Some Results on Majority

Klaus-bHrn

Quantifiers over Words

Lange

Wiolhelm-Schickard—Institutifr Informatik
Eberhard—Karls—Univergit Tubingen
Sand 13, D-72076 0bingen, Germany

lange @informatik.

Abstract

The class of languages definable by majority quantifiers
using the order predicate is investigated. It is shown that
the additional use of first order or counting quantifiers does
not increase this class. Further on, addition is in this con-
nection a definable numerical predicate, while the converse

uni-tuebingen.de

It seems surprising that the situation of definability betwe
the order predicate and addition is reversed when going
from first order quantifiers to majority ones.

2. Preliminaries

does not hold. The emptiness problem for this class turns2.1. Logic formulae over words

out to be undecidable.

1. Introduction

Barrington et al. characterized the languages il &€
those definable by first oder and majority quantifiers using
as numerical predicates addition, multiplication, anddte
der rpedicate (). Later, Lautemann et al. showed that us-
ing only majority quantifiers and the order predicate result
in a proper subclass of Q[?]). In this paper we continue
the investigation of this class and show:

e Both first order and counting quantifiers can be ex-
pressed by majority quantifiers using the order pred-

icate.

Addition is definable by majority quantifiers using the
order predicate.

The order predicate is not definable by majority quan-
tifiers using addition and multiplication.

The numerical predicates definable by majority quan-

tifiers using the order predicate are precisely those de-

finable by first order quantifiers using addition.

Satisfiability over words is undecidable for majority
quantifiers using the order predicate.

There exists a computable functi@hsuch thatl is in
TCU iff T(L) is definable by majority quantifiers using
the order predicate.

Throughout of this paper we consider languages defined
by logical formulae. We use the notation as it is presented
in the book of Straubing ¢]). In general;i, j, k, n will de-
note positive integers, while,y, = denote position vari-
ables with positive integer values. The integewill usu-
ally denote the lenght of the actual input word. Thus, vari-
ables will range ovef1,2,--- ,n}. The predicate express-
ing that the position a variable is pointing to contains
the symbola is denoted byQ,(z). For ¥’ C ¥ we use
Qs (x) as an abbreviation for the disjunction ovee %’
of all Q,(z). The set of words defined by a formulais
L(®) := {w € A*|lw = ®}. The nonemptiness problem
of L(®) is identical to the satisfiability problem & over
words.

As wusual, a formula ® with set V of free
variables is interpreted over words as structures
w (a1, V1)(az,Vs) - - (an,Vy,) such thatV is the
union of theY; and that the); are pairwise disjoint. A let-
ter (a, @) is simply denoted by:. If a wordw has the set of
free variabley we express this shortly by € ¥* x V. If
w = (a1, V1)(az, Vo) -+ (an, Vy) € T*xV andz ¢ Vthen
Wy—; denotes the Wordal, V1) s (Cli_l, Vi_l)(a,», Vi, U
{2} (@1, Vier) -+~ (an, V) € 5% x (VU {2}).

If X is a set of quantifier types (eg.: first order) gAc
set of numerical predicates (possibly not containing the or
der predicate<) we denote byX'[P] the set of all formu-
lae built over the elements ¢ and the@,(.) predicates
as atomic formulae by conjunction, negation and quantifi-
cation using quantifier types frot’. By £(X[P]) we de-
note the class of all languages defined¥yP| formulae.

2.1.1. Numerical predicatesFormulae not using the
Q.(.) predicates define numerical predicates. It is possi-
ble to define inF'O[<] the following numerical predicates:
=,#,>,<,>,+1 (successor»1 (predecessorMIN
(first position) and M AX (last position). Further ong
can be defined iFO[+], where+ is the addition pred-
icatex + y = z. We sometimes use expressions like
Q. (r +y) as abbreviation foB, = + y = 2z A Q4 (2). Sim-
ilarly, ¥y, J1<o<y ®meansv, 3, 1 <z Az <y A,
Barrington et al. showed that in the presence of the or-

3. Simulation of first order quantifiers

The simulation ofand- and or-gates by majority gates
in circuits is very simple by adding inputs which are set to
the constants one far-gates and to zero farnd-gates. If
we translate this method to formulae using majority quanti-
fiers this would mean to modify the input word. Neither we
get a direct simulation if we get rid of first order gates in
a circuit and then transform the resulting circuit into a for
mula since the known translations from circuits to logic ex-

der predicate first order quantifiers can define addition andpressions use first order quantifiers.

multiplication by use of the BIT predicate and vice versa
(?D.

Lee showed that addition is definable BY[<, «| for-
mulae ([]).

