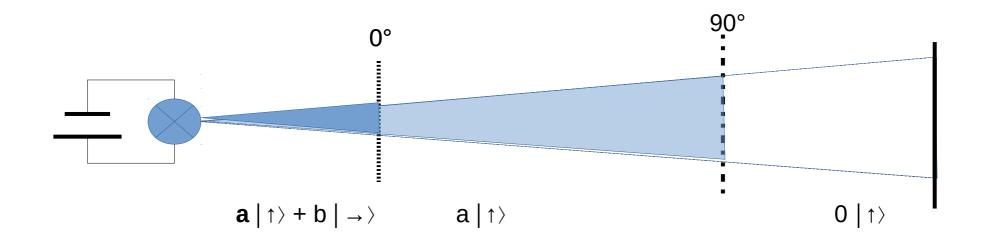
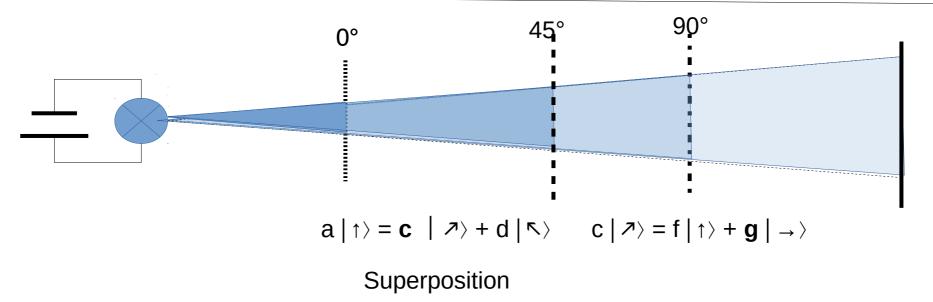
Themen zur Computersicherheit

Quantencomputer und Kryptographie -- Eine kurze Einführung --

PD Dr. Reinhard Bündgen buendgen@de.ibm.com

Quantenmechanik der Polarisation





Quantenbits (Qubits)

Ket Notation

$$x \in \{ a|0\rangle + b|1\rangle |$$

 $a, b \in \mathbf{C} \wedge a^2 + b^2 = 1 \}$
 a und b heißen Amplituden

Spezielle Zustände

•
$$|+\rangle = 2^{-1/2} (|0\rangle + |1\rangle)$$

•
$$|-\rangle = 2^{-1/2} (|0\rangle - |1\rangle)$$

•
$$|i\rangle = 2^{-1/2} (|0\rangle + i |1\rangle)$$

•
$$|-i\rangle = 2^{-1/2} (|0\rangle - i |1\rangle$$

Orthonormalbasen

- Standardbasis: $\{|0\rangle, |1\rangle\}$
- Hadamard Basis: {|+>, |->}

Bloch Sphäre

$$x \in \{ (a,b,c) \mid$$

 $a, b, c \in \mathbb{R} \land a^2 + b^2 + c^2 = 1 \}$

Ket -> Bloch

- $|0\rangle \mapsto (0, 0, 1)$
- $|1\rangle \mapsto (0, 0, -1)$
- $|+\rangle \mapsto (1, 0, 0)$
- $|-\rangle \mapsto (-1, 0, 0)$
- $|i\rangle \mapsto (0, 1, 0)$
- $|-i\rangle \mapsto (0, -1, 0)$

Notation

- C: komplexe Zahlen
- R: Reelle Zahlen

Operationen auf Qubits

Operationen auf Qubits können durch unitäre Matrizen beschrieben werden.

- A unitär wenn $(A^*)^T = A^{-1}$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad x = x_0 \mid 0 \rangle + x_1 \mid 1 \rangle = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

$$Ax = (ax_0 + bx_1) |0\rangle + (cx_0 + dx_1) |1\rangle$$

Beispiel: Hadamardmatrix

$$H = 1 / \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H |0\rangle = H (1,0)^{T} = 2^{-1/2} (|0\rangle + |1\rangle)$$

$$H |1\rangle = H (0,1)^{T} = 2^{-1/2} (|0\rangle - |1\rangle)$$

Notation

- A-1 inverse Matrix zu A
- A^T transponierte Matrix von A
- A* konjugiert komplexe Matrix zu A

Messen von Qubits

- beim Messen eines Qubits wird sein Zustand zerstört
- gemessen wird bzgl einer Basis {A, B}:
 - x = aA + bB
 - dann ist das Messergebnis gleich
 - A mit der Wahrscheinlichkeit |a|²
 - B mit der Wahrscheinlichkeit |b|²
 - a und b können nicht gemessen werden

