output) τ (ρ) by

τ (ρ) := · · · 0︸ ︷︷ ︸
∞
b`− · · · b`−︸ ︷︷ ︸

x`−

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b`+ · · · b`+︸ ︷︷ ︸
x`+

0 · · ·︸ ︷︷ ︸
∞

= b`− · · · b`−︸ ︷︷ ︸
x`−

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b`+ · · · b`+︸ ︷︷ ︸
x`+

= b−` · · · b−`︸ ︷︷ ︸
x−`

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b` · · · b`︸ ︷︷ ︸
x`

Hence # (τ (ρ)) =
`+∑
ι=`−

xι. A (A, `)-code ρ is also called a code of τ (ρ). Note

that if ρ is any code of τ , then `−, `+ and lth (ρ) are uniquely determined by
τ . Now let T be a Turing machine over tape alphabet A = {0}∪m and state
alphabet S = {0} ∪ k for m, k > 0, where 0 and 1 are respectively the initial
and the end state of T . Call a (A,S, `)-code a sequence

ρ̂ = 〈b−`, x−`〉 , · · · , 〈b0, x0, q〉 , · · · , 〈b`, x`〉

that extends a (A, `)-code ρ = 〈b−`, x−`〉 , · · · , 〈b0, x0〉 , · · · , 〈b`, x`〉 by adding
a state symbol (letter) q ∈ S in the initial component. Set |ρ̂| := |ρ| and
lth (ρ̂) := lth (ρ). The correlated labeled input (output) τ̂ (ρ̂) has the following
form, where q shows the scanning state.

τ̂ (ρ̂) := · · · 0︸ ︷︷ ︸
∞
b`− · · · b`−︸ ︷︷ ︸

x`−

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

q

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b`+ · · · b`+︸ ︷︷ ︸
x`+

0 · · ·︸ ︷︷ ︸
∞

17

= b`− · · · b`−︸ ︷︷ ︸
x`−

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

q

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b`+ · · · b`+︸ ︷︷ ︸
x`+

= b−` · · · b−`︸ ︷︷ ︸
x−`

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

q

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b` · · · b`︸ ︷︷ ︸
x`

A (A,S, `)-code ρ̂ is called a code of τ̂ (ρ̂) and/or a labeled code of τ (ρ).

Example 28 Let A = {0, 1, 2, 3}. For any x ∈ N+, ρ = 〈0, x〉 is a code of the

empty A -input τ = 0 ; moreover `− = 0, `+ = −1 and # (τ) = lth (ρ) = 0.

Now consider a A-input τ = 113 3 301222 and the same input in the initial

state τ̂ = 113

0

3 301222. Clearly # (τ) = 10. Some codes of this τ are listed

below, where 〈0, 1〉i := 〈0, 1〉 , · · · , 〈0, 1〉︸ ︷︷ ︸
i

. The last one is the minimal labeled

code of τ for ` = 6, in the initial state. Note that for any ρ in question we
have `− = −2, `+ = 3 and lth (ρ) = 6.

• ` = 3 and ρ̂ = 〈0, 1〉 , 〈1, 2〉 , 〈3, 1〉 , 〈3, 2, 0〉 , 〈0, 1〉 , 〈1, 1〉 , 〈2, 3〉
• ` = 4 and ρ = 〈0, 2〉 , 〈0, 3〉 , 〈1, 2〉 , 〈3, 1〉 , 〈3, 2〉 , 〈0, 1〉 , 〈1, 1〉 , 〈2, 3〉 , 〈0, 7〉
• ` = 6 and ρ = 〈0, 1〉4 , 〈1, 2〉 , 〈3, 1〉 , 〈3, 2〉 , 〈0, 1〉 , 〈1, 1〉 , 〈2, 3〉 , 〈0, 4〉2 , 〈0, 1〉
• ` = 6 and ρ̂ = 〈0, 1〉4 , 〈1, 2〉 , 〈3, 1〉 , 〈3, 2, 0〉 , 〈0, 1〉 , 〈1, 1〉 , 〈2, 3〉 , 〈0, 1〉3

4.2.3 Rest of the proof

Lemma 29 Assume TAU3 ∈ P. There are c0, N0 ∈ N+ such that for every
n > N0 there exists a quasi-polynomial t0 ∈ Q

(c0)
6n such that Φ?

n (z) = 0 ↔
t0 (z∗) = 0 holds for every z = (z1, · · · , z3n) ∈ Z3n

|3n| :=
(
Z|3n|

)3n
, where z∗ =

(v1, · · · , v6n) ∈ N3n for v2ι := |zι| and v2ι−1 :=





1 if zι = 0

2 if zι > 0

3 if zι < 0

, 1 ≤ ι ≤ 3n.

Proof. We adopt from the soundness theorem (see above) a linear 1-1 corre-
spondence z 7→ ∆ (z) between vectors from Z3n

|3n| and (3× n)-dim DNFs whose
variables have indices ≤ 3n. Hence it will suffice to infer from the assumption
the following sentence.

There are c0, N0 ∈ N+ such that for every n > N0 there exists t0 ∈ Q
(c0)
6n

such that ∆ (z) ≡ > ↔ t0 (z∗) = 0 holds for every z = (z1, · · · , z3n) ∈ Z3n
|3n|.

18

Suppose T be a PTIME Turing machine such that for every (3× n)-dim

DNF-input ∆ =
n∨
j=1

(L1,j ∧ L2,j ∧ L3,j), the output T (∆) is > iff ∆ ≡ >, i.e.

TAU (∆). Moreover, the number of T -steps required for passing from ∆ to
T (∆) is supposed to be polynomial in the length of ∆. To put it more ex-
actly, there are constants c1,c2 > 0 such that T -computation with tape-input
τ (∆) terminates after at most c1 ·# (τ (∆))c2 steps. Denote by A the under-
lying tape alphabet. Without loss of generality suppose A ⊇ {0, 1, 2, 3, 4}
such that 1 stands for >, 2 and 3 encode via repetitions positive and neg-
ative literals, respectively, while 4 denotes propositional connectives ∨ or
∧. Obviously, parentheses can be omitted. Thus e.g. a (3× 2)-dim DNF-
input ∆ = (ϑ3 ∧ ϑ1 ∧ ¬ϑ2)∨ (¬ϑ1 ∧ > ∧ ¬ϑ4) corresponds to the tape-input

τ (∆) =

0

2 2242433434143333 of the length # (τ (∆)) = 17, whose minimal

labeled code is

ρ̂ = 〈0, 1〉10 , 〈2, 3, 0〉 , 〈4, 1〉 , 〈2, 1〉 , 〈4, 1〉 , 〈3, 2〉 , 〈4, 1〉 , 〈3, 1〉 , 〈4, 1〉 , 〈1, 1〉 ,
〈4, 1〉 , 〈3, 4〉

where |ρ̂| = lth (ρ̂) = 10. Analogously, the tape-output T (∆) is supposed to

be

1

1 (just) in case ∆ ≡ >. Observe that for any z ∈ Z3n
|3n| and any labeled

code ρ̂ of τ (∆ (z)), this interpretation yields

6n− 2 = |ρ̂| = lth (ρ̂) ≤ # (τ (∆ (z))) < 9n2 + 3n ≤ 12n2

Therefore, for any z ∈ Z3n
|3n|, T -computation with input ∆ (z) terminates after

at most c1·(12n2)
c2 = 144c1·n2c2 steps. We wish to simulate this computation

in the language L?
n. This is possible, by Corollaries 7, 8 (see above), because

natural formalization of Post-Turing computations requires only definitions
by-cases. To put it more exactly, suppose A = {0} ∪ m and S = {0} ∪ k,
where m ≥ 4 and k ≥ 2 (without loss of generality: 2 ≤ k ≤ 4), and let T be
the (finite) list of T -orders of the either form

