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Data-plane programmability needs predictable throughput

A packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1 pkt/cycle
— Difficult to program (subset of P4, no loops, few sequential operations)
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Data-plane programmability needs predictable throughput

A packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1 pkt/cycle
— Difficult to program (subset of P4, no loops, few sequential operations)

Processor-based SmartNICs

+ Are easier and more freely programmable (C, BPF/XDP)
— Performance varies and is not obvious [our Netsoft2019 paper]
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Data-plane programmability needs predictable throughput

A packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1 pkt/cycle
— Difficult to program (subset of P4, no loops, few sequential operations)

Processor-based SmartNICs

+ Are easier and more freely programmable (C BPF/XDP)

Our Contribution: A tool to calculate the throughput of a program
...while developing a program. ...as part of regression tests.
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Throughput Analysis

* Netronome Agilio CX 2x40 GbE

» Netronome Flow Processor (NFP)
» BPF/XDP programs compiled to NFP bytecode
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50 processing cores
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Throughput Analysis

* Netronome Agilio CX 2x40 GbE if (pkt.size < 100)

» Netronome Flow Processor (NFP) return DROP:

» BPF/XDP programs compiled to NFP bytecode if (pkt[ethtype] == IPV4)
EEEEEEEEEE ip4_counter++;

shared if (pkt[ethtype] == IPV6)
0000000000 See
A g for (...) ...;
DDDDDDDDDD return PASS;
50 processing cores

- T

example program
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Throughput Analysis

* Netronome Agilio CX 2x40 GbE PR —

» Netronome Flow Processor (NFP) return DROP -

» BPF/XDP programs compiled to NFP bytecode PP T —
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example program

¢ Challenges

» The throughput depends on the executed instructions
» DRAM access can be a bottleneck
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Throughput Analysis

* Netronome Agilio CX 2x40 GbE ]if (pkt.size < 100) ‘

» Netronome Flow Processor (NFP) return DROP:

» BPF/XDP programs compiled to NFP bytecode if (pkt[ethtype] == IPV4)
EEEEEEEEEE ip4_counter++;

shared if (pkt[ethtype] == IPV6)
0000000000 See
A g 502 (ool noad
DDDDDDDDDD return PASS;
50 processing cores

example program

¢ Challenges
» The throughput depends on the executed instructions
» DRAM access can be a bottleneck
» Packet sizes influence throughput
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Throughput depends on executed instructions

* Different paths cause different throughput
= The slowest path establishes a lower bound

Ef (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;
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Throughput depends on executed instructions

¢ Different paths cause different throughput if (pkt.size < 100)
= The slowest path establishes a lower bound return DROP:
* Not every path can be triggered by a packet if (pkt[ethtype]

== IPV4)
» Perhaps a tighter lower bound is possible ip4_counter++;
= Check each path for contradictions if (pkt[ethtype] =— IPV6)

for (...) ...;
return PASS;
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Throughput depends on executed instructions

¢ Different paths cause different throughput
= The slowest path establishes a lower bound
* Not every path can be triggered by a packet

Ef (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
» Perhaps a tighter lower bound is possible ip4_counter++;
= Check each path for contradictions (pkt [ethtype] == IPV6)
* Too many paths (path explosion) for (...) ...;

» Upto 2" paths forn ifs
= Only analyze the slowest paths

“‘return PAS SH
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Throughput depends on executed instructions

¢ Different paths cause different throughput

= The slowest path establishes a lower bound

* Not every path can be triggered by a packet

» Perhaps a tighter lower bound is possible

= Check each path for contradictions
* Too many paths (path explosion)

» Upto 2" paths forn ifs
= Only analyze the slowest paths

if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

How do individual instructions influence the throughput?

Krude et al.
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Instruction Costs

* Linear scaling over 50 cores

g 6OME -
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* Most NFP instructions take 1 cycle
» Branches take 2-3 cycles when taken

» Deterministic DRAM access times when
not overloaded
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Instruction Costs

¢ Linear scaling over 50 cores ¢ Too many memory instructions

£ 60ME overload the DRAM
T w45ME g2 i
5 8 30ME BT e aa -=1 ¢ DRAM throughput varies up to x4
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* Most NFP instructions take 1cycle Atomic Inc: > 248Mops/s of — 50
» Branches take 2-3 cycles when taken Read32: > 197Mops/s rate

» Deterministic DRAM access times when
not overloaded
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Instruction Costs

