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Abstract—We investigate vehicle trajectories on a three-lane
road segment of a highway which were obtain from drone
observations. Based on these comprehensive datasets, we study
distance headways to preceding vehicles and develop a method
to quantify the local traffic density on a short distance ahead of
a vehicle. We leverage these metrics to study a local traffic jam.
The new method indicates increased traffic density ahead of a
vehicle about 100 meters or 15 seconds before a vehicle is affected
by the traffic jam. We also study the connection between vehicle
speed and distance headway or traffic density, respectively, and
quantify them by conditional probabilities and conditional means.
On the one hand, the results give insights into microstructures
of traffic jams. On the other hand, the novel method for local
density calculation may be applied in vehicles to warn drivers of
upcoming high density traffic situations which improves driving
safety.

Index Terms—Drone data, traffic density, traffic jam, traffic
analysis.

I. INTRODUCTION

One of the main objectives of driver assistance systems and
intelligent vehicles is to increase driving safety and decrease or
prevent traffic accidents. An important approach is to warn the
driver about upcoming traffic events, e.g., an upcoming jam.
There are several researches done in the scope of jam warnings
(see, e.g., [2]–[4] and references there). The empirical studies
about jam warnings mainly use vehicle speeds to detect jam
tails. One main reason for only using the speed attribute is the
lack of detailed and complete empirical data. E.g., floating car
data (FCD) only provide GPS-locations of a certain amount
of probe vehicles in usually fixed time interval steps which are
mostly greater than 3 seconds. The FCD penetration rate is the
percentage of the vehicles, which are sending their position
data, compared to the whole vehicles at a road segment. A
FCD penetration rate of 1 − 2% of the whole traffic is a
relatively high amount of probe vehicles [2]. In [2] and [3]
a method for jam tail warnings is developed using FCD with
5 or 10 second interval steps. Such FCD make it difficult to
use other vehicle attributes than the speed, e.g., it is not pos-
sible to calculate the distance between consecutive vehicles.
Another common data source are induction loop detectors.

This work is supported by the German Federal Ministry of Economic
Affairs and Energy in the project MEC-View (FKZ: 19A16010B) [1].

They measure all vehicles passing the detectors. Additionally
to use the vehicle speeds, it is possible to calculate and use the
traffic flow, however, only at fixed locations [2], [4]–[7]. The
additional attribute traffic flow from induction loop detectors
at fixed road locations is a very limited usable vehicle attribute
for developing warning systems which should be applicable at
all road locations.

One of the main problems of the development of functions
for driver assistance systems or intelligent vehicles is the lack
of real and complete empirical data of vehicles driving along
a stretch of road. This would open opportunities to test the
new systems in real-world conditions and scenarios.

Through aerial observations of a road segment very precise
measurements of all vehicle trajectories can be done, see
Fig. 1. The vehicle position can be measured lane-specific.
This is not possible with a global navigation satellite system
(GNSS), e.g., the Global Positioning System (GPS), due to
the error of GNSS positions which could be up to 15 meters
[8], [9]. Furthermore, with aerial observations it is possible
to measure following features: distance headway (DHW),
which describes the distance between consecutive vehicles at
a certain time instant, and the time headway (THW), which
describes the time slot between consecutive vehicles passing
a certain location. In this study we will focus on DHW.
In Fig. 2 DHWs are symbolically marked at a certain time
instant. Especially for ADAS (advanced driving assistance
systems) and automated vehicles the DHW information could
be extremely useful due to the complex traffic dynamics and
the limited sensor range. In this paper empirical data gathered

Fig. 1. A drone is recording the highway traffic at an altitude of more than
100 meters. A highway segment with a length of about 420 meters is covered.



Fig. 2. A frame of the drone recording is symbolically shown from a bird’s
eye view at a certain time instant. The distance headways (DHWs) between
consecutive vehicles are marked by lines between all vehicles in different
colors: red for very small DHW, yellow for small DHW and green for little
larger DHW. The third down left vehicle on the rightmost lane is symbolically
getting the DHW information from the preceding DHWs.

by aerial observations with drones (unmanned aerial vehicles
(UAVs)) from [10] will be used to investigate DHWs. These
datasets were measured during 2017 and 2018 on German
highways.