1. 〈g, α〉 ↪→ 〈h, β〉
2. 〈g, α〉 ↪→+ β

3. 〈g, α〉 ↪→− β

where g, h ∈ [0, m], 1 6= α ∈ [0, k] , β ∈ [0, k] , and every 〈g, α〉 from the
domain of T occurs in exactly one rule. The intended meaning is as follows.
Rules 1-3 take input in state α 6= 1 with scanning letter g and return output
in state β. Moreover, rule 1 replaces scanning letter g by h, in the same
scanning position, whereas rule 2 (3) just moves scanning cell one step to the
right (left). To complete the proof of the lemma, it will suffice to simulate T

19

-computations in the language L?. To this end, we formalize transformations
of (A,S, `)-codes induced by iteration of the transition rules 1-3. For any given
(A,S, `)-code

ρ̂ = 〈b−`, x−`〉 , · · · , 〈b−1, x−1〉 , 〈b0, x0, q〉 , 〈b1, x1〉 , · · · , 〈b`, x`〉

where 0 ≤ bι ≤ m, 1 6= q ≤ k, xι > 0, consider the labeled input

τ̂ (ρ̂) = b−` · · · b−`︸ ︷︷ ︸
x−`

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

q

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b` · · · b`︸ ︷︷ ︸
x`

= b−` · · · b−`︸ ︷︷ ︸
x−`

· · · b−1 · · · b−1︸ ︷︷ ︸
x−1

q

b0 · · · b0

︸ ︷︷ ︸
x0

b1 · · · b1︸ ︷︷ ︸
x1

· · · b` · · · b`︸ ︷︷ ︸
x`

Suppose that r∈ T of the either form 1-3 is applicable to τ̂ (ρ̂). By definition
we have g = b0, α = q and β = q′. Let τ̂r be the corresponding labeled output.
We look for a suitable (A,S, `′)-code

ρ̂r =
〈
b′−`−1, x

′
−`−1

〉
, · · · ,

〈
b′−1, x

′
−1

〉
, 〈b′0, x′0, q′〉 , 〈b′1, x′1〉 , · · · ,

〈
b′`+1, x

′
`+1

〉

such that

τ̂r = τ̂ (ρ̂r) = b′−`−1 · · · b′−`−1︸ ︷︷ ︸
x′−`−1

· · · b′−1 · · · b′−1︸ ︷︷ ︸
x′−1

q′

b′0 · · · b′0
︸ ︷︷ ︸

x′0

b′1 · · · b′1︸ ︷︷ ︸
x′1

· · · b′`+1 · · · b′`+1︸ ︷︷ ︸
x′
`+1

Consider the following cases.

(1) Suppose r = 〈g, α〉 ↪→ 〈h, β〉.
(a) Suppose h = b0. Set

〈
b′−`−1, x

′
−`−1

〉
:= 〈0, 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉 for

−` ≤ ι ≤ `,
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉.

(b) Suppose h 6= b0.
(i) Suppose x0 = 1.

A. Suppose h = b1. Set
〈
b′−`−1, x

′
−`−1

〉
:= 〈0, 1〉, 〈b′ι, x′ι〉 :=

〈bι, xι〉 for −` ≤ ι < 0, 〈b′0, x′0〉 := 〈b1, x1 + 1〉, 〈b′ι, x′ι〉 :=

〈bι+1, xι+1〉 for 0 < ι < `, 〈b′`, x′`〉 =
〈
b′`+1, x

′
`+1

〉
: = 〈0, 1〉.

B. Suppose h 6= b1. Set
〈
b′−`−1, x

′
−`−1

〉
:= 〈0, 1〉, 〈b′ι, x′ι〉 :=

〈bι, xι〉 for −` ≤ ι < 0, 〈b′0, x′0〉 := 〈h, 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉
for 1 ≤ ι ≤ `,

〈
b′`+1, x

′
`+1

〉
: = 〈0, 1〉.

(ii) Suppose x0 6= 1. Set
〈
b′−`−1, x

′
−`−1

〉
:= 〈0, 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉

for −` ≤ ι < 0 , 〈b′0, x′0〉 := 〈h, 1〉, 〈b′1, x′1〉 := 〈b0, x0 − 1〉,
〈b′ι, x′ι〉 : = 〈bι−1, xι−1〉 for 1 < ι ≤ `+ 1.

20

(2) Suppose r = 〈g, α〉 ↪→+ β.
(a) Suppose b0 = b−1.

(i) Suppose x0 = 1. Set
〈
b′−`, x

′
−`
〉

:= 〈0, 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉 for

−` ≤ ι < −1,
〈
b′−1, x

′
−1

〉
:= 〈b−1, x−1 + 1〉, 〈b′ι, x′ι〉 := 〈bι+1, xι+1〉

for 0 ≤ ι < `, 〈b′`, x′`〉 =
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉.

(ii) Suppose x0 6= 1. Set 〈b′ι, x′ι〉 := 〈bι, xι〉 for −` ≤ ι < −1,〈
b′−1, x

′
−1

〉
:= 〈b−1, x−1 + 1〉 , 〈b′0, x′0〉 := 〈b0, x0 − 1〉, 〈b′ι, x′ι〉 :=

〈bι, xι〉 for 1 ≤ ι ≤ `.
(b) Suppose b0 6= b−1.

(i) Suppose x0 = 1. Set
〈
b′ι−1, x

′
ι−1

〉
:= 〈bι, xι〉 for −` ≤ ι < 0,〈

b′−1, x
′
−1

〉
:= 〈b0, 1〉, 〈b′ι, x′ι〉 := 〈bι+1, xι+1〉 for 0 ≤ ι < `,

〈b′`, x′`〉 =
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉.

(ii) Suppose x0 6= 1. Set
〈
b′ι−1, x

′
ι−1

〉
:= 〈bι, xι〉 for −` ≤ ι < 0,〈

b′−1, x
′
−1

〉
:= 〈b0, 1〉, 〈b′0, x′0〉 := 〈b0, x0 − 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉

for 1 ≤ ι ≤ `,
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉.

(3) Suppose r = 〈g, α〉 ↪→− β.
(a) Suppose b0 = b−1.

(i) Suppose x−1 = 1. Set
〈
b′ι−1, x

′
ι−1

〉
=
〈
b′−`, x

′
−`
〉

:= 〈0, 1〉, 〈b′ι, x′ι〉 :=

〈bι−1, xι−1〉 for −` < ι < 0, 〈b′0, x′0〉 := 〈b0, x0 + 1〉, 〈b′ι, x′ι〉 :=

〈bι, xι〉 for 1 ≤ ι ≤ `,
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉.

(ii) Suppose x−1 6= 1. Set
〈
b′ι−1, x

′
ι−1

〉
:= 〈0, 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉

for −` ≤ ι < −1,
〈
b′−1, x

′
−1

〉
:= 〈b−1, x−1 − 1〉, 〈b′0, x′0〉 :=

〈b0, x0 + 1〉, 〈b′ι, x′ι〉 := 〈bι, xι〉 for 1 ≤ ι ≤ `,
〈
b′`+1, x

′
`+1

〉
:=

〈0, 1〉.
(b) Suppose b0 6= b−1.

(i) Suppose x−1 = 1. Set
〈
b′−`−1, x

′
−`−1

〉
=
〈
b′−`, x

′
−`
〉

:= 〈0, 1〉,
〈b′ι, x′ι〉 := 〈bι−1, xι−1〉 for −` < ι < 0, 〈b′0, x′0〉 := 〈b−1, 1〉,
〈b′ι, x′ι〉 := 〈bι−1, xι−1〉 for 0 < ι ≤ `+ 1.

(ii) Suppose x−1 6= 1. Set
〈
b′−`−1, x

′
−`−1

〉
=
〈
b′−`, x

′
−`
〉

:= 〈0, 1〉,
〈b′ι, x′ι〉 := 〈bι, xι〉 for −` ≤ ι < −1,

〈
b′−1, x

′
−1

〉
:= 〈b−1, x−1 − 1〉,

〈b′0, x′0〉 := 〈b−1, 1〉, 〈b′ι, x′ι〉 := 〈bι−1, xι−1〉 for 0 < ι ≤ `+ 1.