¢ Linear scaling over 50 cores ¢ Too many memory instructions
£ _6OME overload the DRAM
T w45ME = -5 .
- @ 30ME B o a-a—=a—%| ¢ DRAM throughput varies up to x4
EEBME g5 4447 | |
S & 9 = Lower bound
o 0 5 10 15 20 25 30 35 40 45 50
e Most NFP instructions take 1 cycle Atomic Inc: > 248Mops/s . 50
» Branches take 2-3 cycles when taken Read32: > 197Mops/s rate

» Deterministic DRAM access times when
not overloaded

A program path is either processing or DRAM bottlenecked
¢ Per instruction cost tuple: (processing cost; DRAM cost)
* Per path bottleneck: maximum over processing & DRAM cost
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Analysing only the slowest paths

* Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest
to fastest

program
_—
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths | first
from slowest path
to fastest

program
_
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | first path
—— | from slowest | path | satisfiable?

to fastest
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | next path
—— | from slowest | path |satisfiable?

to fastest . no
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | next path yes
—— | from slowest | path | satisfiable?

to fastest ) —Tho

slowest
satisfiable
path found
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | next path yes
—— | from slowest | path | satisfiable?

to fastest ) —Tho

slowest
satisfiable
path found

* Two separate cost functions (processing cost; DRAM cost)
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | next path yes
—— | from slowest | path | satisfiable?

to fastest ) —Tho

slowest
satisfiable
path found

* Two separate cost functions (processing cost; DRAM cost)

: t
[enumerate by processing cost]%> next path yes
next > | path | satisfiable?

[enumerate by DRAM cost]m> - ho

slowest
satisfiable
path found
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Analysing only the slowest paths

¢ Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]

* Check paths for contradictions: Use SMT solver (similar to symbolic execution)

program enumerate paths | next path yes
—— | from slowest | path | satisfiable?

to fastest . no

slowest
satisfiable
path found

* Two separate cost functions (processing cost; DRAM cost)

: t
[enumerate by processing cost]% next path yes
next > | path | satisfiable?

[enumerate by DRAM cost]w - o

slowest
satisfiable
path found

Determines packet-rate guarantees J
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Packet- vs. Bit-Rate Guarantees

¢ Bit-Rate throughput influenced by

» The time it takes to process a packet
» The size of the packet

Programs which process fixed sized headers

* Processing mostly independent from packet size
— Packet-rate guarantees

Programs which loop over multiple headers and payload

* Processing depends on packet sizes
— Bit-rate guarantees
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program

if (pkt.size < 100)
return DROP;

if (...) ...;

if (...) ...;

return PASS;
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program

if (pkt.size < 100)
L——>return DROP;

if (...) ...;

if (...) ...;
return PASS;
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program pkt.size: 60-99

pkt.size > 100

[if (pkt.size < 100) |
return DROP;

if (...) ...;

if (...) ...;

return PASS;
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program

pkt.size: 60-99

pkt.size > 100

if (pkt.size < 100)
return DROP;

if (...) ...;

if (...) ...;

return PASS;

if

(pkt.size < 100)
return DROP;
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program

pkt.size: 60-99

pkt.size > 100
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if (...) ...;

if (...) ...;

return PASS;

if

(pkt.size < 100)
return DROP;
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if (...) ...;
return PASS;

Krude et al.

SYS
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Bit-Rate Guarantees & Packet Sizes

* Static program analyis to identify packet size classes

Example Program pkt.size: 60-99

pkt.size > 100

(pkt.size < 100)
return DROP;

if (pkt.size < 100) | if
return DROP;
if (...) ...;
if (...) ...;
return PASS;

¢ Enumerate paths ordered by bit-rate
(pkt.size: 60-99, processing | "2

if (pkt.size < 100)

if (...) ...;
if (...) ...;
return PASS;

(pkt.size: 60-99, DRAM | eeat .
[pkt.size > 100, proceSSing] next path, [ =
(pkt.size > 100, DRAM | nexeat

next ath,

next path yes
path | satisfiable?

