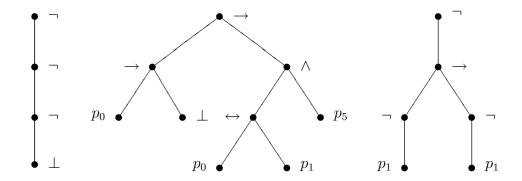
Aufgabe 1 (1+1+1 Punkte)

Welche der folgenden Zeichenreihen sind Aussagen, welche nicht? Sie dürfen keine Regeln zur Klammerersparnis verwenden. Geben Sie jeweils eine Begründung!

- $a) ((\rightarrow$
- b) $((p_1 \to p_{15}) \lor (\neg p_2)))$
- c) $((\neg \bot \lor p_2) \leftrightarrow p_{21})$


Aufgabe 2 (1+1+1 Punkte)

Geben Sie Gliederungsbäume sowie den Rang folgender Aussagen an:

- a) $\neg \neg p_1 \rightarrow p_1$
- b) $(((p_1 \to p_2) \to p_1) \to p_2) \to p_1$
- c) $(p_7 \rightarrow \neg \bot) \leftrightarrow ((p_4 \land \neg p_2) \rightarrow p_1)$

Aufgabe 3 (1+1+1 Punkte)

Geben Sie die zu folgenden Gliederungsbäumen gehörenden Aussagen sowie alle Teilaussagen an.

Aufgabe 4 (2+2 Punkte)

Es sei r die Rangfunktion, und $J(\varphi)$ sei die Anzahl der Vorkommen von Junktoren in φ . Beweisen Sie folgende Behauptungen.

- a) Für jede Aussage φ ist $r(\varphi) \leq J(\varphi)$.
- b) Wenn φ eine echte Teilformel von ψ ist, dann ist $r(\varphi) < r(\psi)$.

Aufgabe 5 (3 Punkte + 4 Zusatzpunkte)

Beweisen Sie folgende Behauptungen.

- a) Wenn φ eine Teilformel von ψ ist, dann kommt φ in jeder Bildungsfolge von ψ vor.
- b) (Zusatzaufgabe) Wenn φ in einer kürzesten Bildungsfolge von ψ vorkommt, dann ist φ eine Teilformel von ψ .