Note that every single step of computation yields |ρ̂r| = |ρ̂|+1. Hence, by iter-
ation, |ρ̂| ≤ 6n−2+144c1·n2c2 holds for every ρ̂ involved in the computation of
T (∆ (z)). Let u := 6n−2 and w := 144c1 ·n2 c2 . In order to obtain a required
polynomial graph of computation, we fix a sequence of labeled meta-codes

Ĉ0, Ĉ1, · · · , Ĉw, such that for each i ≤ w,
Ĉi =

〈
Y i
−u−i, X

i
−u−i

〉
, · · · , 〈Y i

0 , X
i
0, Z

i〉 , · · · ,
〈
Y i
u+i, X

i
u+i

〉

21

where Y i
j , X i

j, Z
i for j ∈ [−u− i, u+ i] are distinct metavariables. Geomet-

rically speaking, we consider Y i
j , X i

j, Z
i as distinct vertices placed at level i.

The correlated labeled codes

ρ̂i =
〈
bi−u−i, x

i
−u−i

〉
, · · · , 〈bi0, xi0, qi〉 , · · · ,

〈
biu+i, x

i
u+i

〉

are obtained by meta-recursion on i, according to the above clauses 1-3 (see
above), as well as a trivial repetition clause (4). Now 4 is applied to any ρ̂ if 1-3
do not apply, and the output ρ̂r preserves the state, i.e. q′ = q, and all com-
ponents of ρ̂, i.e. 〈b′ι, x′ι〉 = 〈bι, xι〉 for all ι ∈ [−`, `], while adding two empty

components
〈
b′−`−1, x

′
−`−1

〉
=
〈
b′`+1, x

′
`+1

〉
:= 〈0, 1〉. In geometrical terms, this

meta-recursion results in adding new vertices and links placed between levels
i and i+ 1, which express constructions by-cases used at recursion step i+ 1.
To put it more precisely, the construction runs as follows.

Step 0. Consider labeled meta-code

Ĉ0 =
〈
Y 0
−u, X

0
−u
〉
, · · · , 〈Y 0

0 , X
0
0 , Z

0〉 , · · · , 〈Y 0
u , X

0
u〉

For any given z = (z1, · · · , z3n) ∈ Z3n
|3n| and correlated z∗ = (v1, · · · , v6n) ∈

N3n, set Z0 := 0, and for every −u ≤ ι ≤ u:

Y 0
ι := b0

ι =





0 if ι < 0

vι+1 else if ι ≡ 0 mod 2

4 else

X0
ι := x0

ι =





1 if ι < 0 ∨ ι ≡ 1 mod 2

1 + vι? (vι − 1) else

Obviously, the resulting ρ̂0 =
〈
b0
−u, x

0
−u
〉
, · · · , 〈b0

0, x
0
0, 0〉 , · · · , 〈b0

u, x
0
u〉 provides

us with the labeled code of the input τ (∆ (z)), in the initial state 0. To put it in
geometrical terms corresponding to the language L?, we replace metavariable
Z0 by 0, while adding to old vertices Y 0

ι , X0
ι new vertices and edges (links)

which realize in L? substitutions Y 0
ι := b0

ι and X0
ι := x0

ι . Such construction is
called graph-realization of Ĉ0. Note that each term b0

ι , x
0
ι , 0 occurring in this

realization requires at most 5 vertices, in case x0
ι = 1 + vι? (vι − 1). In fact,

total number of vertices used in the realization ρ̂0 is 21n− 2.

Step i+1. Consider labeled meta-codes

Ĉi =
〈
Y i
−u−i, X

i
−u−i

〉
, · · · , 〈Y i

0 , X
i
0, Z

i〉 , · · · ,
〈
Y i
u+i, X

i
u+i

〉

Ĉi+1 =
〈
Y i+1
−u−i−1, X

i+1
−u−i−1

〉
, · · · ,

〈
Y i+1

0 , X i+1
0 , Zi+1

〉
, · · · ,

〈
Y i+1
u+i+1, X

i+1
u+i+1

〉

22

By previous steps, we already constructed the graph-realizations of Ĉ0, · · · , Ĉi
corresponding to labeled codes ρ̂0, · · · , ρ̂i. In order to obtain a required real-
ization of Ĉi+1, observe that all components of ρ̂i+1 are obtained from the cor-
responding components of ρ̂i by definition-by-cases clauses 1-4 (see above). As
for crucial clauses 1-3, note that finite list of orders T provides us with a con-
stant c3 > 0 such that recursive definition-by-cases of any bi+1

j , xi+1
j and (obvi-

ously) qi+1 requires (see Corollaries 7, 8) graph-realization with at most c3 new
vertices. For example, consider definition of xi+1

0 . Let r 1
1, · · · ,r1

ζ , r2
1, · · · ,r2

θ

and r3
1, · · · ,r3

ξ (ζ, θ, ξ ≥ 0) be the T -orders of the form 1, 2 and 3, respectively,
occurring in the list T . Let g1

1, α
1
1, h

1
1, β

1
1 , · · · , g1

ζ , α
1
ζ , h

1
ζ , β

1
ζ , g

2
1, α

2
1, β

2
1 , · · · , g2

θ

, α2
θ, β

2
θ and g3

1, α
3
1, β

3
1 , · · · , g3

ξ , α
3
ξ , β

3
ξ be the corresponding parameters occur-

ring in these orders. Now xi+1
0 is constructed by the following cases (cf. clauses

1-3 above).

xi+1
0 :=

xi1 + 1 if xi0 = 1 ∧
ζ∨
ι=1

(g1
ι = bi0 6= h1

ι = bi1 ∧ α1
ι = qi)

1 if

(
xi0 = 1 ∧

ζ∨
ι=1

(g1
ι = bi0 6= h1

ι 6= bi1 ∧ α1
ι = qi)

)

∨
(
xi0 6= 1 ∧

ζ∨
ι=1

(g1
ι = bi0 6= h1

ι ∧ α1
ι = qi)

)
∨

ξ∨
ι=1

(
g3
ι = bi0 6= bi−1 ∧ α3

ι = qi
)

xi1 if xi0 = 1 ∧
θ∨
ι=1

(g2
ι = bi0 ∧ α2

ι = qi)

xi0 − 1 if xi0 6= 1 ∧
θ∨
ι=1

(g2
ι = bi0 ∧ α2

ι = qi)

xi0 + 1 if
ξ∨
ι=1

(g3
ι = bi0 = bi1 ∧ α3

ι = qi)

xi0 else

All in all, the required labeled code

ρ̂i+1 =
〈
bi+1
−u−i−1, x

i+1
−u−i−1

〉
, · · · ,

〈
bi+1

0 , xi+1
0 , qi+1

〉
, · · · ,

〈
bi+1
u+i+1, x

i+1
u+i+1

〉

can be obtained by adding at most c3 · (4 (u+ i + 1) + 3) new vertices to
4 (u+ i+ 1) + 3 vertices of Ĉi+1 together with the vertices of previous realiza-
tions of Ĉ0, · · · , Ĉi. Summing up, the realization ρ̂0, ρ̂1, · · · , ρ̂w of the sequence
Ĉ0, Ĉ1, · · · , Ĉw requires less than

21n− 2 + (c3 + 1)
(
4
(
u (w − 1) + 1

2
w (w + 1)− 1

)
+ 3 (w − 1)

)

< 41472 (c1)2 (2c3 + 1)n4c2

23

vertices. Finally, the alleged tautology test can be expressed in form τ̂ (ρ̂w) =
1

1 , since T (∆ (z)) = τ̂ (ρ̂w). So from the assumption of the lemma we obtain

∆ (z) ≡ > ↔ qw = 1 ∧ bw0 = 1 ∧ xw0 = 1 ∧
u+w∧

06=ι=−(u+w)

