Übungen zur Vorlesung Mathematische Logik

Prof. Dr. P. Schroeder-Heister

Blatt 2

Aufgabe 1 (2 Punkte)

Führen Sie die folgenden Substitutionen aus:

a)
$$(p_1 \land p_0 \to (p_0 \to p_3))[\neg p_0 \to p_3/p_0]$$

b)
$$((p_3 \leftrightarrow p_0) \lor (p_2 \rightarrow \neg p_0))[p_1 \leftrightarrow p_2/p_0]$$

Aufgabe 2 (6 Punkte)

Ermitteln Sie mit Hilfe von Wahrheitstafeln, welche der folgenden Formeln Tautologien sind.

a)
$$p \to (\neg p \to q \land \neg q)$$

b)
$$(p \to (q \to r)) \to ((p \to r) \to (q \to r))$$

c)
$$((p \to q) \to p) \to p$$

d)
$$p \wedge q \rightarrow p \vee q$$

e)
$$(p \to q) \lor (q \to p)$$

f)
$$\neg (p \rightarrow \neg p)$$

Aufgabe 3 (4 Punkte)

Ermitteln Sie durch algebraische Umformungen, welche der folgenden Ausdrücke äquivalent sind.

a)
$$(p \land \neg q)$$

b)
$$(p \rightarrow q)$$

c)
$$((\neg p \land q) \lor p)$$

d)
$$(p \rightarrow (q \rightarrow p))$$

e)
$$(\neg q \rightarrow \neg p)$$

f)
$$(\neg p \rightarrow \neg q)$$

g)
$$((p \rightarrow q) \lor (q \rightarrow \neg p))$$

h)
$$((r \land (p \lor \neg q)) \lor (\neg r \land (q \to p)))$$

Aufgabe 4 (2 Punkte)

Beweisen Sie: Wenn $\varphi \models \psi$ und $\psi \models \rho$, dann $\varphi \models \rho$.

Aufgabe 5 (2 Punkte)

Beweisen Sie: $[\![\varphi \to \psi]\!]_v = 1$ genau dann, wenn $[\![\varphi]\!]_v \le [\![\psi]\!]_v$.

Aufgabe 6 (2+2 Punkte)

Zeigen Sie, dass weder $\{\neg\}$ noch $\{\rightarrow,\vee\}$ funktional vollständige Mengen von Konnektiven sind.

Aufgabe 7 (2 Punkte)

Konstruieren Sie nach dem in der Vorlesung vorgestellten Verfahren mit Hilfe der Junktoren \land , \lor und \neg eine Formel, die den ternären Junktor \$ ausdrückt, welcher durch folgende Wahrheitstafel gegeben ist:

φ_1	φ_2	φ_3	$\$(\varphi_1,\varphi_2,\varphi_3)$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

Aufgabe 8 (4 Zusatzpunkte)

Zeigen Sie, dass die Menge der Bewertungsfunktionen überabzählbar ist.