Übungen zur Vorlesung Mathematische Logik

Blatt 2

Prof. Dr. P. Schroeder-Heister

WS 2008/09

Aufgabe 1 (3 Punkte)

Es sei $\#(\operatorname{Sub}(\varphi))$ die Anzahl der Teilformeln von φ und $\#(T(\varphi))$ die Anzahl der Knoten des Gliederungsbaumes $T(\varphi)$. Beweisen Sie: $\#(\operatorname{Sub}(\varphi)) \leq \#(T(\varphi))$.

Aufgabe 2 (3 Punkte)

Es sei r die Rangfunktion, und $A(\varphi)$ stehe für die Anzahl der Atome von φ und $J(\varphi)$ für die Anzahl der Vorkommen von Junktoren in φ . Beweisen Sie: Wenn \bot nicht in φ vorkommt, dann ist $A(\varphi) + J(\varphi) < 2^{r(\varphi)+1}$.

Aufgabe 3 (3 Zusatzpunkte)

Ein Ast eines Baumes ist eine maximale linear geordnete Teilmenge des Baumes, die Länge eines Astes ist die um Eins verminderte Anzahl seiner Knoten. Zeigen Sie: Die Länge des längsten Astes in $T(\varphi)$ beträgt $r(\varphi)$.

Aufgabe 4 (1+2 Punkte)

Beweisen Sie:

- a) Wenn $\varphi \models \psi$ und $\psi \models \rho$, dann $\varphi \models \rho$.
- b) $\llbracket \varphi \to \psi \rrbracket_v = 1$ genau dann, wenn $\llbracket \varphi \rrbracket_v \le \llbracket \psi \rrbracket_v$.

Aufgabe 5 (2 Punkte)

Geben Sie eine exakte rekursive Definition der simultanen Substitution an, d.h. definieren Sie rekursiv: $\varphi[\psi_1/p_1,\ldots,\psi_n/p_n]$.