(bwι = 0 ∧ xwι = 1)

where u+ w = 144c1 · n2c2 + 6n− 2. Now by Lemma 6 (8, 10), there exists a
quasi-polynomial t0 such that

t0 (z∗) = 0

↔ qw−1 = 0∧ bw0 −1 = 0∧xw0 −1 = 0∧
u+w∧

06=ι=−(u+w)
(bwι = 0 ∧ xwι − 1 = 0)

and (by previous estimates)

∂ (t0)< 41472 (c1)2 (2c3 + 1)n4c2 + 3 (u+ w + 2)

= 41472 (c1)2 (2c3 + 1)n4c2 + 3
(
144c1 · n2c2 + 6n

)

< (6n)4c2+1 , provided that n >
165888 (c1)2 (c3 + 2)

64c2+1

Moreover, every clause 1-3 can raise any given xι at most by 1 Hence xij ≤ 3n+
w holds for every xij involved in the construction of t0 (z∗). Other parameters,

i.e. bij and qi are bounded by max (m, k). Hence t0 ∈ Q
(c0)
6n for c0 := 4c2 + 1

and n > N0 := max
(
m, k,

[
165888 (c1)2 (c3 + 2) 6−c0

]
+ 1

)
, Q.E.D. 2

In order to complete the proof of Theorem 22, it will suffice to combine Lemma
30 and Remark 26 to Lemma 23. To this end, we argue ad contrario. Suppose
TAU3 ≤ P. Starting from this assumption we have to refute C3. So let
c0 and N0 be as in Lemma 30. Set c := 2 c0 and N := N0, and let n >
N . Take s′ι, t

′
ι ∈ Q

(3)
3n , 1 ≤ ι ≤ 3n, as in Remark 26, and quasi-polynomial

t0 from Lemma 30. Let t := t0 (v1 := t′1, v2 := s′1, · · · , v6n−1 := t′3n, v6n := s′3n)
and observe that ∂ (t) < (6n) · n3 + (6n)c0 < (3n)2c0 = (3n)c, while % (t) <
n3 + (6n)c0 < (3n)2 c0 = (3n)c. That zero-set of such quasi-polynomial t
coincides with the one of Φ?

n on every D ∈ D(3n)c follows by Lemma 6 (12),
Lemma 30, Lemma 23 and Remark 26. Hence C3 fails. Q.E.D. �

Remark 30 Lemma 30 holds true in the sublanguage L?
0 ⊂ L? that includes

only ? and unary operations x + 1 and x − 1, instead of binary operations
x+ y and x− y. In the only non-trivial cases concerning conditions bi = bι+1

and bi 6= bι+1 from clauses 1-3, the corresponding tests can be carried out by
separate recursion, without using bi − bι+1. However, x + y and x − y are

24

essential for Lemma 23.

Remark 31 It is readily seen that Lemma 30 admits a following generaliza-

tion, where Nm|n| =
(
N|n|

)m
, while specifying plain upper bounds as upper bounds

with respect to plain input length # (x1, · · · , xm) := m−1+x1 + · · ·+xm. Sup-
pose ϕ : Nm → N be any m-ary total recursive function with polynomial-time
plain upper bound. There are c, N ∈ N+ such that for any n > N , the restric-
tion of ϕ to Nm|n| is representable by a m-ary quasi-polynomial (in fact, in L?

0)
whose computable complexity does not exceed nc . On the other hand, recall
(see Lemma 17 above) that every quasi-polynomial whose computable com-
plexity is polynomial in n is computable by a register machine whose weight
is polynomial in n. Summing up, this shows that the notion of computable
complexity, in L? , provides us with a plausible algebraic characterization of
polynomial-time complexity.

4.3 Conclusions

Theorems 21, 22 show that C3 is an approximation of the natural conjecture
P 6= NP. For if C3 holds, then P 6= NP (see Theorem 22). Should otherwise
C3 fail then, by Theorem 21, holds a suitable weak form of P = NP. This
approximation is purely algebraic by nature, except that the underlying lan-
guage includes one non-familiar operation ?. Now C3 says that for arbitrarily
large natural numbers n, no quasi-polynomial of small complexity has the
same zero-set as a distinguished very complex quasi-polynomial Φ?

n, in every
normed domain D of a suitable characteristic. Thus in order to establish C3,
it would suffice to prove its specification to simplest zero-characteristic cases
D := R or D := C, or else any finite field D. To this end, in each case in ques-
tion, we will try to convert quasi-polynomials to ordinary polynomials and/or
systems of polynomial equations which may include multiplication instead of
?. This thread is called ?-elimination below.

5 ?-elimination in R

In this section we consider zero-sets of quasi-polynomials in the normed do-
main R. This domain, as well as C (see next section), is supplied with natural
topology that could provide background for a proof of the desired contra-
diction. Now, in R, an obvious distinction between polynomials and quasi-
polynomials is that polynomials are continuous, whereas quasi-polynomials
generally are not. For example, no real polynomial has the same values as

25

quasi-polynomial x?1 representing plain characteristic function

χ (x) =





0 if x = 0

1 else

However, its zero-set {x ∈ R | χ (x) = 0} coincides with the one of polynomial
x. That is, χ (x) = 0⇔ x = 0 holds in R, although χ (x) ≡ x obviously fails.
Analogously, our basic quasi-polynomials Φ?

n are discrete-valued, and hence
they cannot be fully converted to real polynomials. On the other hand, Φ?

n =

0 ⇔
R

Φ∗n = 0 holds for real polynomials Φ∗n :=
∑

f∈[n→3]

∏
i≤j∈n

(
xf(i),i + xf(j),j

)2
.

Keeping this in mind, for any ` ∈ N+, denote by ΣΠ`,? the set of `-ary quasi-
polynomials t = t (−→x) such that t = 0⇔

R
g = 0 holds for some real polynomial

g = g (−→x) of the form
∑
i∈I

∏
j∈J(i)

f 2
i,j for fi,j ∈ R1 [x1, · · · , x`]. Thus, in partic-

ular, Φ?
n ∈ ΣΠ3n,?. Now suppose t = t (−→x) ∈ ΣΠ`,?. We wish to construct a

special solution h = h (−→x) ∈ R [x1, · · · , x`] to the equation t = 0 ⇔
R
h = 0,

whose shape explicitly depends on the one of t. Loosely speaking, we argue
by recursion on the number of ?-occurrences in t. Note that a natural zero-
set preserving translation of α?β+γ as, say, (α2 + γ2)

(
(β + γ)2 + α2

)
, where

α = 0 ⇔
R
α 6= 0, is not possible in language of algebra. However, we can

actually get rid of α and replace α?β + γ by (α2 + γ2) (β + γ), provided that
α?β + γ is a subterm of t in question. This is where topological structure of
the chosen normed domain becomes crucial. To grasp the method, consider
an example, as follows.

Example 32 Suppose t = α?β? (β − γ) + (β − γ + γ?δ)?γ?δ ∈ ΣΠ`,?, where
α, β, γ, δ ∈ R(1) [x1, · · · , x`] (Figure 2 shows the graph of t). For the sake of
brevity we assume that α, β, γ, δ are linear independent.

First off, we assign labels ε1, ε2, ε3, ε4 to the roots of the four ?-subterms
α?β, γ?δ, α?β? (β − γ), (β − γ + γ?δ)?γ?δ, respectively (see Figure 2 for the
associative order). Regard εi, i = 1, 2, 3, 4, as boolean variables ranging over
{0, 1} . Denote by ε1, ε2, ε3, ε4 negative (dual) literals such that εi = 1− εi.
We wish to convert t = 0 to a natural system of linear equations enriched by
coefficients from the set {εi, εj | i, j = 1, 2, 3, 4}. These defining equations
are as follows.