2.1.2. Majority Quantifiers We will use Maj to denote
the majority quantifieroo = Maj, is fullfilled iff the
number of alll < i < |w| such thatw,—; = @ is larger
than | |w|/2]. The majority quantifier rejects in case of a
draw. If Maj denotes the weak majority quantifier which

accepts in case of a draw we have the deMorgan-like rela-

tion Maj, ® = ~Maj,—®.

In the case of majority quantifiers it makes a difference
whether we quantify over single variables or over pairs. If
Majs denotes the majority quantifier gnatifying over pairs,
Barrington et al. showed (FO + Majs[<]) = L(FO +
Majl<,BIT]) = L(FO + Maj[<,+,]) ([?]).

Lautemann et al. showed that all numerical predi-
cates definable by/qj[<]-formulae are even definable by
FO[+] formulae. As a consequence they got:

Theorem 2.1 (Lautemann et al. ([?])
L(Maj[<,+,+]) ¢ L(Maj[<])

2.1.3. Counting Quantifiers The counting quantifier is
denoted by Y. w | 37Y @ is fullfilled iff there are ex-
actly j positionsl < i < |w| such thatw,—; &= ® where
j is the numerical value of variablg i.e.: y points to the
j.-th symbol ofw.

Let & > 2 be a positive integer. We will us&/od"* to
denote the counting quantifier moduto w = Mod* @
is fullfilled iff the number of alll < ¢ < |w| such that
w—; | @ is divisible byk. Straubing denotes this quanti-
fier by 3(+-0),

2.2. circuits

The reader is assumed to be aquainted with languag

classes defined by uniform circuit classes as they are pre-

sented by Barrington et al.q]). In particular we will use
the following relations:

AC’ = L(FOI<, +,+]) and
TCY = L(FO + Maj[<,+,).

We start our investigations by giving some basic con-
struction which are further used throughout the paper. We
first express the numerical predicates< [n/2], ¢ >
[n/2], and the fact that the length of the input is odd by
majority quantifiers:

Lemma3.l a)z < [MAX/2] <= Maj,y > x
b) x > |[MAX/2| <= Maj,y < x

C) lw is odd <<= w E Maj, Maj, =z < y
— wkE Maj, Maj, x>y

In this way it is possible to define the predicates |n/2|
andi = [n/2].

Hence, from now on we are free to use quantifiers like
Vasin/2) ® as an abbreviation for, (—-Maj, y < x) V
.

We now can express first order quantifiers directly with-
out using nonregular predicates like the BIT-predicate.

Theorem 3.2 For each formula® in M aj[<] there is a for-
mula in Maj[<] equivalent tad,, ® over words.

Proof: The simulation is done by asking whether there is
a positionz > |[n/2] or one that is not larger thajm /2]
satisfying®. Observe that this works both for an odd and
even length of the input.

+ P <=
(Maj,[x < |[MAX/2|V (x > |[MAX/2| A®)])V
(Maj.[xz > [MAX/2|V (x < [MAX/2] A®)]). O

Corollary 3.3 L(FO + Maj[<]) = L(Maj[<])

Remark 3.4 If the quantifier depth ofi,® is at least 2,
than the quantifier depth in the construction of TheofZm
does not grow. On the other hand, the number of quanti-
fiers is doubled and then increased by 4.

In the following we demonstrate by three examples a ba-

oSic method used throughout of this paper to count numbers

of positions fullfilling certain properties. The idea under
lying this Equivalence Techniquis the fact that for arbi-
traryi,j < [n/2] we havei > j iff for all & we have that
j+k>|n/2] impliesi + k> |n/2].

Example 3.5 If z, y, z point to positions in the left half of
the input word and it < y is fullfilled, we can test whether

the number of symbols in subalphab®thetween positions
x andy of the input is at least, by the formula

\v/z’>|_]MAX/2J Maj, (pn<zvp>2)] =

(Maj, (x <p<yAQs(u)Vp> 2z

In the previous example we could have tested for equality
by using equivalence instead of implication in the characte
izing formula. The following example describes a formula

to express the equation+- = = y if y # M AX:

Example 3.6 Let w € ¥* x {z,y} be a word with oc-
curences of the variablesandy and let w fullfilw = = <

yANy < MAX. Thatis,w = wq(a, z)ws(b, y)ws for some
a,b € X,wy,wy € X*¥ andws € XT. Then the follow-
ing formula expresses the fact that;| = |w.|, i.e.: that
w E x + z = y holds:

Bypi= Vs (Maj, > 2V <)

= (Maj, p> 2V (x<p<y))

Hence we can express i a;j[<] whether a number is even

or odd. Thus we can use henceforward an expression like

Vy.even ® @s an abbreviation for, (3, z + 2z =y = ®).