The objective of this paper is the following. Warning sys-
tems which warn drivers about upcoming dangerous situations,
e.g., jam-tail warning [2], [3], typically use only vehicle
speed information. In this paper, we make use of density
information consisting of the distances between consecutive
vehicles (DHW). Empirical drone measurements on highways
from 2017 and 2018 will be used. Based on the density
information from this comprehensive datasets, we reveal a new
empirical method that uses moving average techniques to warn
vehicles in advance about upcoming high densities.

The paper is structured as follows. Section II gives an
overview about commonly used data sources. In Section III
the empirical data used in this paper are described. Section IV
provides an empirical method which warns vehicles about high
preceding local densities. Section V concludes this paper.

II. RELATED WORK

Through aerial observations a complete measurement of all
vehicle trajectories passing a road segment has been done in
1975 in [11] as well as in the project Next Generation Simula-
tion (NGSIM) in 2006 [12]. The NGSIM dataset was measured
in the U.S. and includes highways and city traffic. In the years
2017 and 2018 city traffic was investigated by using drones
(unmanned aerial vehicles (UAVs)) in [13]–[15]. The measured
road segment was located at a traffic light in Germany. Most
recently, during 2017 and 2018 drone datasets (highD dataset)
have been recorded in [10] on German highways. In this paper,
we study the empirical drone datasets [10].

Empirical traffic investigations have been made since
decades with various traffic data sources as floating car data
or induction loop detectors (see, e.g., [2], [4] and references
there). However, the traffic data sources which have been used
do not cover all vehicle trajectories along a stretch of road and
are therefore limited.

Through the availability of more detailed traffic data as
drone data, more traffic features can be investigated, e.g.,
distance headways (DHWs) and time headways (THWs) be-
tween consecutive vehicles. In [10] and [16] distributions

of DHWs, THWs and vehicle speeds are studied based on
empirical data from highways and city traffic. One of the main
advantages for vehicles using the DHW and THW information
is lane changing. Lane changing dynamics and durations have
been studied in [16], [17]. By using empirical traffic data
[12] a detailed empirical study about THWs and lane change
durations have been done in [16].

Moreover, moving average (MA) methods are used as stan-
dard techniques for scientific work, e.g., for smoothing noisy
data. In the literature MAs are also known under different
terms, e.g., filtering or smoothing methods. There are several
studies devoted to unweighted, weighted and exponential mov-
ing averages, see, e.g., [18]. A comparison between different
moving average methods have been made in [19]. We adapt a
MA method to be applicable for non-equidistantly spaced and
descending ordered location series.

III. DRONE MEASUREMENTS

In this paper, we make use of empirical drone datasets mea-
sured on highways [10] which give a complete spatiotemporal
measurement of all vehicle trajectories passing a road segment.
Besides vehicle speed information, several more information
is given or can be calculated, e.g., distance headways (DHWs)
and time headways between consecutive vehicles. We will use
the Highway Drone Dataset (highD dataset) measured recently
during 2017 and 2018 on German highways around Cologne
[10]. The dataset includes in total 110 500 different vehicle
trajectories, 44 500 driven kilometers and 147 driven hours.
The drones recorded at six different highway locations in
altitudes of more than 100 meters. At these altitudes the drones
are almost not visible for the highway drivers and, therefore,
do not influence their driving behavior. Each recording covers
a highway segment with a length of about 420 meters as shown
in Fig. 1. It was measured at three- and two-lane highway
segments. The average recording time is 17 minutes. Different
traffic phases are observed in the measurements, e.g., upstream
moving jams as observed in Fig. 3 between 8:56 and 8:58 h.
Since the most recent computer vision and postprocessing al-
gorithms are used for the drone measurements, the positioning
error is relatively small, generally less than ten centimeters
[10]. It is a large-scale dataset of high quality which represents
the real traffic properly. That is the reason for us to use these
datasets to develop our empirical local density method.

In Fig. 3 a drone recording of a length of 19.5 minutes
and over a 400 meters highway segment with all vehicle
trajectories from the middle lane of a three-lane highway is
shown over space and time. We denote the middle lane as lane
2. The vehicle trajectories which are plotted as black lines
yield from connecting the vehicle front positions from each
frame of the drone recording. It was measured on a German
three-lane highway around Cologne at a Monday in October
2017 from 8:55:00 to 9:14:30 h. The corresponding highway
infrastructure is shown in Fig. 3 on the right.