[0] ε1 · α = 0
[1] ε2 · γ = 0
[2] ε3 · ε1 · β = 0
[3] ε4 · (β − γ + ε2 · δ) = 0
[4] ε3 · (β − γ) + ε4 · ε2 · δ = 0

Explanation. [0] means that α = 0 is included in the list of defining equations

26

+

?

?

? -

+

?

α β γ δ

Fig. 2. Structure of the example

iff ε1 = 1 (dual option ε1 = 0 corresponds to non-algebraic inequation a 6= 0,
which will be eliminated later). Note that α is the value of the main left-hand
side subterm of the subterm α?β labeled by ε1. Analogously, [1] means that
γ = 0 is a defining equation iff ε1 = 1, where γ is the value of the main left-
hand side subterm of the subterm γ?δ labeled by ε2 . [2] means that ε1 · β = 0,
i.e. 0 = 0 or β = 0, is included in the list of defining equations iff ε3 = 1. Note
that ε1 · β is the value(s) of the main left-hand side subterm of the subterm
α?β? (β − γ) labeled by ε3. [3] means that β− γ+ ε2 · δ = 0 , i.e. β− γ = 0 or
β− γ+ δ = 0, is included in the list of defining equations iff ε4 = 1. Note that
β− γ+ ε2 · δ is the value(s) of the main left-hand side subterm of the subterm
(β − γ + γ?δ)?γ?δ labeled by ε4. Finally, [4] yields the last defining equation
ε3 · (β − γ) + ε4 · ε2 · δ = 0, i.e. 0 = 0, β − γ + δ = 0, β − γ = 0 or δ = 0,
whose left-hand side provides us with the value(s) of t. The correlated table of
equations and inequations is attached below.

27

ε1 ε2 ε3 ε4 [0] [1] [2] [3] [4]

0 0 0 0 α 6= 0 γ 6= 0 β 6= 0 β − γ + δ 6= 0 β − γ + δ = 0

0 0 0 1 α 6= 0 γ 6= 0 β 6= 0 β − γ + δ = 0 β − γ = 0

0 0 1 0 α 6= 0 γ 6= 0 β = 0 β − γ + δ 6= 0 δ = 0

0 0 1 1 α 6= 0 γ 6= 0 β = 0 β − γ + δ = 0 0 = 0

0 1 0 0 α 6= 0 γ = 0 β 6= 0 β − γ 6= 0 β − γ = 0

0 1 0 1 α 6= 0 γ = 0 β 6= 0 β − γ = 0 β − γ = 0

0 1 1 0 α 6= 0 γ = 0 β = 0 β − γ 6= 0 0 = 0

0 1 1 1 α 6= 0 γ = 0 β = 0 β − γ = 0 0 = 0

1 0 0 0 α = 0 γ 6= 0 0 6= 0 β − γ + δ 6= 0 β − γ + δ = 0

1 0 0 1 α = 0 γ 6= 0 0 6= 0 β − γ + δ = 0 β − γ = 0

1 0 1 0 α = 0 γ 6= 0 0 = 0 β − γ + δ 6= 0 δ = 0

1 0 1 1 α = 0 γ 6= 0 0 = 0 β − γ + δ = 0 0 = 0

1 1 0 0 α = 0 γ = 0 0 6= 0 β − γ 6= 0 β − γ = 0

1 1 0 1 α = 0 γ = 0 0 6= 0 β − γ = 0 β − γ = 0

1 1 1 0 α = 0 γ = 0 0 = 0 β − γ 6= 0 0 = 0

1 1 1 1 α = 0 γ = 0 0 = 0 β − γ = 0 0 = 0

It is readily seen that for all x1, · · · , x` ∈ R

t = 0⇔ (∃ε1, ε2, ε3, ε4 ∈ {0, 1}) ([0] ∧ [1] ∧ [2] ∧ [3] ∧ [4]) (∗)

Moreover, we can exclude 8 vectors (ε1, ε2, ε3, ε4): (0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 1),
(0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 0, 0) , (1, 1, 0, 1), whose rows [0] , [1] , [2] , [3] , [4]
are inconsistent (see the table). Furthermore, in each of the remaining 8 rows
we can delete all inequations (see the lemma below), and afterwards delete
also the last row, as it strengthens the (previous) raw of (1, 1, 1, 0). Thus (∗)
actually reduces to

t = 0⇔ (β − γ = 0 ∧ δ = 0)∨(β = 0 ∧ γ − δ = 0)∨(α = 0 ∧ β − γ + δ = 0)∨
(β = 0 ∧ δ = 0) ∨ (β = 0 ∧ γ = 0) ∨ (α = 0 ∧ δ = 0) ∨ (α = 0 ∧ γ = 0)

which yields a desired simple polynomial solution

t = 0 ⇔
R

(α2 + γ2) · (α2 + δ2) ·
(
α2 + (β − γ + δ)2

)
· (β2 + γ2) · (β2 + δ2) ·

(
β2 + (γ − δ)2

)
·
(
δ2 + (β − γ)2

)
= 0 (∗∗)

28

Furthermore, we wish to express this expansion in algebraic-combinatorial
terms. Consider five collections F0 − F5 of sets of natural numbers:

F0 := {∅} F1 := {∅} F2 := {{∅} , {1}} F3 := {{∅} , {2}},
F4 := {{∅} , {3} , {2, 4}}

and five functions fi : Fi → R1 [x1, · · · , x`], i = 0, 1, 2, 3, 4:

f0 (∅) := α f1 (∅) := γ f2 (X) :=





0 if X = {∅}
β if X = {1}

f3 (X) :=




β − γ if X = {∅}
δ if X = {2}

f4 (X) =





0 if X = {∅}
β − γ if X = {3}
δ if X = {2, 4}

For any Y ⊆ {1, 2, 3, 4} and 0 ≤ k ≤ 4, set ϕk (Y) :=
∑

Y⊇X∈Fk

fk (X). Note

that S (Y) := {ϕk (Y) = 0 | k + 1 ∈ Y ∪ {5}} ∪ {ϕk (Y) 6= 0 | k + 1 /∈ Y } co-
incides with the system of equations and inequations of the raw of the table (see
above), given by Y -cocharacteristic ε-vector (χY (1) , χY (2) , χY (3) , χY (4))

for χY (i) :=





0 if i ∈ Y
1 else

. This readily follows from [0] − [4], since

every ϕk (Y) occurring in the table in question is obtained from the labeled
left-hand side polynomial of [k] by εi := χY (i), for all i ≤ k, and εk+1 := 1, if
k < 4, - which covers our definition of ϕk (Y) via Fk, fk (see above). Denote
by Con (Y) an expression stating that system S (Y) is consistent, i.e. has a
solution in R`. By previous polynomial characterization of t = 0, this yields

t = 0⇔ (∃Y ⊆ {1, 2, 3, 4}) (Con (Y) ∧ (∀i ∈ Y ∪ {5}) (ϕi−1 (Y) = 0)), in R.

Lemma 33 Let t ∈ ΣΠ`,?. Suppose α1 6= 0∧· · ·∧αq 6= 0∧β1 = 0∧· · ·∧βm =
0⇒ t = 0 holds in R, i.e. for all x1, · · · , x` ∈ R, where αi, βj ∈ R1 [x1, · · · , x`]
are such that system {α1 6= 0, · · · , αq 6= 0, β1 = 0, · · · , βm = 0} is consistent.
Then β1 = 0 ∧ · · · ∧ βm = 0⇒ t = 0 also holds in R.

