
Some Results on Majority Quantifiers over Words

Klaus-J̈orn Lange
Wiolhelm–Schickard–Institut für Informatik

Eberhard–Karls–Universität Tübingen
Sand 13, D-72076 T̈ubingen, Germany

lange@informatik.uni-tuebingen.de

Abstract

The class of languages definable by majority quantifiers
using the order predicate is investigated. It is shown that
the additional use of first order or counting quantifiers does
not increase this class. Further on, addition is in this con-
nection a definable numerical predicate, while the converse
does not hold. The emptiness problem for this class turns
out to be undecidable.

1. Introduction

Barrington et al. characterized the languages in TC0 as
those definable by first oder and majority quantifiers using
as numerical predicates addition, multiplication, and theor-
der rpedicate ([?]). Later, Lautemann et al. showed that us-
ing only majority quantifiers and the order predicate results
in a proper subclass of TC0 ([?]). In this paper we continue
the investigation of this class and show:

• Both first order and counting quantifiers can be ex-
pressed by majority quantifiers using the order pred-
icate.

• Addition is definable by majority quantifiers using the
order predicate.

• The order predicate is not definable by majority quan-
tifiers using addition and multiplication.

• The numerical predicates definable by majority quan-
tifiers using the order predicate are precisely those de-
finable by first order quantifiers using addition.

• Satisfiability over words is undecidable for majority
quantifiers using the order predicate.

• There exists a computable functionT such thatL is in
TC0 iff T (L) is definable by majority quantifiers using
the order predicate.

It seems surprising that the situation of definability between
the order predicate and addition is reversed when going
from first order quantifiers to majority ones.

2. Preliminaries

2.1. Logic formulae over words

Throughout of this paper we consider languages defined
by logical formulae. We use the notation as it is presented
in the book of Straubing ([?]). In general,i, j, k, n will de-
note positive integers, whilex, y, z denote position vari-
ables with positive integer values. The integern will usu-
ally denote the lenght of the actual input word. Thus, vari-
ables will range over{1, 2, · · · , n}. The predicate express-
ing that the position a variablex is pointing to contains
the symbola is denoted byQa(x). For Σ′ ⊂ Σ we use
QΣ′(x) as an abbreviation for the disjunction overa ∈ Σ′

of all Qa(x). The set of words defined by a formulaΦ is
L(Φ) := {w ∈ A∗|w |= Φ}. The nonemptiness problem
of L(Φ) is identical to the satisfiability problem ofΦ over
words.

As usual, a formula Φ with set V of free
variables is interpreted over words as structures
w = (a1,V1)(a2,V2) · · · (an,Vn) such thatV is the
union of theVi and that theVi are pairwise disjoint. A let-
ter (a, ∅) is simply denoted bya. If a wordw has the set of
free variableV we express this shortly byw ∈ Σ∗ × V . If
w = (a1,V1)(a2,V2) · · · (an,Vn) ∈ Σ∗×V andx 6∈ V then
wx=i denotes the word(a1,V1) · · · (ai−1,Vi−1)(ai,Vi ∪
{x})(ai+1,Vi+1) · · · (an,Vn) ∈ Σ∗ × (V ∪ {x}).

If X is a set of quantifier types (eg.: first order) andP a
set of numerical predicates (possibly not containing the or-
der predicate<) we denote byX [P] the set of all formu-
lae built over the elements ofP and theQa(.) predicates
as atomic formulae by conjunction, negation and quantifi-
cation using quantifier types fromX . By L(X [P]) we de-
note the class of all languages defined byX [P] formulae.

2.1.1. Numerical predicatesFormulae not using the
Qa(.) predicates define numerical predicates. It is possi-
ble to define inFO[<] the following numerical predicates:
=, 6=, >,≤,≥, +1 (successor),−1 (predecessor), MIN
(first position), and MAX (last position). Further on,<
can be defined inFO[+], where+ is the addition pred-
icate x + y = z. We sometimes use expressions like
Qa(x + y) as abbreviation for∃z x + y = z ∧Qa(z). Sim-
ilarly, ∀y ∃1≤x≤y Φ means∀y ∃x 1 ≤ x ∧ x ≤ y ∧ Φ.

Barrington et al. showed that in the presence of the or-
der predicate first order quantifiers can define addition and
multiplication by use of the BIT predicate and vice versa
([?]).