Fig. 4 is the subset of Fig. 3 between 100 and 300 meters
and between 8:56:00 and 8:58:30 h marked by a dashed square
A. The vehicle length of each vehicle is shown in Fig. 4 as



Lane 2 of a highway around Cologne/Germany; Monday, 8:55:00 – 9:14:30 h, October 2017
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Fig. 3. Microscopic spatiotemporal drone measurement from a German three-lane highway around Cologne at a Monday in October 2017 from 8:55:00 to
9:14:30 h. All vehicle trajectories from the middle lane (lane 2) are shown over space and time. The vehicle trajectories which are plotted as black lines yield
from connecting the vehicle front positions from each frame of the drone recording. The corresponding highway infrastructure is shown on the right.

Lane 2; Monday, 8:56:00 – 8:58:30 h, October 2017
Distance headways (DHWs) are calculated
for each drone frame at a time instant
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Fig. 4. Microscopic spatiotemporal drone measurement from the middle lane
(lane 2) of a German three-lane highway around Cologne at a Monday in
October 2017 from 8:56:00 to 8:58:30 h. It is the subset of Fig. 3 marked
by a dashed square A. The vehicle length of each vehicle is shown as gray
region, whereas the vehicle trajectory that is plotted as black line yield from
connecting the vehicle front position from each frame of the drone recording.
The corresponding highway infrastructure is shown in Fig. 3 on the right.

gray region along each single trajectory, whereas the vehicle
trajectory that is plotted as black line yield from connecting the
vehicle front position from each frame of the drone recording.
With the vehicle length trucks and large vehicles can be easily
identified in Fig. 4, e.g., there is a truck at 8:57:30 h and
100 m. An upstream moving jam can be clearly observed
between 8:57 and 8:58 h. Particularly around this upstream
moving jam the vehicle density is relatively high. This can
be seen by the small DHWs between the consecutive vehicles
at the moving jam. Moreover, we see that a large vehicle is
changing the lane from one of the other lanes onto lane 2 at
around 8:56:45 h and 125 m, whereas at around 8:57:20 h and
150 m another vehicle is changing from lane 2 onto one of
the other lanes.

IV. LOCAL TRAFFIC DENSITY

In this section we propose an empirical method that could be
used to warn vehicles about local densities. It is based on the

moving average method UTEMA [19] and uses the empirical
drone measurements [10]. Through the drone measurements
complete vehicle trajectories of a road segment over a time
interval are given. Therefore, it is possible to calculate the
distance headways (DHWs) between consecutive vehicles at
each frame of the drone recording. E.g., for the frame at 8:57 h
the DHWs are calculated along the vertical dashed line shown
in Fig. 4. We aim to apply a moving average technique to
the DHWs for each frame of the drone recording. Density
information calculated from averaged DHWs is particularly
crucial for automated vehicles and ADAS (advanced driving
assistance systems). Vehicles which get a high preceding local
density information could react automatically or by the driver
in adapting the driving behavior.

A. Moving Average Technique Applied to Distance Headways

Since we will apply a moving average method to non-
equidistantly spaced samples without a strong bias towards
the first measured sample, we have chosen the unbiased
time-exponential moving average (UTEMA) proposed in [19].
Moving average methods are usually applied to ascending
ordered time series. However, we aim to apply UTEMA to
descending ordered location series. Therefore, an adaptation
of UTEMA from [19] is necessary. In Fig. 5 the procedure
of the adapted UTEMA applied to location series at a certain
time instant is shown. The location series d0, d1, d2, . . . are the
vehicle positions from one highway lane measured by drones.

Fig. 5. The procedure of UTEMA applied to location series d0, d1, d2, . . .
at a certain time instant is shown. The averages Ad0 , Ad1 , Ad2 , . . . are
calculated with UTEMA recursively from (1) – (3).



The averages Ad0 , Ad1 , Ad2 , . . . are calculated with UTEMA.
The adapted UTEMA can be calculated recursively from the
following equations:

Sd =


0 d > d0
X0 d = d0
e−β·(di−1−di) · Sdi−1

+Xi d = di
e−β·(di−d) · Sdi di > d > di+1

(1)

Nd =


0 d > d0
1 d = d0
e−β·(di−1−di) ·Ndi−1

+ 1 d = di
e−β·(di−d) ·Ndi di > d > di+1

(2)

Ad =

{
Sd

Nd
Nd > 0

0 Nd ≤ 0
, (3)

where Xi is the DHW between the two vehicles at the
locations di and di−1, Ad is the location-dependent average
of DHWs at location d and β is a smoothing parameter, e.g.,
β = 1

100 . We note that for the very first locations the average
value Ad uses a small number of Xi. An important metric
to characterize moving average properties is the memory M.
The memory M is basically the space range over which
X0, X1, X2, . . . are averaged. For UTEMA it holds

M =
1

β
.

