Prof. Dr. Peter Schroeder-Heister Dr. Kai F. Wehmeier

Aufgabe 1

Es sei \mathfrak{M} eine Struktur oder Matrix. Eine Formel Q heiße \mathfrak{M} -kontradiktorisch, wenn $Q \models_{\mathfrak{M}} R$ für jede Formel R gilt. Zeigen Sie:

Wenn $\Sigma \cup \{Q, P\}$ eine Menge von Formeln ist, $\Sigma \cup \{Q\} \models_{\mathfrak{M}} P$ gilt, kein Aussagesymbol, das in Q auftritt, in einer der Formeln aus $\Sigma \cup \{P\}$ auftritt und Q nicht \mathfrak{M} -kontradiktorisch ist, dann gilt schon $\Sigma \models_{\mathfrak{M}} P$. (5)

Aufgabe 2 Für eine *n*-stellige Wahrheitsfunktion $f: \{0, i, 1\}^n \to \{0, i, 1\}$ und eine beliebige Formel A definieren wir:

A stellt f dar, wenn für jede Bewertung ν gilt: $f(\nu(p_1), \dots, \nu(p_n)) = \nu(A)$.

Den Junktoren \sim und \vee seien die Wahrheitsfunktionen f_{\sim} bzw. f_{\vee} zugeordnet, wobei gelte: $f_{\sim}(1) = i$, $f_{\sim}(i) = 0$, $f_{\sim}(0) = 1$, $f_{\vee}(1,x) = f_{\vee}(x,1) = 1$ für jedes $x \in \{0,i,1\}$, $f_{\vee}(0,0) = 0$ und $f_{\vee}(x,y) = i$ für alle anderen Paare $(x,y) \in \{0,i,1\}^2$.

Geben Sie jeweils Formeln an, die nur mithilfe von \sim und \vee aus Aussagevariablen zusammengesetzt sind und die die folgenden Wahrheitsfunktionen darstellen:

(a)
$$f_{\text{true}}(1) = 1$$
, $f_{\text{true}}(i) = f_{\text{true}}(0) = 0$ (3)

(b)
$$f_{\text{ind}}(i) = 1$$
, $f_{\text{ind}}(1) = f_{\text{ind}}(0) = 0$ (3)

(c)
$$f_{\text{false}}(0) = 1$$
, $f_{\text{false}}(1) = f_{\text{false}}(i) = 0$ (3)

(d)
$$f_{\neg}(1) = 0, f_{\neg}(i) = i, f_{\neg}(0) = 1$$
 (3)

(e)
$$f_{\wedge}(1,1) = 1$$
, $f_{\wedge}(0,x) = f_{\wedge}(x,0) = 0$ für jedes $x \in \{0,i,1\}$, $f_{\wedge}(x,y) = i$ für alle anderen Paare $(x,y) \in \{0,i,1\}^2$ (1)

Aufgabe 3 Ein Junktorensystem (Menge von Junktoren) J heißt (funktional) vollständig, wenn es zu jedem $n \geq 0$ und jeder n-stelligen Wahrheitsfunktion $f: \{0, i, 1\}^n \to \{0, i, 1\}$ eine Formel gibt, die aus Aussagevariablen nur mithilfe der Junktoren aus J aufgebaut ist und die f darstellt.

(a) (Zusatzaufgabe) Zeigen Sie, daß das Junktorensystem $\{\sim, \lor\}$ vollständig ist. (10)

Tip: Führen Sie Induktion über die Stellenzahl der darzustellenden Wahrheitsfunktionen. Nullstellige Wahrheitsfunktionen sind Elemente von $\{0, i, 1\}$. Der (n+1)-stellige Fall läßt sich mithilfe der Ergebnisse aus Aufgabe 2 auf den n-stelligen zurückführen, indem man z.B. das (n+1)te Argument konstant hält.

(b) Schließen Sie aus (a), daß auch das Junktorensystem {|} funktional vollständig ist. (2)

Dem Junktor |, auch (verallgemeinerter) Sheffer-Strich genannt, ist dabei folgende Wahrheitsfunktion zugeordnet: $f_{||}(0,0) = 1$, $f_{||}(1,x) = f_{||}(x,1) = i$ für jedes $x \in \{0, i, 1\}$ und $f_{||}(x,y) = 0$ für alle anderen Paare $(x,y) \in \{0, i, 1\}^2$.