Lee showed that addition is definable byFO[<, ∗] for-
mulae ([?]).

2.1.2. Majority Quantifiers We will useMaj to denote
the majority quantifier.w |= Majx Φ is fullfilled iff the
number of all1 ≤ i ≤ |w| such thatwx=i |= Φ is larger
than ⌊|w|/2⌋. The majority quantifier rejects in case of a
draw. If M̃aj denotes the weak majority quantifier which
accepts in case of a draw we have the deMorgan-like rela-
tion M̃ajxΦ = ¬Majx¬Φ.

In the case of majority quantifiers it makes a difference
whether we quantify over single variables or over pairs. If
Maj2 denotes the majority quantifier qnatifying over pairs,
Barrington et al. showedL(FO + Maj2[<]) = L(FO +
Maj[<, BIT]) = L(FO + Maj[<, +, ∗]) ([?]).

Lautemann et al. showed that all numerical predi-
cates definable byMaj[<]-formulae are even definable by
FO[+] formulae. As a consequence they got:

Theorem 2.1 (Lautemann et al. ([?])

L(Maj[<, +, ∗]) 6⊂ L(Maj[<])

2.1.3. Counting Quantifiers The counting quantifier is
denoted by∃=y

x . w |= ∃=y
x Φ is fullfilled iff there are ex-

actly j positions1 ≤ i ≤ |w| such thatwx=i |= Φ where
j is the numerical value of variabley, i.e.: y points to the
j.-th symbol ofw.

Let k ≥ 2 be a positive integer. We will useModk to
denote the counting quantifier modulok. w |= Modk

x Φ
is fullfilled iff the number of all1 ≤ i ≤ |w| such that
wx=i |= Φ is divisible byk. Straubing denotes this quanti-
fier by∃(k,o).

2.2. circuits

The reader is assumed to be aquainted with language
classes defined by uniform circuit classes as they are pre-
sented by Barrington et al. ([?]). In particular we will use
the following relations:

AC0 = L(FO[<, +, ∗]) and

TC0 = L(FO + Maj[<, +, ∗]).

3. Simulation of first order quantifiers

The simulation ofand- andor-gates by majority gates
in circuits is very simple by adding inputs which are set to
the constants one foror-gates and to zero forand-gates. If
we translate this method to formulae using majority quanti-
fiers this would mean to modify the input word. Neither we
get a direct simulation if we get rid of first order gates in
a circuit and then transform the resulting circuit into a for-
mula since the known translations from circuits to logic ex-
pressions use first order quantifiers.

We start our investigations by giving some basic con-
struction which are further used throughout the paper. We
first express the numerical predicatesi ≤ ⌈n/2⌉, i >
⌊n/2⌋, and the fact that the length of the input is odd by
majority quantifiers:

Lemma 3.1 a) x ≤ ⌈MAX/2⌉ ⇐⇒ Majyy ≥ x

b) x > ⌊MAX/2⌋ ⇐⇒ Majyy ≤ x

c) |w| is odd ⇐⇒ w |= Majx Majy x ≤ y
⇐⇒ w |= Majx Majy x ≥ y

In this way it is possible to define the predicatesi = ⌊n/2⌋
andi = ⌈n/2⌉.

Hence, from now on we are free to use quantifiers like
∀x>⌊n/2⌋ Φ as an abbreviation for∀x (¬Majy y ≤ x) ∨
Φ.

We now can express first order quantifiers directly with-
out using nonregular predicates like the BIT-predicate.

Theorem 3.2 For each formulaΦ in Maj[<] there is a for-
mula inMaj[<] equivalent to∃x Φ over words.

Proof: The simulation is done by asking whether there is
a positionx > ⌊n/2⌋ or one that is not larger than⌈n/2⌉
satisfyingΦ. Observe that this works both for an odd and
even length of the input.

∃x Φ ⇐⇒
(Majx[x ≤ ⌊MAX/2⌋ ∨ (x > ⌊MAX/2⌋ ∧ Φ)])∨
(Majx[x > ⌈MAX/2⌉ ∨ (x ≤ ⌈MAX/2⌉ ∧ Φ)]) . �

Corollary 3.3 L(FO + Maj[<]) = L(Maj[<])

Remark 3.4 If the quantifier depth of∃xΦ is at least 2,
than the quantifier depth in the construction of Theorem??
does not grow. On the other hand, the number of quanti-
fiers is doubled and then increased by 4.