Proof. Obviously, we can just as well assume that t is a polynomial of the

form
∑
i∈I

∏
j∈J(i)

f 2
i,j , where fi,j = fi,j (x) ∈ R1 [x1, · · · , x`] and # (I) ,#

(
⋃
i∈I
J (i)

)

<∞, x = (x1, · · · , x`). For any 1 ≤ k ≤ q let V (αk) :=
{
x ∈ R` | αk (x) = 0

}
,

V (β1, · · · , βm) :=
{
x ∈ R` | β1 (x) = · · · = βm (x) = 0

}
. Now consider any x0 ∈

29

V (β1, · · · , βm) and i0 ∈ I. It will suffice to show that fi0,j0 (x0) = 0, for
some j0 ∈ J (i0). Let W := V (β1, · · · , βm)− (V (αk) ∪ · · · ∪ V (αq)) and note
that W 6= ∅, by the last assumption. Moreover, W is open in R`. Hence
there exists closed linear interval [a,b], in R`, such that [a,b] ⊂ W and
the points x, a,b are collinear. Take any x ∈ [a,b]. By the first assumption,
(∀x ∈ [a,b]) (t (x) = 0), and hence (∀x ∈ [a,b]) (∃j ∈ J (i0)) (fi0,j (x) = 0). By
(J (i0)) <∞, there exist y 6= z ∈ [a,b] and j0 ∈ J (i0) such that fi0,j0 (y) =
fi0,j0 (z) = 0. Since x, a,b are collinear, it holds fi0,j0 (x) = 0, Q.E.D. 2

Definition 34 In the sequel we use abbreviations k = {1, · · · , k} , ℘ (X) =
{Y | Y ⊆ X}. In particular {∅} = ℘ (0). Consider n, c and m < (3n)c and:

• sets F0, · · · ,Fm with (∀0 ≤ k ≤ m) (Fk ⊆ ℘ (k) ∧# (Fi) < (3nc))

• functions f0, · · · , fm with (∀0 ≤ k ≤ m)
(
fk : Fk → Z(1)

|(3n)c| [x1, · · · , x3n]
)

For any Y ⊆ m and 0 ≤ k ≤ m let:

• ϕk (Y) :=
∑

Y⊇X∈Fk

fk (X)

• Con (Y) :⇔
(∀i ∈ Y ∪ {m+ 1}) (∀0 < j < i) (ϕi−1 (Y) ∈ [[ϕj−1 (Y)]]→ j ∈ Y)
∧ (∀1 < i ≤ m) (ϕi−1 (Y) ∈ [[{ϕj−1 (Y) | i > j ∈ Y }]]→ i ∈ Y)

Denote by ΠΣ
(c)
3n,? the set of 3n-ary quasi-polynomials t such that

t = 0⇔
∏

Y⊆m
Con(Y)

∑

i∈Y ∪{m+1}
(ϕi−1 (Y))2 = 0, i.e. equivalently

t = 0⇔ (∃Y ⊆ m) (Con (Y) ∧ (∀i ∈ Y ∪ {m + 1}) (ϕi−1 (Y) = 0))

holds in R for some m < (3n)c, F0, · · · ,Fm and f0, · · · , fm, as above.

Denote by ΠΣ
(c)
3n,?? the set of 3n-ary quasi-polynomials t1? · · ·?t` such that ` <

(3n)c and t1, · · · , t` ∈ ΠΣ
(c)
3n,?. Note that t1? · · ·?t` = 0 ⇔ t1 · . . . · t` = 0 ⇔

t1 = 0 ∨ · · · ∨ t` = 0 holds in R (see Lemma 6 (7) above).

Lemma 35 For any n,c ∈ N+, it holds Q
(c)
3n ∩ΣΠ3n,? ⊆ ΠΣ

(c)
3n,??.

Proof. We argue by induction on the number of ?-occurrences in a given quasi-
polynomial t ∈ Q

(c)
3n ∩ΣΠ3n,?. Obviously, if t is ?-free then t is in ΠΣ

(c)
3n,?, and

hence in ΠΣ
(c)
3n,??. Otherwise, suppose t = t1? · · ·?t` be maximal expansion of

this shape. It will suffice to prove tι ∈ ΠΣ
(c)
3n,?, for all 1 ≤ ι ≤ ` < (3n)c. So let

t′ := tι, 1 ≤ ι ≤ `. Without loss of generality suppose t′ = f?g + h. This case
just summarizes Example 33 (see above). To put it more exactly, we enumerate
all ?-occurrences in t′ such that the root of any ?-subterm a appears later than

30

the roots of all ? -subterms of a. Moreover, we supply the resulting ?-numbers
0 < i ≤ m with labels εi (cf. Example 33). Obviously m < ∂ (t) ≤ (3n)c.
Furthermore, with every label εi we correlate a defining equation of the shape
[i− 1] εi · αi−1 = 0, and add the concluding defining equation [m] αm = 0,
where αk, 0 ≤ k ≤ m, are linear polynomials which may contain as coefficients
dual labels εi for i ≤ k. The construction of αk runs along the natural order
on k as shown in Example 33 (cf. [0]− [4]), except rewriting R(1) [x1, · · · , x`] to
Z(1) [x1, · · · , x3n], since coefficients of the polynomials involved are obtained
from 1 by + and −. Note that all these coefficients actually arise in the process
of computation of t′ = t (x1, · · · , x3n) in the domain Z. Hence we can further

strengthen Z(1) [x1, · · · , x3n] to Z(1)

|(3n)c| [x1, · · · , x3n], since % (t) ≤ (3n)c. Note

that any αk in question arises from the main left-hand subterm of the subterm
labeled by εk+1, if k < m, else from t′, by successively adding coefficients εi
to all vertices of the right-hand side subterms whose roots are labeled by
εi, and simultaneously deleting all vertices occurring in the corresponding
left-hand side subterms, while moving downwards from the root to the leafs.
Hence every αk is a term of the language with variables x1, · · · , x3n, constant
1, operations x + y, x − y and εi · x, where i ≤ k. Since ∂ (t′) ≤ (3n)c,
the term-complexity of αk in this language does not exceed (3n) c, either.
This completes the construction of the system of defining equations [0]− [m].
The correlated table of polynomial equations and inequations is obtained by
testing arbitrary assignments εi ∈ {0, 1} as shown in Example 33. In this
table, we first delete all inconsistent rows. By Lemma 34 (see above), we
further delete all remaining inequations. Generally speaking, at this stage we
already arrive at an expansion of t as a suitable product of polynomials of
degree ≤ 2, that has the same zero-set as t. To complete the proof, we have
to construct, for every t′ in question, the required specification via F0, · · · ,Fm
and f0, · · · , fm. First off, we let F0 := {∅} and f0 (∅) := α0. Furthermore, for any
0 < k ≤ m, any αk, we let {∅} ∈ Fk and set {i1, · · · , iq} ∈ Fk for every maximal
coefficient-product εi1 · · · · · εiq occurring in αk (see the term-interpretation
above); note that {i1, · · · , iq} ⊆ k. This completes our definition of Fk ⊆ ℘ (k).
By ∂ (αk) ≤ (3n)c (see above) we have # (Fk) ≤ (3n)c. As for the correlated

function fk : Fk → Z(1)

|(3n)c| [x1, · · · , x3n], note that αk is convertible to the

uniquely determined β0 +
∑
j∈J
εij1 · · · · · εijq · βj such that for every j ∈ J ,

∅ 6=
{
ij1 , · · · , ijq

}
∈ Fk and β0, βj ∈ Z(1)

|(3n)c| [x1, · · · , x3n]; moreover 1+# (J) =

(Fk) ≤ (3n)c. We then set fk (∅) := β0 and fk
({
ij1 , · · · , ijq

})
:= βj, for every

j ∈ J . By construction, this yields

t = 0⇔ (∃Y ⊆ m) (Con (Y) ∧ (∀i ∈ Y ∪ {m + 1}) (ϕi−1 (Y) = 0))

(cf. analogous conclusion of Example 33). Q.E.D. 2

Condition 36 Denote by C3L the following sentence. For every c ∈ N+

31

there are arbitrarily large n ∈ N+ such that no quasi-polynomial from ΠΣ
(c)
3n,??

has the same zero-set as Φ?
n, in R. That is, C3L reads:

(
∀c ∈ N+

) (
∀N ∈ N+

)
(∃n > N)

(
∀t ∈ ΠΣ

(c)
3n,??

