
Determination of Throughput Guarantees
for Processor-based SmartNICs

slo
w fast

Johannes Krude, Jan Rüth,
Daniel Schemmel, Felix Rath,
Iohannes-Heorh Folbort, Klaus Wehrle

https://comsys.rwth-aachen.de/ CoNEXT ’21, December 7–10, 2021

https://comsys.rwth-aachen.de/

Data-plane programmability needs predictable throughput

packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1pkt/cycle
– Difficult to program (subset of P4, no loops, few sequential operations)

Processor-based SmartNICs

+ Are easier and more freely programmable (C, BPF/XDP)
– Performance varies and is not obvious [our Netsoft2019 paper]

Our Contribution: A tool to calculate the throughput of a program
…while developing a program. …as part of regression tests.

2 Krude et al.

Data-plane programmability needs predictable throughput

packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1pkt/cycle
– Difficult to program (subset of P4, no loops, few sequential operations)

Processor-based SmartNICs

+ Are easier and more freely programmable (C, BPF/XDP)
– Performance varies and is not obvious [our Netsoft2019 paper]

Our Contribution: A tool to calculate the throughput of a program
…while developing a program. …as part of regression tests.

2 Krude et al.

Data-plane programmability needs predictable throughput

packet drops and congestion testing with traffic traces gives no guarantee

Match-Action-based Programmable Switches

+ If a program compiles, it runs at ~1pkt/cycle
– Difficult to program (subset of P4, no loops, few sequential operations)

Processor-based SmartNICs

+ Are easier and more freely programmable (C, BPF/XDP)
– Performance varies and is not obvious [our Netsoft2019 paper]

Our Contribution: A tool to calculate the throughput of a program
…while developing a program. …as part of regression tests.

2 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE
I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions
I DRAM access can be a bottleneck
I Packet sizes influence throughput

3 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

example program

I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions
I DRAM access can be a bottleneck
I Packet sizes influence throughput

3 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

example program

I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions

I DRAM access can be a bottleneck
I Packet sizes influence throughput

3 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

example program

I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions

I DRAM access can be a bottleneck
I Packet sizes influence throughput

3 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

example program

I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions
I DRAM access can be a bottleneck

I Packet sizes influence throughput

3 Krude et al.

Throughput Analysis

• Netronome Agilio CX 2x40 GbE if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

example program

I Netronome Flow Processor (NFP)
I BPF/XDP programs compiled to NFP bytecode

50processing cores

shared
2GiB
DRAM

NFP

• Challenges
I The throughput depends on the executed instructions
I DRAM access can be a bottleneck
I Packet sizes influence throughput

3 Krude et al.

Throughput depends on executed instructions

• Different paths cause different throughput if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

⇒ The slowest path establishes a lower bound

• Not every path can be triggered by a packet
I Perhaps a tighter lower bound is possible
⇒ Check each path for contradictions

• Too many paths (path explosion)
I Up to 2n paths for n ifs
⇒ Only analyze the slowest paths

How do individual instructions influence the throughput?

4 Krude et al.

Throughput depends on executed instructions

• Different paths cause different throughput if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

⇒ The slowest path establishes a lower bound
• Not every path can be triggered by a packet

I Perhaps a tighter lower bound is possible
⇒ Check each path for contradictions

• Too many paths (path explosion)
I Up to 2n paths for n ifs
⇒ Only analyze the slowest paths

How do individual instructions influence the throughput?

4 Krude et al.

Throughput depends on executed instructions

• Different paths cause different throughput if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

⇒ The slowest path establishes a lower bound
• Not every path can be triggered by a packet

I Perhaps a tighter lower bound is possible
⇒ Check each path for contradictions

• Too many paths (path explosion)
I Up to 2n paths for n ifs
⇒ Only analyze the slowest paths

How do individual instructions influence the throughput?

4 Krude et al.

Throughput depends on executed instructions

• Different paths cause different throughput if (pkt.size < 100)
return DROP;

if (pkt[ethtype] == IPV4)
ip4_counter++;

if (pkt[ethtype] == IPV6)
for (...) ...;

return PASS;

⇒ The slowest path establishes a lower bound
• Not every path can be triggered by a packet

I Perhaps a tighter lower bound is possible
⇒ Check each path for contradictions

• Too many paths (path explosion)
I Up to 2n paths for n ifs
⇒ Only analyze the slowest paths

How do individual instructions influence the throughput?