In Fig. 6 (c) we have used M = 100 meters, i.e., β = 1
100 .

To apply the local density method described above for a
whole drone measurement, we do the following steps:

Step 1: Consider the data from the frame of the drone
recording starting with the first one.

Step 2: Define the descending ordered location
series d0, d1, d2, . . . and calculate all DHWs
X0, X1, X2, . . . between consecutive vehicles.

Step 3: For each location di calculate the average Adi with
UTEMA recursively from (1) – (3) starting at d0.

Step 4: Take the next frame of the drone recording and start
with Step 1 until the last frame is reached.

The calculated average value Adi gives the density infor-
mation ahead the vehicle’s current location di. If the density
value Adi is relatively small the vehicle could get a density
information, e.g., a warning about high preceding local density.
We denote the average values Adi , which are calculated by
applying UTEMA to DHWs, as UTEMA-DHWs.

In Fig. 6 (a) – (c) the subset of the drone measurement
marked by a dashed square A in Fig. 3 are shown. Fig. 4
shows the same subset. In Fig. 6 (a) the vehicle trajectories
are colored according their speeds. In Fig. 6 (b) and (c)
the vehicle trajectories are colored according the distance
to preceding vehicles (DHWs) and the averaged UTEMA-
DHWs, respectively. The colors are chosen for visualization
purposes. An upstream moving jam within vehicles have very
low speeds can be observed between 8:57 and 8:58 h marked
by two dotted black lines in Fig. 6 (a). Furthermore, we see

that the vehicle speeds are higher before entering the moving
jam (see orange colored trajectories with speeds between 20
and 35 km/h) than after leaving the moving jam (see red
colored trajectories with speeds between 0 and 10 km/h). In
Fig. 6 (b) very small DHWs can be observed especially inside
the moving jam. However, there are also vehicles with very
small DHWs after the moving jam. This occurs, e.g., if a
vehicle is driving very close to its preceding vehicle along
this highway segment.

In Fig. 6 (c) an interesting observation can be made: a
local density front marked by a dotted black line with very
low UTEMA-DHW values (0 – 10 m, colored in red). It is
moving upstream similar to the moving jam which is marked
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red = 0 – 20 km/h, orange = 20 – 35 km/h, yellow = 35 – 50 km/h, green > 50 km/h

(a) Vehicle speeds – lane 2
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(b) Distance to preceding vehicle (DHW) – lane 2
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Fig. 6. Vehicle trajectories from the middle lane (lane 2) of a German three-
lane highway around Cologne from 8:56:00 to 8:58:30 h are shown in space
and time. It is the subset of Fig. 3 marked by a dashed square A and the same
data shown in Fig. 4. The vehicle trajectories in (a) are colored according the
vehicle speeds, in (b) according the distance to preceding vehicles (DHWs)
and in (c) according UTEMA-DHWs.



by two dotted black lines in Fig. 6 (a). Due to the definition
of our local density method described above, the density front
is in space and time located before the upstream moving
jam. In fact, the density front is observed around 100 meters
and 15 seconds earlier (Fig. 6 (c)) compared to the density
information from the distance headways (DHWs) between
consecutive vehicles (Fig. 6 (b)). That means, the vehicles
get the high density information (very low UTEMA-DHW
values) before they reach the location where it is very dense
(very low DHW values). Fig. 7 illustrates this observation
with three vehicle trajectories marked in Fig. 6 (a) as Vehicle
1, 2 and 3. DHW and UTEMA-DHW are plotted for all
three vehicles over distance in Fig. 7 (a), (c) and (e) and
over time in Fig. 7 (b), (d) and (f). The black arrows in
Fig. 7 shows that the solid black line (UTEMA-DHW) drops
earlier to smaller values than the dotted black line (DHW).
Therefore, the vehicles get the density information (UTEMA-
DHW) before they reach the dense region around the moving
jam (red marked region in Fig. 6 (b)). Thus, the vehicle could
consider the density information in case of small UTEMA-
DHWs as a density warning about upcoming high densities. It
is important to mention that the location of the density front
(dotted black line in Fig. 6 (c)) in space and time depend on
the memory M used for the moving average method UTEMA.
A larger memory value M would basically increase the space
range over which distance headways between consecutive are
averaged.