Quantenalgorithmus: Zufallsgenerator

$$|0\rangle - H - M$$

$$2^{-1/2} |0\rangle + 2^{-1/2} |1\rangle$$

$$x := |0\rangle$$

$$x := H x$$

miss x bzgl
$$\{ |0\rangle, |1\rangle \}$$

Ergebnis entweder |0> oder |1>, je mit Wahrscheinlichkeit 1/2

Notation

:= Zuweisung

Quantenregister

- Quantenregister: Array von Qubits
- Zustände von klassischen Registern:
 - Für klassische Register R, R₁, R₂ mit R = R₁ || R₂ gilt: für jeden Zustand Z von R gibt es Zustände Z₁ von R₁ und Z₂ von R₂, so dass $Z = Z_1 || Z_2$.
- Zustände von Quantenregistern:
 - Für Quantenregister Q, Q₁, Q₂ mit Q = Q₁ || Q₂ gilt: es gibt Zustände Z von Q zu denen es <u>keine</u> Zustände Z₁ von Q₁ und Z₂ von Q₂ gibt, so dass $Z = Z_1 || Z_2$.
- Der Zustandsraum eines Quantenregisters kann als Tensorprodukt der Zustandsräume seiner Teilregister beschrieben werden.
- Es gibt keine Methode einen beliebigen Zustand eines Quantenregisters zu kopieren: No Cloning

Beispiel $R = R_1 \parallel R_2$

- Der Zustandsraum $Z = Z_1 \otimes Z_2$ von R hat die Basis
 - $|0\rangle \otimes |0\rangle = |00\rangle$
 - $|0\rangle \otimes |1\rangle = |01\rangle$
 - $|1\rangle \otimes |0\rangle = |10\rangle$
 - $|1\rangle \otimes |1\rangle = |11\rangle$
- Jeder Zustand von R kann als Linearkombination
 - $x_0 |00\rangle + x_1 |01\rangle + x_2 |10\rangle + x_3 |11\rangle$
 - beschrieben werden
- Die Basis des Zustandsraums eines Quantenregisters aus n Qubits hat 2ⁿ Elemente

Operation auf 2-Qubit-Register

- unitäre Operation
- CNOT: $|x, y\rangle \mapsto |x, x \oplus y\rangle$
- controlled not: ist das erste Qubit 1, so wird das zweite negiert

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad CNOT \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ d \\ c \end{bmatrix}$$

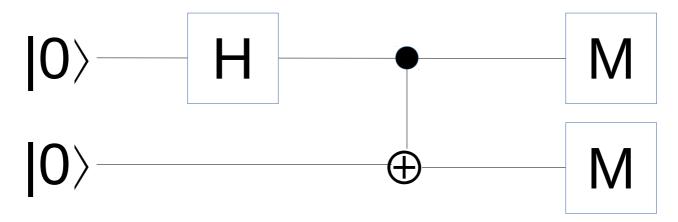
Verschränkte Zustände

- englisch: entangled
- Ein Zustand Z von R heißt verschränkt bzgl einer Dekomposition R = $R_1 \mid\mid R_2$, wenn Z nicht als Tensorprodukt $Z_1 \otimes Z_2$ von Zuständen der Register R_1 bzw R_2 beschrieben werden kann

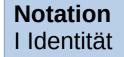
Beispiel:

- Der Zustand 1/2^{-1/2} (|00> + |11>) is verschränkt bzgl der einzelnen Qubits eines 2-Qubit-Registers
- denn $(a_0|0\rangle + b_0|1\rangle) \otimes (a_1|0\rangle + b_1|1\rangle)$ = $a_0a_1|00\rangle + a_0b_1|01\rangle + b_0a_1|10\rangle + b_0b_1|11\rangle$
- wenn a₀b₁ und b₀a₁ gleich Null sind auch a₀a₁ oder b₀b₁ gleich Null

Verschränken von 2 Qubits



- $|00\rangle$ --(H x I)--> $2^{-1/2}(|0\rangle + |1\rangle) \otimes |0\rangle = 2^{-1/2}(|00\rangle + |10\rangle)$
- $2^{-1/2}(|00\rangle + |10\rangle)$ --CNOT--> $2^{-1/2}(|00\rangle + |11\rangle)$
- Messung
 - -|00> oder |11>, je mit Wahrscheinlichkeit 0,5
 - -verschränkte Qubits können auch einzeln gemessen werden, dann sind Messungen beider Qubits immer gleich
 - -Fernwirkung: Trenne Qubits
 - Alice bekommt 1. Qubit
 - Bob bekommt 2. Qubit



Suchen mit Grover Algorithmus

- Was bedeutet suchen?
 - unstrukturierte DB Suche
 - z.B. Suche nach Besitzer von Telefonnr. im Telefonbuch
 - suche in einer Menge nach Element, das ein Prädikat erfüllt
 - Nachricht, die eine bestimmten Hashwert hat
 - Schlüssel, der einen Geheimtext entschlüsselt
 - NP-vollständige Probleme
- •Sei N die Größe der Menge in der gesucht wird und es gibt genau ein Element, das die Lösung der Suche ist
 - klassischer Aufwand: O(N), $\Omega(N)$
 - Aufwand mit QC: O(√N)
 - mit Grover Algorithmus von Lev Grover (1996)
 - halbiert Sicherheitsniveau von symmetrischen Chiffren und Hashes
 - reicht nicht um N=NP zu zeigen

