Aufgaben zur Klausurvorbereitung

Aufgabe 50

Geben Sie den Gliederungsbaum, sämtliche Teilaussagen sowie den Rang dieser Aussage an:

$$\neg (p_1 \to ((\neg p_3 \land p_1) \lor p_2)) \to p_3$$

Aufgabe 51

Ermittlen Sie mit Hilfe einer Wahrheitstafel, ob die folgende Aussage eine Tautologie ist:

$$(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \rightarrow (p_1 \rightarrow p_3)$$

Aufgabe 52

Die zweistellige Aussagenlogische Verknüpfung \star werde durch die Funktion f_{\star} mit der folgenden Wahrheitstafel interpretiert:

\boldsymbol{x}	y	$f_{\star}(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

Warum ist ★ nicht funktional vollständig?

Aufgabe 53

Geben Sie für die folgende Formel eine Formel in konjunktiver Normalform an:

$$\varphi \to (\neg \psi \land \varphi)$$

Aufgabe 54

Zeigen Sie:

$$\varphi \to (\psi \to \sigma) \vdash \psi \to (\varphi \to \sigma)$$

Aufgabe 55

Zeigen Sie: Eine konsistente Menge aussagenlogischer Formeln Γ ist maximal konsistent genau dann, wenn für jedes ϕ gilt: entweder $\phi \in \Gamma$ oder $\neg \phi \in \Gamma$.

Aufgabe 56

Erläutern Sie:

- Wann heißt eine Aussage maximal konsistent?
- Wie konstruiert man zu einer Aussage eine maximal konsistente Erweiterung?
- Zeigen Sie: $\varphi \to \psi$ ist genau dann in einer maximal konsistenten Formelmenge enthalten, wenn nicht zugleich φ und $\neg \psi$ darin enthalten sind.

Aufgabe 57

Sei $\mathfrak{A} = \langle \mathbb{R}, \cdot^2, |\cdot|, -, 1 \rangle$, und sei eine Sprache der entsprechenden Signatur gegeben, deren Konstantenzeichen genauso lauten wie die korrespondierenden Funktionen und Prädikate der Struktur. Weiterhin sei $v(x_1) = 2$ und $v(x_2) = -1$. Werten Sie schrittweise aus:

$$[(x_1-1)^2-|x_2|]_v$$

Aufgabe 58

Geben Sie für folgende Formel eine Formel in pränexer Normalform an:

$$\forall x \varphi(x) \leftrightarrow \exists x \varphi(x)$$

Aufgabe 59

Zeigen Sie:

$$\vDash \exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \exists x \psi$$

Aufgabe 60

Zeigen Sie:

$$\vdash_{\rm NK} \exists x \exists y \varphi(x,y) \leftrightarrow \exists y \exists x \varphi(x,y)$$

Aufgabe 61 3 + 2 Punkte

Es seien T_1 und T_2 Theorien. Zeigen Sie:

- 1. $T_1 \cap T_2$ ist ebenfalls eine Theorie.
- 2. $T_1 \cup T_2$ ist im allgemeinen keine Theorie. (Gegenbeispiel!)

Aufgabe 62 3 Punkte

Es sei T eine vollständige Henkin-Theorie. Weiterhin sei $\phi(x)$ eine Formel mit x als einziger freier Variable. Zeigen Sie: Falls $\phi(t) \in T$ für jeden geschlossenen Term t, dann auch $\forall x \phi(x) \in T$.

Aufgabe 63

Erläutern Sie:

- Was ist eine Theorie?
- Was ist eine Henkin-Theorie?
- Was besagt der Kompaktheitssatz? Beweisen Sie ihn mit Hilfe des Vollständigkeitssatzes!
- Was besagen die Sätze von Löwenheim-Skolem?
- Leiten Sie den Vollständigkeitssatz aus dem Modellexistenzsatz her!