In the following we demonstrate by three examples a ba-
sic method used throughout of this paper to count numbers
of positions fullfilling certain properties. The idea under-
lying this Equivalence Techniqueis the fact that for arbi-
trary i, j < ⌈n/2⌉ we havei ≥ j iff for all k we have that
j + k > ⌊n/2⌋ impliesi + k > ⌊n/2⌋.

Example 3.5 If x, y, z point to positions in the left half of
the input word and ifx < y is fullfilled, we can test whether

the number of symbols in subalphabetΣ′ between positions
x andy of the input is at leastz, by the formula

∀z′>⌊MAX/2⌋ [Majµ (µ ≤ z ∨ µ ≥ z′)] =⇒

[Majµ ((x ≤ µ ≤ y ∧ QΣ′(µ)) ∨ µ ≥ z′)]

In the previous example we could have tested for equality
by using equivalence instead of implication in the character-
izing formula. The following example describes a formula
to express the equationx + x = y if y 6= MAX:

Example 3.6 Let w ∈ Σ∗ × {x, y} be a word with oc-
curences of the variablesx andy and let w fullfilw |= x <
y ∧ y < MAX. That is,w = w1(a, x)w2(b, y)w3 for some
a, b ∈ Σ, w1, w2 ∈ Σ∗ and w3 ∈ Σ+. Then the follow-
ing formula expresses the fact that|w1| = |w2|, i.e.: that
w |= x + x = y holds:

Φ?? :=∀z>y (Majµ µ ≥ z ∨ µ ≤ x)

⇐⇒ (Majµ µ ≥ z ∨ (x < µ ≤ y))

.

Hence we can express inMaj[<] whether a number is even
or odd. Thus we can use henceforward an expression like
∀y:even Φ as an abbreviation for∀y (∃x x + x = y ⇒ Φ).

The next example shows how to express theleft andright
half counting quantifier.

Example 3.7 a)Let∃=y,l
x Φ denote the quantifier which is

true iff there are exactlyj positions1 ≤ i ≤ ⌊n/2⌋ which
fullfil wx=i |= Φ wherej is the numerical value ofy.

For eachMaj[<] formulaΦ there is aMaj[<] formula
Ψ which is equivalent to∃=y,l

x Φ. Then

∃
=y,l

x Φ ⇐⇒

(

∀z>⌊n/2⌋ ∀µ≥z Majν (ν ≤ y ∨ ν ≥ µ)

⇐⇒ Majν(ν ≤ ⌊MAX/2⌋ ∧ Φ) ∨ ν ≥ µ)

.
b) Let ∃=y,r

x Φ denote the quantifier which is true iff
there are exactlyj positions1⌊n/2⌋ + 1 ≤ i ≤ n which
fullfil wx=i |= Φ wherej is the numerical value ofy.

For eachMaj[<] formulaΦ there is aMaj[<] formula
Ψ which is equivalent to∃=y,l

x Φ. Then if the numerical
value ofy is not larger than⌈n/2⌉ we have

∃
=y,r

x Φ ⇐⇒

(

∀z≤⌊n/2⌋ ∀µ≤z Majν (ν ≥ MAX + 1 − y ∨ ν ≤ µ)

⇐⇒ Majν(ν ≥ ⌊MAX/2⌋ + 1 ∧ Φ) ∨ ν ≤ µ)

.

4. Addition is definable in Maj[<]

In this section we deal with the numerical predicate
x + y = z, i.e.: of adding two small numbers. Letw be
a word inΣ∗ × {x, y, z}, i.e.w has occurences of the vari-
ablesx, y, andz. Let us express the fact thatx + y = z
by a FO + Maj[<]-formula (and because of Lemma??
by a Maj[<]-formula). Byx + y = z we mean the fact,
that if e.g. w = w1(a, x)w2(a, y)w3(a, z)w4 and i :=
|w1| + 1, j := |w1w2| + 2 andk := |w1w2w3| + 3 then
i + j = k.

