Prof. Schroeder-Heister René Gazzari

Wintersemester 2017/18 Universität Tübingen

Aufgabe 25: Beweisen Sie die in Prop 6.7 genannten abkürzenden Schlussregeln für die Disjunktion im Kalkül NK'. Zeigen Sie also für beliebige Formeln $\phi, \psi, \sigma \in PROP$ und beliebige Formelmengen $\Gamma, \Delta_{\phi}, \Delta_{\psi} \subseteq PROP$ die folgenden Aussagen:

- (a) $\Gamma \vdash \phi \lor \psi$, $\Delta_{\phi}, \phi \vdash \sigma$ und $\Delta_{\psi}, \psi \vdash \sigma \Rightarrow \Gamma, \Delta_{\phi}, \Delta_{\psi} \vdash \sigma$ (b) $\Gamma \vdash \phi \Rightarrow \Gamma \vdash \phi \lor \psi$
- (c) $\Gamma \vdash \psi \Rightarrow \Gamma \vdash \phi \lor \psi$

Beachten Sie, dass $(\phi \lor \psi)$ lediglich eine abkürzende Schreibweise ist.

Aufgabe 26: Sei $\Lambda \subseteq PROP$ eine Menge von Literalen wie in Aufgabe 24 definiert. Zeigen Sie, dass Λ eine konsistente Formelmenge ist. Ist Λ auch maximal-konsistent? Wieviele maximalkonsistente Erweiterungen besitzt Λ ?

Aufgabe 27: Geben Sie für die folgenden Aussagen je eine geeignete Formelmenge $\Gamma \subseteq PROP$ an. Begründen Sie kurz Ihre Antwort.

- (a) Γ hat keine maximal-konsistente Erweiterung.
- (b) Γ hat genau eine maximal-konsistente Erweiterung.
- (c) Γ hat genau zwei maximal-konsistente Erweiterungen.
- (d) Γ hat überabzählbar viele maximal-konsistente Erweiterungen.
- Γ hat abzählbar viele maximal-konsistente Erweiterungen.

Sie dürfen als Erleichterung die Vollständigkeit des Kalküls voraussetzen und semantisch argumentieren; Sie müssen aber natürlich nicht.

Aufgabe 28: Sei $\mathcal{L}_{G'}$ die erweiterte Sprache der Gruppentheorie (siehe S. 56, Skript). Geben Sie an, ob die folgenden Zeichenreihen Terme von $\mathcal{L}_{G'}$ sind. Begründen Sie ihre Antwort kurz.

- $\begin{array}{llll} \text{(a)} & x & \text{(b)} & \forall x: x \\ \text{(c)} & x+1 & \text{(d)} & \dot{c}_0 \dot{c}_0 \\ \text{(e)} & x \leq x+y & \text{(f)} & \dot{f}_-(0+(x+\dot{f}_-(y))) \end{array}$

Geben Sie weiterhin an, ob die folgenden Zeichenreihen Formeln von $\mathcal{L}_{G'}$ sind. Begründen Sie ihre Antwort kurz. Falls es sich um eine Formel handelt, geben Sie zudem die Menge der freien und gebundenen Variablen an.

- (a) $x = 0 \lor x \neq 0$ (b) $x \wedge y \to 0$
- (c) $x = 0 \neq x \neq 0$ (d) $\forall z : x \neq 0 \land \exists y : x \neq y$ (e) $\forall x \forall x \exists x : x \neq x$ (f) $\forall x \exists y \forall z (x = y \rightarrow x \leq y + x)$ (g) $\exists x \leq x$ (h) $\forall x \exists y \forall z ((x = y) \rightarrow x \leq (y + x))$

Wir verwenden x, y etc. als metasprachliche Variablen für die objektsprachlichen Variablen x_k einer formalen Sprache. Weiterhin schreiben wir $t \neq s$ als abkürzende Schreibweise für die Formel $\neg t = s$.