Einführung in den π -Kalkül: Übungsaufgaben Michael Arndt

Blatt 5 WS 2008/09

Aufgabe 1

Es seien

$$P = a + b$$

$$Q = \tau . a + b$$

$$R = \tau . a + \tau . b$$

Zeigen Sie, daß weder $P \approx R$ noch $Q \approx R$.

Aufgabe 2

Gegeben sei die Gleichung $X \approx a.P + \tau.X$, wobei P ein beliebiger Prozeß ist. Zeigen Sie, daß für jedes Q der Prozeß $a.P + \tau.Q$ eine Lösung der Gleichung ist.

Aufgabe 3

Es seien

$$A(a,b,l,r) \stackrel{\text{def}}{=} a.B\langle a,b,l,r\rangle, B(a,b,l,r) \stackrel{\text{def}}{=} \overline{r}.C\langle a,b,l,r\rangle, C(a,b,l,r) \stackrel{\text{def}}{=} b.D\langle a,b,l,r\rangle, D(a,b,l,r) \stackrel{\text{def}}{=} l.A\langle a,b,l,r\rangle.$$

Weiterhin seien für $1 \le i \le 3$ (und eine Addition mit mit 3 + 1 = 1)

$$A_{i} \stackrel{def}{=} A\langle a_{i}, b_{i}, c_{i}, c_{i+1} \rangle,$$

$$B_{i} \stackrel{def}{=} B\langle a_{i}, b_{i}, c_{i}, c_{i+1} \rangle,$$

$$C_{i} \stackrel{def}{=} C\langle a_{i}, b_{i}, c_{i}, c_{i+1} \rangle,$$

$$D_{i} \stackrel{def}{=} D\langle a_{i}, b_{i}, c_{i}, c_{i+1} \rangle.$$

Zuletzt sei

$$S^{(3)} \stackrel{\text{def}}{=} (\pi c_1, c_2, c_3) (A_1 \parallel D_2 \parallel D_3).$$

Untersuchen Sie, ob für die in den Übungen angegebene Spezifikation eines Sequenzers für drei Prozesse $S_{1,\emptyset} \approx S^{(3)}$ gilt. Geben Sie dazu entweder eine Bisimulation an, die die beiden Prozesse enthält, oder erklären Sie, warum die Prozesse nicht schwach bisimulär sein können.