Einführung in den π -Kalkül: Übungen zur Vorlesung

Michael Arndt Universität Tübingen, WSI

Blatt 3 SS 2004

Aufgabe 1

Zeigen Sie, daß die Verbindungsoperation $\widehat{\ }$ assoziativ ist, d.h. daß für beliebige Prozeßausdrücke $P,Q,R\in\mathcal{P}$ gilt:

$$P \cap (Q \cap R) \equiv (P \cap Q) \cap R.$$

Aufgabe 2

Leiten Sie alle möglichen Übergänge des folgenden Prozeßausdrucks her:

$$(\pi a)((a.Q_1 \parallel b.Q_2) \parallel \overline{a}.\mathbf{0}) \parallel (\overline{b}.R_1 + \overline{a}.R_2).$$

Aufgabe 3

Vervollständigen Sie den Beweis von Satz 3.2.

Aufgabe 4

Ein n-äres Semaphor $S_0^{(n)}$ ist ein Prozeß über $\mathcal{N}=\{an,ab\}$, der sicherstellen soll, daß zu keinem Zeitpunkt mehr als n Instanzen eines weiteren Prozesses gleichzeitig aktiv sein können. Jede Instanz eines solchen Prozesses muß sich durch eine erste Aktion \overline{an} beim Semaphor anmelden und durch eine letzte Aktion \overline{ab} abmelden. Es sind:

$$S_{0}^{(1)} \stackrel{def}{=} an.S_{1}^{(1)} \quad S_{0}^{(2)} \stackrel{def}{=} an.S_{1}^{(2)} \qquad S_{0}^{(3)} \stackrel{def}{=} an.S_{1}^{(3)} \\ S_{1}^{(1)} \stackrel{def}{=} ab.S_{0}^{(1)} \quad S_{1}^{(2)} \stackrel{def}{=} an.S_{2}^{(2)} + ab.S_{0}^{(2)} \quad S_{1}^{(3)} \stackrel{def}{=} an.S_{2}^{(3)} + ab.S_{0}^{(3)} \\ S_{2}^{(2)} \stackrel{def}{=} ab.S_{1}^{(2)} \qquad S_{2}^{(3)} \stackrel{def}{=} an.S_{3}^{(3)} + ab.S_{1}^{(3)} \\ S_{3}^{(3)} \stackrel{def}{=} ab.S_{2}^{(3)}$$

Zeigen Sie, daß $S_0^{(2)} \sim S_0^{(1)} \parallel S_0^{(1)}$ und $S_0^{(3)} \sim S_0^{(2)} \parallel S_0^{(1)}$.

Aufgabe 5

Eine Lotteriemaschine, die aus der Menge $\overline{\mathcal{N}} = \{\overline{z_1}, \dots, \overline{z_n}\}$ genau k Beobachtungen $(1 \leq k \leq n)$ ohne Wiederholung zuläßt, sei durch folgende Spezifikation beschrieben, wobei $I = \{1, \dots, n\}$ und $X \subseteq I$.

$$Lotspec_X \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \sum_{i \in X} \overline{z_i}.Lotspec_{X \setminus \{i\}} & \text{falls } |X| > n-k \\ \mathbf{0} & \text{sonst} \end{array} \right.$$

Geben Sie eine Realisierung P dieser Lotteriemaschine als beschränkte Komposition eines Zählers $Count_k$ und der Verbindung von n Instanzen eines geeigneten Signalprozesses an, so daß $P \approx Lotspec_I$.