Lambda Calculus and Combinatory Logic

WS 2017/18

Exercise sheet 10

due 12.1.

T. Piecha

Exercise 1 (3 points)

Provide a type for each of the following terms:

(a)
$$\lambda xy.y$$
 (1 point)

(b)
$$\lambda xz.zx$$
 (1 point)

(c)
$$\lambda xy.z(xy)$$
 (1 point)

Remark: You do *not* have to present a derivation in $\lambda \rightarrow$.

Exercise 2 (2 points)

Decorate the following tree:

$$(Id) = \frac{(Id) - y : \tau \to \rho}{ + x : \rho \to \sigma} \qquad (Id) - \frac{}{x : \rho \to \sigma, y : \tau \to \rho, z : \tau \vdash}$$

$$() \frac{ - x : \rho \to \sigma}{x : \rho \to \sigma, y : \tau \to \rho, z : \tau \vdash}$$

$$() \frac{ - x : \rho \to \sigma, y : \tau \to \rho \vdash}{x : \rho \to \sigma \vdash}$$

$$() \frac{ - x : \rho \to \sigma, y : \tau \to \rho \vdash}{x : \rho \to \sigma \vdash}$$

$$() \frac{ - x : \rho \to \sigma, y : \tau \to \rho \vdash}{x : \rho \to \sigma \vdash}$$

$$() \frac{ - x : \rho \to \sigma, y : \tau \to \rho \vdash}{x : \rho \to \sigma \vdash}$$

Exercise 3 (7 points)

Show by giving derivations in $\lambda \rightarrow$:

(a)
$$\vdash \mathbf{KI} : \tau \to (\sigma \to \sigma)$$
 (3 points)

(b)
$$\vdash \mathbf{SK} : (\sigma \to \tau) \to (\sigma \to \sigma)$$
 (4 points)

Why is it impossible to show $\vdash \mathbf{SK} : \tau \rightarrow (\sigma \rightarrow \sigma)$?

Exercise 4 (8 points)

Prove:

(a) If
$$\Gamma, x : \sigma \vdash M : \tau$$
 and $\Gamma \vdash N : \sigma$, then $\Gamma \vdash M[N/x] : \tau$. (4 points)

(b) If
$$\Gamma \vdash M : \sigma$$
 and $M \rhd_{\beta} M'$, then $\Gamma \vdash M' : \sigma$. (4 points)