——no

slowest
satisfiable
path found
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Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing
SR

3 53F

£ 0QE | | | | | |
©

5 0 5 10 15 20 25 30
3 Analysis Time [s]
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Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

o 15GE

o 10G E |Nfirst path: 1s, 214G Bit/s

© 5 =

£ 0QE | | | | | |
©

5 0 5 10 15 20 25 30
3 Analysis Time [s]

Krude et al. ‘ RWTH

SYS



Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

@ 98 E— 6s 25GBit/s

o 10G E |Nfirst path: 1s, 214G Bit/s

o 5 =

£ 0QE | | | | | |
©
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3 Analysis Time [s]
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Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

@ 25G E Sfi : /s
= 500G E "_6s 25C Bit/s slowest satisfiable path: 33s, 27.6G Bit/s

D 155G E '

o 10 § = \first path: 1s, 21.4G Bit/s

© 5 =

£ 0QE | | | | | |

©

o 0 5 10 15 20 25 30

3 Analysis Time [s]
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Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

@ 25G E Sfi : /s
= 200G E "_6s 250G Bit/s slowest satisfiable path: 33s, 27.6G Bit/s

D 155G E ' _

o 10§ = \first path: 1s, 214G Bit/s enumerating all paths: > 1h
£ 8 GE | | | | | |

©

5 0 5 10 15 20 25 30

3 Analysis Time [s]
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Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

@ 25G E Sfi : 15—
= 500G E "_6s 25C Bit/s slowest satisfiable path: 33s, 27.6G Bit/s

m 75G E ' :

© 10§ = \first path: 1s, 214G Bit/s enumerating all paths: > 1h
£ BQE ! ! ! ! ! !

©

o 0 5 10 15 20 25 30

3 Analysis Time [s]

* Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16 GiB)

» Up to 102 s analysis time (except maliciously crafted example)
» SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle J
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Evaluation: Estimation Accuracy

* Measured throughput of 21k paths through all analyzed programs
» Minimally sized example packets produced by the SMT solver
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Evaluation: Estimation Accuracy

* Measured throughput of 21k paths through all analyzed programs
» Minimally sized example packets produced by the SMT solver

Program Slowest Path
switch.p4 (parser)
Cloudflare DoS
QUIC LB (IPv4)
QUIC LB (IPv6)
RTP a—p-law

RTP a—p-law (opt)
DNS Cache
Count-Min (5)
Count-Min (20)

AN N NN

!
5

ANEN
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Evaluation: Estimation Accuracy

* Measured throughput of 21k paths through all analyzed programs
» Minimally sized example packets produced by the SMT solver

Program Slowest Path  Estimated ~ Measured Accuracy . a lower bound
switch.p4 (parser) v 24.7GBit/ls 25.8G Bit/s +4.1%

Cloudflare DoS v 35.2GBit/s 34.7GBit/s -1.0% <—/

QUIC LB (IPv4) v 22.8GBit/'s 23.5G Bit/s +2.9%

QUIC LB (IPv6) v 27.6GBit/'s 28.5G Bit/s +2.9%

RTP a—p-law v 2.97GBit/s 2.97G Bit/s Y worst underestimation
RTP a—p-law (opt) v 4.70GBit/s 4.70G Bit/s v

DNS Cache 7th 9.0GBit/s 10.4GBit/s  +13.1% /

Count-Min (5) v 21.6GBit/ls 22.2GBit/s +2.4%

Count-Min (20) v 6.0GBit/'s  6.0GBit/s v
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Evaluation: Estimation Accuracy

* Measured throughput of 21k paths through all analyzed programs
» Minimally sized example packets produced by the SMT solver

Program Slowest Path  Estimated  Measured Accuracy . iower bound
switch.p4 (parser) v 24.7GBit/ls 25.8G Bit/s +4.1%
Cloudflare DoS v 35.2GBit/s 34.7GBit/s -1.0% <—/
QUIC LB (IPv4) v 22.8GBit/'s 23.5G Bit/s +2.9%
QUIC LB (IPv6) v 27.6GBit/'s 28.5G Bit/s +2.9%
RTP a—p-law v 2.97GBit/s 2.97G Bit/s Y worst underestimation
RTP a—p-law (opt) v 4.70GBit/s 4.70GBit/s v
DNS Cache 7th 9.0GBit/s 10.4GBit/s  +13.1% /
Count-Min (5) v 21.6GBit/ls 22.2GBit/s +2.4%
Count-Min (20) v 6.0GBit/s  6.0GBit/s v
Accurate throughtput guarantees J
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Conclusion

Throughput Guarantees for Processor-based SmartNICs
* Which packet-rate or bit-rate is achievable by a given program?

* Similar determinism as match-action pipelines and FPGAs

* Our approach is fast
» Because, we combine incremental ordered enumeration with SMT checks

¢ Our approach is accurate
» Because, we model the SmartNIC performance characteristics /

all the details

Full Implementation & All Measurement Data o R ge
https://github.com/johannes—krude/nfp-pred-artifacts
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