4 Krude et al.

Instruction Costs

Processing Cost

• Linear scaling over 50 cores

 0
 15 M
 30 M
 45 M
 60 M

 0 5 10 15 20 25 30 35 40 45 50 Pa
ck

et
 R

at
e

[p
kt

s/
s]

• Most NFP instructions take 1 cycle
I Branches take 2-3 cycles when taken
I Deterministic DRAM access times when

not overloaded

DRAM Cost

• Too many memory instructions
overload the DRAM

• DRAM throughput varies up to ×4
⇒ Lower bound

Atomic Inc: ≥ 248M ops/s
Read32: ≥ 197M ops/s cost = 50

rate

A program path is either processing or DRAM bottlenecked
• Per instruction cost tuple: (processing cost; DRAM cost)
• Per path bottleneck: maximum over processing & DRAM cost

5 Krude et al.

Instruction Costs

Processing Cost

• Linear scaling over 50 cores

 0
 15 M
 30 M
 45 M
 60 M

 0 5 10 15 20 25 30 35 40 45 50 Pa
ck

et
 R

at
e

[p
kt

s/
s]

• Most NFP instructions take 1 cycle
I Branches take 2-3 cycles when taken
I Deterministic DRAM access times when

not overloaded

DRAM Cost

• Too many memory instructions
overload the DRAM

• DRAM throughput varies up to ×4
⇒ Lower bound

Atomic Inc: ≥ 248M ops/s
Read32: ≥ 197M ops/s cost = 50

rate

A program path is either processing or DRAM bottlenecked
• Per instruction cost tuple: (processing cost; DRAM cost)
• Per path bottleneck: maximum over processing & DRAM cost

5 Krude et al.

Instruction Costs

Processing Cost

• Linear scaling over 50 cores

 0
 15 M
 30 M
 45 M
 60 M

 0 5 10 15 20 25 30 35 40 45 50 Pa
ck

et
 R

at
e

[p
kt

s/
s]

• Most NFP instructions take 1 cycle
I Branches take 2-3 cycles when taken
I Deterministic DRAM access times when

not overloaded

DRAM Cost

• Too many memory instructions
overload the DRAM

• DRAM throughput varies up to ×4
⇒ Lower bound

Atomic Inc: ≥ 248M ops/s
Read32: ≥ 197M ops/s cost = 50

rate

A program path is either processing or DRAM bottlenecked
• Per instruction cost tuple: (processing cost; DRAM cost)
• Per path bottleneck: maximum over processing & DRAM cost

5 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Analysing only the slowest paths

• Can not enumerate all paths: Incremental longest path algorithm [Kundu, 1994]
• Check paths for contradictions: Use SMT solver (similar to symbolic execution)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

• Two separate cost functions (processing cost; DRAM cost)

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

Determines packet-rate guarantees

6 Krude et al.

Packet- vs. Bit-Rate Guarantees

• Bit-Rate throughput influenced by
I The time it takes to process a packet
I The size of the packet

Programs which process fixed sized headers

• Processing mostly independent from packet size
→ Packet-rate guarantees

Programs which loop over multiple headers and payload

• Processing depends on packet sizes
→ Bit-rate guarantees

7 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program pkt.size: 60-99 pkt.size ≥ 100

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program pkt.size: 60-99 pkt.size ≥ 100

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program pkt.size: 60-99 pkt.size ≥ 100

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program pkt.size: 60-99 pkt.size ≥ 100

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Bit-Rate Guarantees & Packet Sizes

• Static program analyis to identify packet size classes

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

if (pkt.size < 100)
return DROP;

if (...) ...;
if (...) ...;
return PASS;

Example Program pkt.size: 60-99 pkt.size ≥ 100

• Enumerate paths ordered by bit-rate

enumerate paths
from slowest

to fastest

path
satisfiable?

slowest
satisfiable
path found

program next
path
first
path

no

yes
≥

enumerate by processing cost

enumerate by DRAM cost

next
path
next
path

≥

pkt.size: 60-99, processing

pkt.size ≥ 100 , DRAM

pkt.size: 60-99, DRAM
pkt.size ≥ 100 , processing

next path

next path

next path

next path

8 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

first path: 1 s, 21.4GBit/s

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

first path: 1 s, 21.4GBit/s

6 s, 25GBit/s

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

first path: 1 s, 21.4GBit/s

6 s, 25GBit/s slowest satisfiable path: 33 s, 27.6GBit/s

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

first path: 1 s, 21.4GBit/s

6 s, 25GBit/s slowest satisfiable path: 33 s, 27.6GBit/s

enumerating all paths: ≥ 1 h

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Analysis Time

Example Program: QUIC Load Balancer with IPv6 Option parsing

0 G
5 G

10 G
15 G
20 G
25 G

 0 5 10 15 20 25 30

G
ua

ra
nt

ee
 [B

it/
s]