Addition is easily expressible with∃=y
x quantifiers. In

the following we show that majority quanitifier are enough
to do this job. We proceed stepwise:

• The easiest case for us is when the input wordw full-
fils w |= (x = y) ∧ z = MAX because we only have
to test whetherw has even lengthn and the value ofx
(and hence ofy) equalsn/2 which is equivalent with
x ≤ ⌊MAX/2⌋ andx + 1 > ⌈MAX/2⌉. Hence it is
represented by the formula:

Φ1(x) := ¬[Majµ µ ≥ (x + 1)] ∧ ¬[Majµ µ ≤ x]

• We now deal with the case thatz still points to the
MAX-position, butx and y have different values:
Casex 6= y and z = MAX: Subcase 1:x < y:
The following formula checksx = MAX − y by
checking whetherx + i > ⌊n/2⌋ if and only if
MAX − y > ⌊n/2⌋. If x andy do not fullfil this re-
lation we find counterexamplesx < z′ ≤ z′′ ≤ y
such thatx + z′′ − z′ 6= MAX − y + z′′ − z′. Thus,
Φ2(x, y) :=

∀x<z′,z′′≤y (Majµ[µ ≤ x ∨ z′ ≤ µ ≤ z′′] ⇐⇒

Majµ[y < µ ≤ MAX ∨ z′ ≤ µ ≤ z′′])

Subcase 2:y < x: UseΦ2(y, x).

• The casex = y andz < MAX has been dealt with in
example??: Hence we define:Φ3(x, z) :=

∀z′>z (Majµ µ ≥ z′ ∨ µ ≤ x) ⇐⇒

(Majµ µ ≥ z′ ∨ (x < µ ≤ z))

.

• Finally, we treat the most general casex 6= y andz <
MAX: We are left with the two subcases:

Subcase 1:x < y: This is just a small generalisation
of the case treated in formulaΦ2. Thus,Φ4(x, y, z) :=

∀x<z′≤z′′≤z∀z′′′>z

(Majµ µ ≤ x ∨ z′ ≤ µ ≤ z′′ ∨ µ ≥ z′′′)

⇐⇒ (Majµ y < µ ≤ z ∨ z′ ≤ µ ≤ z′′ ∨ µ ≥ z′′′)

Subcase 2:y < x ∧ z < MAX: UseΦ4(y, x, z).

Combining these cases we can now expressx + y = z
by Maj[<] formulae:

Theorem 4.1 Let w be a word in{a}∗ × {x, y, z}. Then
x + y = z holds if and only ifw |= Φ+(x, y, z), whereΦ+

is defined by:

Φ+(x, y, z) := (x = y ∧ z = MAX ∧ Φ1(x))∨

(x < y ∧ z = MAX ∧ Φ2(x, y))∨

(x > y ∧ z = MAX ∧ Φ2(y, x))∨

(x = y ∧ z < MAX ∧ Φ3(x, z))∨

(x < y ∧ z < MAX ∧ Φ4(x, y, z))∨

(x > y ∧ z < MAX ∧ Φ4(y, x, z))

�

It should be noted that Lautemann et al. also expressed ad-
dition using only the order predicate, but they used a spe-
cially designed context-free quantifier and not pure majori-
ties ([?, ?]).

By Lautemann et al. we know that all numerical predi-
cates definable in byMaj[<], i.e.: those not using theQ-
predicates, are definable inFO[+] and hence can only de-
scribe semilinear sets. Since we now can represent addition
by Maj[<] we have:

Corollary 4.2 The numerical predicates definable in
Maj[<] are exactly those definable inFO[+].

By the results of the previous section we know that

Corollary 4.3 L(FO[+]) ⊂ L(FO + Maj[<, +]) =
L(Maj[<]).

4.1. Simulation of Counting Quantifiers

A consequence of Theorem?? is the expressibility of
the counting quantifier, which answers a question posed by
Schweickardt ([?])1.

Corollary 4.4 For arbitrary Φ we have:

∃
=y

x Φ ⇐⇒

(

∃y1,y2≤⌊MAX/2⌋+1 y1 + y2 = y ∧ ∃=y1,l
x Φ ∧ ∃=y2,r

x Φ
)

,

where∃=y,l
x and ∃=y,r

x have been conststructed in Exam-
ple??.

Since TC0 = L(FO + ∃=y[<, +, ∗])we get as another
consequence:

Corollary 4.5 TC0 = L(Maj[<, ∗])

1 In the notation of Schweickardt we getFOunM [<] =
FOunM [<, +] = FOunC[<]

As another consequence, we can express for each fixedk
the modular counting quantifierModk

x in Maj[<]. For in-
stance, we have

Mod3
x Φ ⇐⇒ ∃z,y z + z + z = y ∧ ∃=y

x Φ.