) (
Φ?
n = 0 <

R
t = 0

)

Note that C3L can be equivalently expressed in purely polynomial form:

(
∀c ∈ N+

) (
∀N ∈ N+

)
(∃n > N)

(
∀t ∈ ΠΣ

(c)
3n

)(
Φ∗n = 0 <

R
t = 0

)

where ΠΣ
(c)
3n denotes the set of real polynomials of the form t1 · . . . · t` in which

every tι is
∏

Y⊆m
Con(Y)

∑
i∈Y ∪{m+1}

(ϕi−1 (Y))2, for some `,m < (3n)c and F0, · · · ,Fm,

f0, · · · , fm as in Definition 35 (see above).

Theorem 37 Soundness. If C3L fails, then TAU3 ∈ P/poly.

Proof. Since Z ⊂ R, we can argue as in the proof of Theorem 21, while revising
Lemma 18, as follows. Actually, it suffices to prove that the following holds for
sufficiently large n. For any t ∈ ΠΣ

(c)
3n there exists a register machine M whose

weight is smaller than n3c+2, and such that for any z = (z1, · · · , z3n) ∈ Z3n,
the equation t (z) = 0 is decidable by M in less than ‖z‖ · n5c+2 steps. To
this end, suppose t = t1 · . . . · t`, ` < (3n)c, where for every 1 ≤ ι ≤ `, tι =∏
Y⊆m

Con(Y)

∑
i∈Y ∪{m+1}

(ϕi−1 (Y))2, for some m < (3n)c, F0, · · · ,Fm and f0, · · · , fm as

in Definition 35. Since t (z) = 0 ↔ t1 (z) = 0 ∨ · · · ∨ t` (z) = 0, it will suffice
to show that every tι (z) = 0 is decidable in at most O (‖z‖ · n4c+1) steps by
a suitable register machine Mι of the weight O (n2c+1). The corresponding
verification of tι (z) = 0 runs by recursion on i ≤ m (cf. Example 33):

Basis; step 0. Let ϕ0 (Y0 (z)) := f0 (∅) [x1 := z1, · · · , x3n := z3n] and put
1 ∈ Y (z) :⇔ ϕ0 (Y0 (z)) = 0

Recursion; step k. Let 0 < k < m, take already computed segment
Yk (z) := Y (z)∩k, set ϕk (Yk (z)) :=

∑
Yk(z)⊇X∈Fk

fk (X) [x1 := z1, · · · , x3n := z3n]

and put k + 1 ∈ Y (z) :⇔ ϕk (Yk (z)) = 0
Conclusion; step m. Take the computed set Y (z) ⊆ m, set ϕm (Y (z)) :=∑
Y (z)⊇X∈Fm

fm (X) [x1 := z1, · · · , x3n := z3n] and complete the verification by

setting tι (z) = 0 :⇔ ϕm (Y (z)) = 0

By standard methods, this procedure can be implemented by a register ma-
chine M of the weight O (3n · nc · nc) = O (n2c+1). Note that only times

loops are required in M. Moreover, all entirely computing steps refer to
the operations + and − with integer inputs and outputs ≤ ‖z‖ · nc · nc =

32

‖z‖ · n2 c. Furthermore, these operations are used at most O (3n · nc · nc) =
O (n2c+1) times. Hence total number of theM -steps required does not exceed
O (‖z‖ · n2c · n2c+1) = O (‖z‖ · n4c+1), Q.E.D. 2

Theorem 38 Sufficiency. If C3L holds, then P 6= NP.

Proof. By Theorem 22, it will suffice to infer ¬C3L from ¬C3 [R]. Recall that
Φ?
n = 0⇔

R
Φ∗n = 0, and hence Φ?

n ∈ ΣΠ?
3n (see above). Now suppose ¬C3 [R],

i.e. there are c, N ∈ N+ such that for any n > N there exists t ∈ Q
(c)
3n with

Φ?
n = 0⇔

R
t = 0. Hence t ∈ Q

(c)
3n ∩ ΣΠ?

3n and by Lemma 36, t ∈ ΠΣ
(c)
3n,??, which

yields ¬C3L, Q.E.D. 2

Claim 39 For any quasi-polynomial t = t (−→x) there is a polynomial t∗ ∈
Z [−→x] such that t = 0 ⇔

R
t∗ = 0. Moreover, the graph-complexity of t∗ is

polynomial in the graph-complexity of t . The proof runs along the lines of this
section (it will be presented in more detail elsewhere).

6 Geometric approach

Suppose D = C. (In fact, we can just as well take as D any algebraically

closed field F, e.g. F ∈
{
Q,C

}
.) Note that contrary to our previous real case,

we cannot directly convert conjunctions, since α = 0∧ β = 0 ↔ α2 + β2 = 0
fails in C. In particular, in C, we cannot convert Φ?

n = 0 to a single equation
t = 0. Instead, we present zero-set of Φ?

n via variety, as usual in algebraic
geometry. To this end, for any f ∈ [n→ 3] and x = (x1, · · · , x3n) we set

Φ
(n)
f = Φ

(n)
f (x) :=

∏

i,j∈n

(xf(i),i + xf(j),j)

where xi,j := xi+3(j−1). Let

I
(n)
Φ := rad

〈
Φ

(n)
f

〉
f∈[n→3]

be the ideal generated by the Φ
(n)
f in the polynomial ring. For any set of

polynomials P ⊆ D [x1, · · · , x3n] define the variety

V(P) := {x ∈ D3n | (∀α ∈ P)α(x) = 0}

and let
V

(n)
Φ := V(I

(n)
Φ) = {x ∈ D3n | Φ?

n(x) = 0}

33

Φ
(n)
f have linear zero-sets, i..e. Φ

(n)
f (x) = 0→ (∀c ∈ D)

(
Φ

(n)
f (c · x) = 0

)
. Thus

the variety V
(n)
Φ ⊂ D3n is the union of some irreducible subvarieties, and the

corresponding irreducible expansion is uniquely determined. Moreover, we also
have the unique set of the corresponding radical ideals. It follows that

I
(n)
Φ = rad

∏

j∈J
Ij =

⋂

j∈J
Ij

for uniquely determined ideals Ij = 〈pk〉k∈Kj , where pk are linear polynomi-
als. So the question to answer is about structural complexity of the resulting
radical expansion, provided that V

(n)
Φ coincides with the zero-set, in D, of

a quasi-polynomial whose graph-complexity is polynomial in n. Presumably,
this complexity should also be polynomial in n. On the other hand, Φ?

n might
be too complex to satisfy this hypothetical polynomial upper bound. A rele-
vant lower bound result that can be easily proved reads that the number of
irreducible subvarieties in V

(n)
Φ is exponential in n. For the sake of brevity, we

consider general DNF tautology problem by admitting, in Φ?
n, arbitrary func-

tions f ∈ [n→ n] and x = (x1, · · · , xn2). The resulting modifications of Φ
(n)
f ,

I
(n)
Φ and V

(n)
Φ we denote by Φ

(n,n)
f , I

(n,n)
Φ and V

(n,n)
Φ , respectively. (However,

see Remark 42 below).

Theorem 40 V
(n,n)
Φ has at least nn−1 irreducible subvarieties.

Proof. For any ` ∈ {2, · · · , n} and g : {2, · · · , n} → {1, · · · , n} we let x(`)
g :=

`
(
E`,1 − Eg(`),`

)
, where Ei,j denotes a (n× n)-matrix having 1 at (i, j), else 0.

Thus Dn×n 3 x(`)
g =

(
x

(`)
i,j

)
1≤i,j≤n

for x
(`)
i,j =





` if i = ` ∧ j = 1

−` if i = g (`) ∧ j = `

0 else

.