Idee des Grover-Algorithmus

- N sei 2ⁿ, das n-Qubit-Register X mit Zustand
- $a_0|0...0\rangle + a_1|0...01\rangle + ...+ a_N|1...1\rangle$ mit $a_i = 1/\sqrt{N}$ für alle i und $|x_1...x_n\rangle$ repräsentiert das k-te Element wenn k binär durch $x_1...x_n$ dargestellt wird.
- Sei U eine Quantenoperation, die die Amplitude des gesuchten Elements negiert und alle anderen Amplituden gleich lässt.
- Sei S eine Quantenoperation, jede Amplitude am Mittelwert aller Amplituden spiegelt: $a_i := -(a_i 2\sum_k a_k)$
- Wiederhole mehrfach
 - wende U auf X an
 - wende S auf X an

O(√N) mal

Miss X

Faktorisieren mit Shors Algorithmus

- Shors Algorithmus ermittelt einen Teiler einer ganzen Zahl der Länge n in O((log n)⁴)
 - benutzt Quanten Fourriertransformation
- Eine Variante von Shors Algorithmus kann zum Berechnen diskreter Logarithmen genutzt werden
- Gegeben einen Quantencomputer ausreichender Größe: ECDH, ECDSA, DH, DSA und RSA sind nicht mehr sicher.

NIST Wettbewerb zur Suche von Post-Quantum Verfahren für asymmetrische Kryptographie

- Ziel: Signatur- und Schlüsselaustauschverfahren
- Auswahlkriterien: Sicherheit, Performance, weitere
- Zeitplan
 - 20.12.2016: Request for Nominations
 - 30.11.2017: Einsendeschluss
 - 21.12.2017: 1. Runde (69 Einreichungen akzeptiert)
 - 30.01.2019: 2. Runde
 - 17 Schlüsselaustausch und 9 Signaturverfahren
 - 2020/2021: 3. Runde oder Algorithmenauswahl
 - 2022/2024: Draft-Standard verfügbar

Eigenschaften der Post-Quantum-Verfahren

(auch Quantum-safe oder Quantum-resistent genannt)

- Schlüsselgrößen
- Größen der Geheimtexte, Signaturen
- Zeit-/Speicherkomplexität
 - der kryptograpischen Operation
 - der Schlüsselerzeugung

Quanten-Computer

- Ankündigungen von Q-Computern mit n physischen Qubits
 - 11/2017 IBM: 50 Qubits
 - 01/2018 Intel: 49 Qubits
 - 03/2018 Google: 72 Qubits
 - heute: 200 Qubits?
- Probleme mit QC:
- Stabilität der Qubit Zustände
 - müssen Q-Schaltkreis "überleben"
 - je komplexer die Rechnung, je tiefer und langsamer die Schaltkreise
 - Fehlertoleranz
 - Qubit Zustände sind analog
 - Fehlervermeidungs- und Fehlerkorrekturverfahren
 - Physische vs Logische Qubits
 - sehr viele physische Qubits werden zur Implementierung eines logischen Qubits benötigt

Wie viele Qubits braucht man?

Schätzung der benötigten Ressourcen zum Brechen von klassischen kryptographischen Verfahren mit QC.

Verfahren	Schlüsselgröße/ Sicherheitsmaß	# log. Qubits	# phys. Qubits	Zeit
AES-GCM	256 / 256	6600	3 • 10 ⁷	2 • 10 ³² y
RSA	4096 / 128	8400	1,5 • 10 ⁷	230 h
ECC	512 / 256	4700	8 • 10 ⁶	95 h
SHA256/Bitcoin	- / 72	2400	2 • 10 ⁶	2 • 10 ⁴ y
PBKDF2 (10 ⁴ Iter.)	- / 66	2400	2 106	2 * 10 ⁷ y

Quelle: "Quantum Computing: Progress and Prospects" E. Grumbling & M. Horowitz, Eds, National Academies of Sciences, Engineering and Medicine 2018 (prepublication report), Washington DC: The National Academies Press.

Literatur / Referenzen

- Matthias Homeister: Quantum Computing verstehen, Springer 2015
- E. Rieffel & W. Polak: Quantum Computing a Gentle Introduction, MIT Press 2014
- Web Seite des NIST PQC Wettbewerbs: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
 - Präsentation von Dustin Moody: Let's Get Ready to Rumble -The NIST PQC "Competition" https://csrc.nist.gov/CSRC/media/Presentations/Let-s-Get-Ready-to-Rumble-The-NIST-PQC-Competiti/images-media/ PQCrypto-April2018_Moody.pdf