Hence the parity language is in
L(Maj[<]):

Corollary 4.6 {w ∈ {a, b}∗|#a(w)is odd} =
L(Mod2

x Qa(x)) ∈ L(Maj[<]).

Hence L(Maj[<]) is not contained inL(FO[+]) or
L(FO[+, ∗]).

5. Order is not definable inMaj[+]

We now indicate how to proof that the order predicate is
not definable by addition and multiplication. The main idea
is that predicates likex + y = z or x ∗ y = z aresimplein
comparison with the order predicate: givenx andy there is
exactly one value forz which fullfils x+y = z or x∗y = z.
In contrast, for givenx there are in general many different
values fory which fullfil x < y.

For the proof we use the following notation: ifΦ is
a formula with free variables{x1, x2, · · · , xk} and w ∈
Σ∗×{x1, · · · , xi−1, xi+1, · · · , xk} of lengthn := |w| then
TΦ,xi

(w) := (wxi:=1 |= Φ, · · · , wxi:=n |= Φ) ∈ {0, 1}n.
For a positive integerr we say that a 0-1-vectorv is r+-

simple if#1(v) ≤ r andv is r−-simple if#0(v) ≤ r.
If Φ(x1, · · · , xk) is a numerical predicate overk free

variables (i.e. not using theQa(.) predicates), then we say
that Φ is r-simple iff for all 1 ≤ i ≤ k and all w ∈
a∗ × {x1, · · · , xi−1, xi+1, · · · , xk} the vectorTΦ,xi

(w) is
r+-simple or if all these vectors arer−-simple. We callΦ
simpleiff Φ is r-simple for some positive integerr. If Φ is
r-simple, then so is¬Φ.

In the following we proof that simple numerical predi-
cates together with majority quantifiers can only define sim-
ple predicates. The proof is inspired by the methods used in
Lautemann et al. ([?] Theorem 4.16).

Theorem 5.1 Let N be a set of simple numerical predi-
cates. Then every numerical predicate definable inMaj[N]
is simple.

Proof: Let Φ be aMaj[N] formula not using theQa(.)
predicates. The proof thatΦ is simple is done via induction
over the term structure ofΦ.

Φ ∈ N : if Φ is atomic thenΦ is simple by the assump-
tions.

Φ = ¬Ψ : the negation of a simple predicate is simple.

Φ = Ψ1 ∧ Ψ2 : Let Ψj berj-simple. SinceTΦ,xi
(w) is the

bitwise conjunction ofTΨ1,xi
(w) andTΨ2,xi

(w) is is
easy to see thatΦ is r1 + r2-simple.

Φ = Majz Ψ : by inductionΨ is t-simple for some posi-
tive integert. If the variablez doesn’t occurr freely in
Ψ thenΦ is equivalent toΨ and we are done. Other-
wise we have thatTΨ,z(wxi:=j) is t+-simple for ev-
ery w or t−-simple for everyw. HenceL(Mayz Ψ)
is either finite or cofinite since it contains either all
words of length larger than2t or only words of length
bounded by2t. HenceΦ is 2t-simple.

�

Since addition and multiplication2 are simple numerical
predicates, while the order predicate is not, we get the fol-
lowing consequence:

Corollary 5.2 The order predicate< is not definable in
Maj[+, ∗].

6. Properties ofMaj[<]

In this section we investigate the classL(Maj[<]) under
three aspects. First we consider the role of numerical pred-
icates. Then it is shown, that the emptiness problem (which
is here the satisfiability problem ofMaj[<] formulae over
words) is undecidable. Finally, a close relationship to TC0

languages is exhibited.

6.1. Crane Beach properties of majority logics

Barrigton et al. investigated the role of numerical pred-
icates and introduced theCrane Beach Conjecture([?]). A
languageL ⊆ Σ∗ is said to have a neutral letter if there is
a c ∈ Σ such that for allx, y ∈ Σ∗ we havexy ∈ L iff
xcy ∈ L.

If X is a logic andP a set of numerical predicates we
say thatX [<,P] fullfils the Crane-Beach-Conditioniff ev-
ery languageL in L(X [<,P]) which has a neutral letter is
a member ofL(X [<])

As a consequence of the results of Lautemann et al. we
get:

Proposition 6.1 The Crane Beach condition fails for
Maj[<, +, ∗].