Analysis Time [s]

first path: 1 s, 21.4GBit/s

6 s, 25GBit/s slowest satisfiable path: 33 s, 27.6GBit/s

enumerating all paths: ≥ 1 h

• Analyzed 9 real XDP/BPF programs on a desktop PC (Core i7, 16GiB)
I Up to 102 s analysis time (except maliciously crafted example)
I SMT checking improved throughput guarantees by up to 44%

Is fast enough to be part of the regular development cycle

9 Krude et al.

Evaluation: Estimation Accuracy

• Measured throughput of 21kpaths through all analyzed programs
I Minimally sized example packets produced by the SMT solver

Program Slowest Path
switch.p4 (parser) X
Cloudflare DoS X
QUIC LB (IPv4) X
QUIC LB (IPv6) X
RTP a�μ-law X
RTP a�μ-law (opt) X
DNS Cache 7th
Count-Min (5) X
Count-Min (20) X

Accurate throughtput guarantees

10 Krude et al.

Evaluation: Estimation Accuracy

• Measured throughput of 21kpaths through all analyzed programs
I Minimally sized example packets produced by the SMT solver

Program Slowest Path
switch.p4 (parser) X
Cloudflare DoS X
QUIC LB (IPv4) X
QUIC LB (IPv6) X
RTP a�μ-law X
RTP a�μ-law (opt) X
DNS Cache 7th
Count-Min (5) X
Count-Min (20) X

Accurate throughtput guarantees

10 Krude et al.

Evaluation: Estimation Accuracy

• Measured throughput of 21kpaths through all analyzed programs
I Minimally sized example packets produced by the SMT solver

Program Slowest Path Estimated Measured Accuracy
switch.p4 (parser) X 24.7G Bit/s 25.8G Bit/s +4.1%
Cloudflare DoS X 35.2G Bit/s 34.7G Bit/s -1.0%

not a lower bound

QUIC LB (IPv4) X 22.8G Bit/s 23.5G Bit/s +2.9%
QUIC LB (IPv6) X 27.6G Bit/s 28.5G Bit/s +2.9%
RTP a�μ-law X 2.97G Bit/s 2.97G Bit/s X
RTP a�μ-law (opt) X 4.70G Bit/s 4.70G Bit/s X
DNS Cache 7th 9.0G Bit/s 10.4G Bit/s +13.1%

worst underestimation

Count-Min (5) X 21.6G Bit/s 22.2G Bit/s +2.4%
Count-Min (20) X 6.0G Bit/s 6.0G Bit/s X

Accurate throughtput guarantees

10 Krude et al.

Evaluation: Estimation Accuracy

• Measured throughput of 21kpaths through all analyzed programs
I Minimally sized example packets produced by the SMT solver

Program Slowest Path Estimated Measured Accuracy
switch.p4 (parser) X 24.7G Bit/s 25.8G Bit/s +4.1%
Cloudflare DoS X 35.2G Bit/s 34.7G Bit/s -1.0%

not a lower bound

QUIC LB (IPv4) X 22.8G Bit/s 23.5G Bit/s +2.9%
QUIC LB (IPv6) X 27.6G Bit/s 28.5G Bit/s +2.9%
RTP a�μ-law X 2.97G Bit/s 2.97G Bit/s X
RTP a�μ-law (opt) X 4.70G Bit/s 4.70G Bit/s X
DNS Cache 7th 9.0G Bit/s 10.4G Bit/s +13.1%

worst underestimation

Count-Min (5) X 21.6G Bit/s 22.2G Bit/s +2.4%
Count-Min (20) X 6.0G Bit/s 6.0G Bit/s X

Accurate throughtput guarantees

10 Krude et al.

Conclusion

Throughput Guarantees for Processor-based SmartNICs
• Which packet-rate or bit-rate is achievable by a given program?
• Similar determinism as match-action pipelines and FPGAs

• Our approach is fast
I Because, we combine incremental ordered enumeration with SMT checks

• Our approach is accurate
I Because, we model the SmartNIC performance characteristics