We claim that for any g as above,
{
x(`)
g

}n
`=2

is a basis for an irreducible sub-

variety of V
(n,n)
Φ . In fact, it is readily seen that

n∑
`=2
a`x

(`)
g ∈ V

(n,n)
Φ holds for any

a1, · · · , an ∈ D. It remains to prove that the subspace generated by
{
x(`)
g

}n
`=2

is not contained in any larger subspace of V
(n,n)
Φ . To this end, it will suffice

to show that
{
x(`)
g

}n
`=2

has no proper extension to another basis in V
(n,n)
Φ .

Let x = (xi,j)1≤i,j≤n :=
n∑
`=2

x(`)
g , y = (yi,j)1≤i,j≤n∈ V

(n,n)
Φ and suppose that

x + c ·y ∈ V
(n,n)
Φ holds for every c ∈ D. Without loss of generality we can also

assume yi,j = 0 or |yi,j| > 2n, for any 1 ≤ i, j ≤ n . Consider two cases.

Case 1. Suppose that for some i ∈ {2, · · · , n}, yi,1 + yg(i),i 6= 0. Define f :

34

{1, · · · , n} → {1, · · · , n} by f (k) :=





i if k = 1

g (k) else
. For any c ∈ D,

consider the corresponding f -section of x + c · y, i.e. a sequence

{
xf(k),k + c · yf(k),k

}n
k=1

=
{
i+ c · yi,1,−2 + c · yg(2),2, · · · ,−i + c · yg(i),i, · · · ,−n + c · yg(n),n

}

By assumption, every xf(k),k + c · yf(k),k 6= 0. Thus (∀c) Φ
(n,n)
f (x + c · y) = 0

infers that there are c1 6= c2 ∈ D and u 6= v ∈ {1, · · · , n} such that

xf(u),u + xf(v),v + c1 ·
(
yf(u),u + yf(v),v

)
=

xf(u),u + xf(v),v + c2 ·
(
yf(u),u + yf(v),v

)
= 0

But this is only possible if yf(u),u+yf(v),v = 0 = xf(u),u+xf(v),v, and hence u =
1, v = i and yf(u),u + yf(v),v = yi,1 + yg(i),i = 0 - a contradiction.

Case 2. Suppose that for some i, j ∈ {2, · · · , n} , xi,j = 0∧ yi,j 6= 0. So 1 6= j.

Define f : {1, · · · , n} → {1, · · · , n} by f (k) :=





j if k = 1

i if k = j

g (k) else

, and

consider the corresponding f -sections of x + c · y, i.e.

{
xf(k),k + c · yf(k),k

}n
k=1

= {j + c · yj,1,−2 + c · yg(2),2, · · · ,−i+ 1

+c · yg(j−1),j−1, c · yi,j,−j − 1 + c · yg(j+1),j+1, · · · ,−n+ c · yg(n),n}

Arguing as in previous case we arrive at yi,j = 0 - a contradiction.

Since the cases 1, 2 do not apply, y is generated by
{
x(`)
g

}n
`=2

, and hence
{
x(`)
g

}n
`=2

generates an irreducible subvariety of V
(n,n)
Φ . Moreover, it is readily

seen that different functions g generate different irreducible varieties. Hence
there are at least nn−1 irreducible varieties in V

(n,n)
Φ , Q.E.D. 2

Remark 41 By the same token, we can show that the number of irreducible
subvarieties of V

(n)
Φ is also exponential in n. To this end, we pass from general

DNF tautology problem TAU to the required DNF3-restriction TAU3. To put

it more exactly, we note that our basis
{
x(`)
g

}n
`=2

formalizes a tautology

(ϑ2 ∧ ϑ3 ∧ · · · ∧ ϑn) ∨ ¬ϑ2 ∧ ¬ϑ3 ∧ · · · ∧ ¬ϑn

35

and by standard approach rewrite this DNF to an equivalent DNF3.

7 Finite domains

Working in finite normed domains enables us to eliminate both the operation
? and norm-complexity %. The latter reduces C3 to purely algebraic condition
C3A which, in turn, admits standard Π0

2-interpretation C3F (see below).

Condition 42 Denote by G(c)
m the set of m-ary quasi-polynomials whose graph-

complexity does not exceed mc. Let C3A arise by substituting G
(c)
3n for Q

(c)
3n in

the condition C3. That is, C3A reads (cf. Condition 18 above):

(∀c ∈ N+) (∀N ∈ N+) (∃n > N)
(
∀t ∈ G

(c)
3n

) (
∃D ∈ D(3n)c

)(
Φ?
n = 0 <

D
t = 0

)

In other words, C3A strengthens C3 by weakening algebraic complexity of t
to its graph-complexity ∂ (t).

Condition 43 For any m > 1, let F+
m := Zp for p = nextprime (2m) =

min {x ∈ P | 2m < x}. Denote by C3F a specification of C3A that is obtained
by setting D := F+

(3n)c (see Example 5 above). Obviously, C3F infers C3A,

while C3A infers C3. Note that C3F is a Π0
2-sentence.

Theorem 44 If C3F fails, then TAU3 ∈ P/poly.

Proof. The proof runs along the lines of Theorem 21 (see above). Suppose
¬C3F, i.e. there are c, N ∈ N+ such that for every n > N there exists a
quasi-polynomial t0 ∈ G

(c)
3n such that Φ?

n = 0 ⇔ t0 = 0 holds in F+
(3n)c =

Zp. Without loss of generality we assume c ≥ 3. Then by Lemma 23 with

D = Z, it will suffice to show that for any t ∈ G
(c)
3n and p ∈ P, there exists

a register machine M weight-polynomial in max (p, n) and computing the
value t (v) ∈ Z3n

p , for any input v = (υ1, · · ·υ3n) ∈ Z3n
p = (Zp) 3n; moreover, the

number ofM-steps required for the computation of t (v) is also polynomial in
max (p, n). But this is readily seen, since + and − from t are reduced modulo
p. Q.E.D. 2

Corollary 45 If either C3A or C3F fails, then TAU3 ∈ P/poly. If either
C3A or C3F holds, then so is C3, and hence NP 6= P.

Remark 46 ?-elimination. By (small) Fermat theorem, if p ∈ P and p -

a then ap−1 ≡ 1 mod p. Thus xp−1 =





0 if x = 0

1 else





= sgn (x) and

hence x?y = xp−1 · y both hold in Zp. Now for any m-ary quasi-polynomial

36

t, let t?p ∈ Z [x1, · · · , xm] be a polynomial that arises from t by successively
replacing every occurrence x?y by xp−1 · y. By the above, t = t?p holds in
Zp. Moreover, ∂(t?p) ≤ ∂(t)(dlog2 pe + 1), provided that xp−1 is formalized
via fast exponentiation as (· · · (((x · x) · (x · x)) · ((x · x) · (x · x))) · · ·) . This

enables us to replace in C3F quasi-polynomials t ∈ G
(c)
3n by polynomials t?p ∈

Z [x1, · · · , x3n] whose graph-complexity is still polynomial in n.

Acknowledgements

We also thank Christoph Behle, Robert Kremser, Klaus-Jörn Lange and the
anonymous referee for valuable inputs and hints how to improve the paper.

References

[C]: S. Cook, The P versus NP Problem,
URL:http://www.claymath.org/Millennium Prize Problems/P vs NP/

objects/Official Problem Description.pdf

[Co]: David A. Cox and John B. Little and Don O’Shea, Using Algebraic
Geometry, Springer-Verlag, NY 1998
[G]: L. Gordeev, Proof theory and Post-Turing analysis, Proc. Proof Theory
in Computer Science, Dagstuhl 2001, LN in Comp. Sci. 2183 (2001), 130-
152
[Ka]: R. M. Karp and R. J. Lipton. Turing machines that take advice, En-
seign. Math. 28:191-201, 1982.
[P]: E. Post, Finite combinatory processes - formulation I, Journ. Symb.
Logic 1 (1936), 103-105
[Tu]: A. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42 (1937), 230-265

37