Proof: we know by [?] L := {an2

|n ≥ 1} is in
L(Maj[<, ∗]) \ L(Maj[<]). Now let L′ be the language
L shuffled with a neutral letterc. Obviously,L′ is in uni-
form TC0 = L(Maj[<, ∗]). On the other hand, we know by
the previous lemma, that we can express first-order quan-
tifiers by majority quantifiers. Hence we can intersect any
language subset of someΣ∗ with the setΣ′∗ for any subal-
phabetΣ′. SinceL = L′ ∩ a∗ the languageL′ cannot be a
member ofL(Maj[<]). �

2 If the variables would range over{0, · · · , n − 1} instead of
{1, · · · , n} multiplication would no longer be simple since0 · i = 0
for all i. But the following expresibility result still would hold.

Observe that this counterexample is over a binary alpha-
bet. In contrast,FO[<,P] fullfils the crane beach condi-
tion with respect to languages over a binary alphabet for ar-
bitrary setP of numerical predicates ([?]).

On the other hand we haveMaj[<, +] = Maj[<] and
hence

Proposition 6.2 Maj[<, +] fullfils the Crane Beach con-
dition.

6.2. Satisfiability is undecidable

In this subsection it will be shown that the satisfiabil-
ity of Maj[<] formulae is undecidable. It is possible to do
this directly, e.g. by a reduction from the emptiness prob-
lem for two-counter automata. Instead, in the following this
is shown forFO[+] formulae. This result stresses the im-
portance of theQa(i) predicates, since without them the de-
cidability follows from the decidability of Presburger Arith-
metic.

Lemma 6.3 Satisfiability forFO[+] over words is unde-
cidable.

Proof: The predicates<, +1, MIN, MAX are definable
in FO[+] and thus can be used freely. We use the unde-
cidability of the emptiness problem of deterministic linear
bounded automata (DLBA). We consider the configurations
of an accepting computation of some DLBAA. The sym-
bol at positioni in configuration at timet+1 is uniquely de-
termined by the three symbols at positioni− 1, i, andi + 1
at timet. We assume the positions0 andn + 1 to contain
a special marker symbol $. Since the simulated machine is
deterministic there is mappingf : Γ3 −→ Γ which deter-
mins for every triple of possible symbols at some position
i − 1, i, i + 1 the validsymbol at positioni in next config-
uration. Now we consider the language of all valid compu-
tationsLA ⊂ $(Γ∗$)∗. We havew ∈ LA if and only if w
fulfills the following conditions:

1. w starts and ends with a $-symbol.

2. There is a natural numberi such that between any
two adjacent $-symbols there are preciselyi non-$-
symbols, That isxw = $w1$w2$ · · ·wk$ for somek
and somewj ∈ Γi.

3. w1 is the coding of an initial configuration ofA begin-
ning with the starting stateq0.

4. wk is the coding of an accepting configuration ofA
containing the accepting stateqf .

5. For each1 ≤ j < k wj+1 is the coding of the succes-
sor configuration of the configuration coded bywj .

This can be expressed by the following formula:

Q$(Min) ∧ Q$(Max)∧

∃x



∀y(Q$(y) ⇒ y = Max ∨ (Q$(y + x) ∧

∀y<z<y+x ¬Q$(z))∧

∃y (y = MIN + 1 ∧ Qq0
(y))∧

∃y,z (y + x = MAX ∧ y < z < MAX ∧ Qqf
(z))∧

∧

(A,B,C)∈Γ3

(QA(z − 1) ∧ QB(z) ∧ QC(z + 1)

⇒ Qf(A,B,C)(z + x)

)

�

Since the methods proving Corollary??were consstruc-
tive we get:

Corollary 6.4 Satisfiability is undecidable forMaj[<]
over words.

Observe that the satisfiability ofFO[<] formulae is de-
cidable by their constructive equivalence to starfree regular
sets.

The results of this subsection indicate thatL(FO[+]) be-
have like a typical low–level complexity class: the morphic
images ofL(FO[+]) are the recursively enumerable sets
and the nonerasing morphic images are contained inNPand
containNP-complete problems.

6.3. Translating from TC0 to L(Maj[<])

In this section the relationship between TC0 and
L(Maj[<]) will be investigated and a translational re-
sult between these two classes established. Since TC0=
L(Maj[<, ∗]) this means to simulate the multiplica-
tion predicatex ∗ y = z. We do this by attaching to the
input word an advice string which provides enough infor-
mation to do multiplication.