Determination of Throughput Guarantees
for Processor-based SmartNICs

Johannes Krude
RWTH Aachen University

krude@comsys.rwth-aachen.de

Jan Rüth
RWTH Aachen University

rueth@comsys.rwth-aachen.de

Daniel Schemmel
RWTH Aachen University

schemmel@comsys.rwth-aachen.de

Felix Rath
RWTH Aachen University

rath@comsys.rwth-aachen.de

Iohannes-Heorh Folbort
RWTH Aachen University

iohannes-heorh.folbort@rwth-aachen.de

Klaus Wehrle
RWTH Aachen University

wehrle@comsys.rwth-aachen.de

ABSTRACT
Programmable network devices are on the rise with many applica-
tions ranging from improved network management to accelerating
and offloading parts of distributed systems. Processor-based Smart-
NICs, match-action-based switches, and FPGA devices offer on-path
programmability. Whereas processor-based SmartNICs are much
easier and more versatile to program, they have the huge disadvan-
tage that the resulting throughput may vary strongly and is not
easily predictable even to the programmer.Wewant to close this gap
by presenting a methodology which, given a SmartNIC program,
determines the achievable throughput of this SmartNIC program in
terms of achievable packet rate and bit rate. Our approach combines
incremental longest path search with SMT checks to establish a
lower bound for the slowest satisfiable program path. By analyzing
only the slowest program paths, our approach estimates throughput
bounds within a few seconds. The evaluation with our prototype
on real programs shows that the estimated throughput guarantees
are correct with an error of at most 1.7% and provide a tight lower
bound for processor- and memory-bottlenecked programs with
only 8.5% and 18.2% underestimation.

CCS CONCEPTS
• Networks→ Programmable networks; Network Performance
analysis; • Software and its engineering→ Formal software veri-
fication.

KEYWORDS
BPF/XDP, SmartNIC, packet rate, bit rate, longest path search

ACM Reference Format:
Johannes Krude, Jan Rüth, Daniel Schemmel, Felix Rath, Iohannes-Heorh
Folbort, and Klaus Wehrle. 2021. Determination of Throughput Guarantees
for Processor-based SmartNICs. In The 17th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’21), December
7–10, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3485983.3494842

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 17th Interna-
tional Conference on emerging Networking EXperiments and Technologies (CoNEXT ’21),
December 7–10, 2021, Virtual Event, Germany , https://doi.org/10.1145/3485983.3494842.

1 INTRODUCTION
Data plane programmability promises the ability to add and change
functionality on general-purpose network devices. Data plane pro-
grams are used in large-scale deployments to provide functionality
such as load-balancing [41], DoS-traffic-scrubbing [1], and offload-
ing packet processing from hypervisors [19]. More examples can be
found in scientific literature ranging from in-network caching [32]
to offloading parts of distributed systems such as Paxos [13], and
accelerating machine learning within the network [36, 58, 59].

General-purpose data plane programmability bears the risk of
slow programs causing bad throughput. Therefore, match-action
pipelines in programmable switches were created to process packets
at a fixed packet rate [3]. Match-action pipelines, however, come
at the cost of complicated programming languages and reduced
expressiveness [22, 26].

Another option are FPGA-based SmartNICs, as these also allow
for data plane programmability with a fixed packet rate. However,
FPGA NICs cost at least 8× the price of a regular NIC and require
a dedicated team of hardware experts [4, 19] to write programs in
hardware description languages. FPGAs can be used to implement
a processor which is then much easier to program [4] but no longer
processes packets at a fixed rate and is less performant than a
hardware processor.

Processors are the common target when programming and allow
for rich computation and control flow. For example, the Netronome
Agilio CX SmartNIC can be programmed in C using a BPF/XDP
toolchain [28, 31]. Although BPF limits the number of executed
instructions per packet, the resulting throughput is not obvious [28]
and can greatly vary between different packets processed by the
same program. Measuring the throughput with a traffic trace can
give some idea about the performance of a program, but does not
help in predicting the performance in case the traffic changes. We
want to close this gap in providing a methodology that determines
throughput guarantees for processor-based SmartNICs.

Devices such as switches and NICs have bottlenecks which can
be well described in terms of achievable throughput. Whenever the
rate of incoming (packet-)data exceeds the throughput bottleneck,
congestion forms that induces queuing delay and packet drops that
then cause bad network performance. Device-induced latency on a
fully loaded SmartNIC is dominated by queuing behavior [27, 37]
instead of program execution time. We focus on throughput instead
of latency and present a methodology to determine a lower bound
for the achievable packet and bit rate of a program.

all the details

Full Implementation & All Measurement Data
https://github.com/johannes-krude/nfp-pred-artifacts

11 Krude et al.

https://github.com/johannes-krude/nfp-pred-artifacts