DHW and UTEMA-DHW over distance and time

Vehicle 1Vehicle 1

Vehicle 2 Vehicle 2

Vehicle 3 Vehicle 3

(a) (b)

(d)(c)

(f)(e)

Fig. 7. The vehicle trajectories which are marked in Fig. 6 (a) as vehicle 1,
2 and 3 are shown for the following values: Distance to preceding vehicles
(DHWs) (dotted line) and UTEMA-DHWs (solid line). (a) and (b) corresponds
to vehicle 1, (c) and (d) to vehicle 2, and (e) and (f) to vehicle 3. The
trajectories are plotted in (a), (c) and (e) over the highway distance and in
(b), (d) and (f) over time.

B. Conditional Probability Distributions

To study probability distributions we have used several
drone measurements from different three-lane highways during
different days, including the data used in Fig. 3, Fig. 4 and
Fig. 6. In Fig. 8 (a) and (b) probability densities are shown for
DHW and UTEMA-DHW, respectively, depending on speed
intervals. In Table I the means and medians of DHWs and
UTEMA-DHWs depending on speed intervals are listed. The
probability density curves in Fig. 8 and the mean and median
values in Table I emphasize the known correlation between
traffic density and vehicle speed. DHWs and UTEMA-DHWs
are increasing with increasing speed intervals. This could be
expected because from high speeds it follows that large gaps to
preceding vehicles are needed. We quantified this correlations
with comprehensive empirical drone data.

V. CONCLUSIONS AND OUTLOOK

Based on drone observations we have revealed an empirical
method which uses distances between consecutive vehicles and
calculates averaged density values about the traffic ahead the
vehicle’s current location. A vehicle could use this density
information in various ways: (i) As a warning for the driver
about upcoming high density. (ii) The vehicle could adapt
its driving behavior automatically or by the driver, e.g., by
speed adaptation or by increasing the distance to the preceding
vehicle. (iii) The driver or the vehicle itself could change the
lane to avoid high upcoming traffic density and to reduce the
density on its lane.

(a) Probability density of DHWs

(b) Probability density of UTEMA-DHWs

Fig. 8. The probability density for DHWs and for UTEMA-DHWs depending
on speed intervals are shown in (a) and (b), respectively. Vehicle data from
drone measurements at different lanes, locations and days with different traffic
phases are used, including the drone measurement shown in Fig. 3.



TABLE I
MEAN AND MEDIAN OF DHWS AND UTEMA-DHWS DEPENDING ON

SPEED INTERVALS

Speed interval
(km/h)

Mean/median of
DHW (m)

Mean/median of
UTEMA-DHWs (m)

0 – 10 8.4 / 6.6 11.7 / 11.0

10 – 20 12.5 / 10.0 14.3 / 12.4

20 – 30 16.8 / 13.5 17.8 / 15.0

30 – 40 21.1 / 17.8 21.3 / 19.3

40 – 50 24.3 / 20.8 24.3 / 22.1

50 – 60 28.3 / 24.2 27.4 / 25.5

60 – 70 38.1 / 29.6 39.7 / 31.8

70 – 80 43.9 / 33.6 46.7 / 38.4

80 – 90 43.0 / 34.2 45.6 / 39.5

90 – 100 42.8 / 35.8 43.8 / 39.2

> 100 45.3 / 40.6 45.1 / 41.9

The conditional probability distributions which we have
done based on empirical drone data have quantified the known
dependency between vehicle speed and distance headway
between consecutive vehicles (DHW), and between vehicle
speed and the density information calculated by our proposed
local density method (UTEMA-DHW).

A more detailed quantitative analysis of the density informa-
tion calculated by our proposed method with a larger amount
of data would be interesting. Moreover, the evaluation of
the proposed method should be done by performance metrics
which have to be defined. These are parts of future work.

The density information which consists of the distances
between consecutive vehicles could be measured by existing
vehicle distance sensors instead of drone measurements which
have been used in this paper. Through vehicle-to-vehicle com-
munication the density information ahead would be available
for each vehicle. This is probably a more feasible method to
get distances between consecutive vehicles than through drone
measurements.

To understand real microscopic traffic features of congested
traffic very precise and detailed empirical data is crucial, e.g.,
drone measurements. We expect from further investigations
with these comprehensive traffic data new insights regarding
congested traffic features and new contributions to the discus-
sions in traffic theories.

Lane-level vehicle trajectories from drone data have shown
that traffic jams and dense regions occur at different locations
in space and time. A lane-level investigation of traffic struc-
tures would be an interesting task for further studies.
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