Construction 6.5 Let Σ be a finite alphabet and0, 1, $,
and c be new symbols not inΣ. For every nonnegative in-
tegern we define the following words: letaij be 1 iff i di-
videsj, and 0 otherwise for1 ≤ i, j ≤ n. SetMni :=
ai1ai2 · · · ain and Mn := $Mn1$Mn2$ · · · Mnn. For
w ∈ Σ∗ of length n := |w| define the transformation
T : Σ∗ −→ Σ∗{0, 1, $}∗c∗ by T (w) := wM|w|c

|M|w|| ∈
Σ∗{0, 1, $}+c+. In particular, the empty word is mapped to
$c. ThenT (w) is of length2n2 + 3n + 2 for n := |w|.

Lemma 6.6 The setT (Σ∗) is in L(FO[+])

Proof: Using the abbreviation explainend in the preliminar-
ies we will build aFO[+] formulaΨ?? expressing the fol-
lowing facts, which characterize the words inT (Σ∗): There
is apositioni in the input word to which the variablex
points such that the input word is inΣi−1${0, 1, $, c}∗. We
then demand that between every two$-symbols there is a
0/1-word of lengthi − 1 and that this word is of the form
(0j1)∗0∗. And finally, we require, that this word, if it is not
the last one, is followed by one beginning with0j+11. Thus,
the formula has the following form:Ψ??:=

∃x

(

∀y<x QΣ(y) ∧ Q$(x) ∧∀y>x ¬QΣ(y)∧

∀y Q$(y) ⇒
〈

(Qc(y + x) ∧∀z≥y+x Qc(z))∨

(

Q$(y + x) ∧∀1≤z<x Q{0,1}(z)∧

∃z<x Q1(y + z) ∧∀1≤µ<z Q0(y + µ)∧

∀1≤µ<x−z (Q1(y + µ) ⇒ Q1(y + µ + z))∧

(¬Qc(y + x + 1) ⇒ (Q1(y + x + z + 1))∧

∀1≤µ<z+1 Q0(y + x + µ)
))〉)

�

We now construct the announced tranlation ofFO +
Maj[<, ∗] formulae intoFO + Maj[<] formulae:

Theorem 6.7 There is a computable function
T : FO + Maj[<, +, ∗] −→ FO + Maj[<, +]
such that for eachFO + Maj[<, ∗] formulaΦ we have

∀w w |= Φ ⇐⇒ T (w) |= T (Φ).

In addition, we haveL(Φ) ⊆ T (Σ∗). HenceL(T (Φ)) =
T (L(Φ)).

Proof: The mappingT will be defined inductively over the
termstructure ofΦ. During the translation we have to re-
place the multiplication predicate by someMaj[<] formula
using the advice and we have to make quantifiers to work
now over the wordT (w).

We first describe how to simulate multiplication. Let
T (w) = wMnc|Mn| be the input word and let the vari-
able y point to the $-symbol in T (w) where the sub-
word Mni begins. Then we can express that fact thatx
points to positioni (in short x = I(y)) by the formula
Q$(y) ∧ Q1(y + x) ∧ ∀1≤z<x Q0(y + z). Using this new
predicateI we can express the relationx ∗ y = z by a for-
mulaΞ(x, y, z) as follows: we require the existence of az′

such thatx = I(z′), that is withz′ we are looking in the rel-
evant row of the advice. ByQ1(z

′ + z) we require, thatx

dividesz and we make sure that⌊z/x⌋ = y holds by requir-
ing that|{1 ≤ µ ≤ z | Q1(z

′ + µ)}| = y. The last equation
is assured by:

∀z′′ Qc(z
′′) ⇒ (Majµ (µ ≤ y ∨ µ ≥ z′′) ⇔

Majµ ((z′ < µ ≤ z′ + z ∧ Q1(µ)) ∨ µ ≥ z′′))

.
We now define for eachΦ ∈ Maj[<, +, ∗] inductively

over the term structure ofΦ a FO + Maj[<, +] formula
T ′(Φ) which is modelled byT (w) iff Φ is fullfilled by
w. The idea is to simulate multiplication with the help of
the{0, 1, $}+c+–suffix of T (w) and to keep all predicates
working on theΣ∗–prefix. DefineT ′(Φ) by the following
case distinctions according to the structure ofΦ:

x < y : T ′(Φ) := x < y remains unchanged.

x + y = z : T ′(Φ) := x + y = z remains unchanged.

x ∗ y = z : T ′(Φ) := Ξ(x, y, z) as defined above.

Qa(x) : T ′(Φ) := Qa(x) remains unchanged.

¬Ψ : T ′(Φ) := ¬T ′(Ψ).

Ψ1 ∧ Ψ2 :T ′(Φ) := T ′(Ψ1) ∧ T ′(Ψ2)

∃x Ψ : T ′(Φ) := ∃x QΣ(x) ∧ T ′(Ψ)

∀x Ψ : T ′(Φ) := ∀x ¬QΣ(x) ∨ T ′(Ψ)

Majx Ψ : T ′(Φ) := Majx (Qc(x) ∨ (T ′(Ψ) ∧ QΣ(x)))

The idea of the last entry is that exactly half of the positions
in the advice carry the symbolc. Thus a majority forΦ over
w is transformed into a majority forT ′(Φ) overT (w). Our
anticipated formula is now defined by

T (Φ) := T ′(Φ) ∧ Ψ??.

�

Because ofL(T (Φ)) = T (L(Φ)) we have

L(Φ) 6= ∅ ⇐⇒ L(T (Φ)) 6= ∅

i.e.:Φ is satisfiable iffT (Φ) is satisfiable. Hence we get an-
other proof for the undecidability of the satisfiability prob-
lem ofMaj[<] formulae.

If T (L) ∈ L(Maj[<]) ⊂ TC0 we can construct a TC0-
circuit acceptingL sinceT is obviously a TC0-computable
function. Hence we have:

Corollary 6.8 For each language L we have

L ∈ TC0 ⇔ T (L) ∈ L(Maj[<]).

Observe, that this construction does not work to give a
corresponding translation fromFO[+, ∗] into FO[+] since
we make essential use of the majority quantifier when sim-
ulating multiplication by theΞ(x, y, z) predicate.

7. Open Questions

In the first order framework it is possibl to represent cir-
cuit depth by alternation depth of first oder quantifiers. This
doesn’t seem to work with majority gates and quantifiers,
since these are not idempotent, i.e.: majority over pairs are
more powerful than nested majorities over single variables.
So the question remains, how to represent circuit depth of
threshold circuits in the majority logic framework.

Another question concerns lower bounds. The separa-
tion of uniform circuit classes like NC1 and TC0 is one of
the major open problems of theoretical computer science.
These classes are defined with the help of the BIT-predicate,
or equivalently with addition and multiplication. What hap-
pens if we drop multiplication? It should be possible to sep-
arate modular counting from majority and the later from
NC1-circuits (resp. arbitrary finite group quantifiers) if we
use onlyFO[+]-uniformity (resp.FO + X [<, +] logic).

Acknowledgements

I thank Andreas Krebs for pointing out Corollary?? to
me. Further I thank Pascal Tesson and Denis Therien for
fruitful discussions about the topic.

References

[1] D.A. Barrington, N. Immerman, and H. Straubing. On unifor-
mity within NC

1. J. Comp. System Sci., 41:274–306, 1990.
[2] D.A. Barrington, Immerman N., Lautemann C., Schweikardt

N., and Therien D. The crane beach conjecture. InIn IEEE
Symposium on Logic in Computer Science, pages 187–196,
2001.

[3] C. Lautemann, P. MCKenzie, T. Schwentick, and H. Vollmer.
The descriptive complexity approach to logcfl.J. Comp. Sys-
tem Sci., 62:629–652, 2001.

[4] C. Lautemann, T. Schwentick, and D. Therien. Logics for
context-free languages. InIn the 8th International Worship on
Computer Science Logic, number 933 in LNCS, pages 205–
216. Springer, 1994.

[5] Troy Lee. Is multiplication harder than addition? arithmetical
definability over finite structures. Master’s thesis, Institute for
Logic, Language, and Computation, 2001. (in Amsterdam).

[6] N. Schweickardt. On the Expressive Power of First–Order
Logic with Built–In Predicates. Dissertation, Johannes Guten-
berg Universiẗat in Mainz, 2001.

[7] H. Straubing. Finite Automata, Formal Logic, and Circuit
Complexity. Birkhäuser, 1994.