The next example shows how to expresslétieandright
half counting quantifier

Example 3.7 a)Let3-¥! & denote the quantifier which is
true iff there are exactly positionsl < i < |n/2]| which
fullfil w,—; = ® wherej is the numerical value af.

For eachMaj[<] formula® there is aM aj[<] formula
¥ which is equivalent ta; ! ®. Then

=y,l
Ely¢<=>

x

(v2>_n/2j V,U,Zz Majl/ (I/ S y\/ v Z N’)
— Maj,(v < |MAX/2| AND) Vv > p)

b) Let 35¥" & denote the quantifier which is true iff
there are exactly positionsl|n/2| + 1 < i < n which
fullfil w,—; = ® wherej is the numerical value af.

For eachMaj[<] formula® there is aM aj[<] formula
U which is equivalent tad;¥! ®. Then if the numerical
value ofy is not larger than[n /2] we have

3470 —

(vzg_n/% V,u,gz Majl/ (V > MAX +1 —yVr< 'u)
— Maj,(v > |MAX/2|+1AP) Vv <pu)

4. Addition is definable in Maj[<]

In this section we deal with the numerical predicate
x +y = z, i.e.: of adding two small numbers. Let be
aword inX* x {z,y, z}, i.e.w has occurences of the vari-
ablesz,y, and z. Let us express the fact that+ y = 2
by a FO + Maj[<]-formula (and because of Lemn?&®
by a Maj[<]-formula). Byz + y = z we mean the fact,
that if e.g.w = wi(a,x)wa(a,y)ws(a,z)ws andi :=
lwi] + 1,7 = |wyws| + 2 andk := |wywews| + 3 then
i+j =k

Addition is easily expressible witAY quantifiers. In
the following we show that majority quanitifier are enough
to do this job. We proceed stepwise:

e The easiest case for us is when the input werflll-
filsw = (x = y) A z = M AX because we only have
to test whethet has even length and the value of
(and hence ofy) equalsn/2 which is equivalent with
x < |[MAX/2|andz + 1 > [MAX/2]. Hence itis
represented by the formula:

@y (x) :=2[Maj, p = (x + 1)] A =[Maj, p < x]

e We now deal with the case thatstill points to the
M AX-position, butz and y have different values:
Casex # y andz = MAX: Subcase 1x < y:
The following formula checks = MAX — y by
checking whetherr + ¢ > |n/2]| if and only if
MAX —y > |[n/2]. If x andy do not fullfil this re-
lation we find counterexamples < 2’ < 2" < y
suchthatr + 2/ — 2/ # MAX —y + 2" — 2’. Thus,
Doz, y) :=

vw<z’,z”§y (Majup<azVvz <p<z'|<
Maj,ly<pu < MAX V2 <pu<2")

Subcase 2y < x: Use®,(y, x).
e The caser = y andz < M AX has been dealt with in

example?? Hence we defineds(z, z) :=
\V/z/>z (Maj, p>2'Vp<z) <=
(Magjy p> 2"V (¢ < p < 2))

¢ Finally, we treat the most general case: y andz <
M AX: We are left with the two subcases:
Subcase 1t < y: Thisis just a small generalisation
of the case treated in formui,. Thus,®4(z,y, 2) :=

\v/:r<z’§z”§z\v/z'”>z

(Maj, p<azVz<pu<Z'vup>2")
= (Majuy<p<zVvz <p<zZ'vu>2")
Subcase 2y < x A z < MAX: Use®,(y, x, z).

Combining these cases we can now expressy = z
by Maj[<] formulae:

Theorem 4.1 Let w be a word in{a}* x {z,y, z}. Then
x +y = z holds ifand only ifw = @ (x, vy, z), where® .
is defined by:

O (r,y,2) =(x=yANz=MAX N®y(z))V
(x <yANz=MAX A Dy(z,y
(x>yNz=MAX N Ps(y,x
(x=yANz< MAX AN ®3(z, 2
(x<yNz< MAX AN ®y(z,y,2))V

(x>yANz< MAX A Dy(y,z,2))

DAY
A
)V
)

O

It should be noted that Lautemann et al. also expressed ad
dition using only the order predicate, but they used a spe-
cially designed context-free quantifier and not pure majori

ties ([7, ?)).

By Lautemann et al. we know that all numerical predi-

cates definable in by/aj[<], i.e.: those not using th@-
predicates, are definable O[+] and hence can only de-

scribe semilinear sets. Since we now can represent additiony«

by Maj[<] we have:

Corollary 4.2 The numerical predicates definable in
Maj[<] are exactly those definable FO[+].

By the results of the previous section we know that

Corollary 4.3 L(FO[+]) C L(FO + Maj[<,+]) =
L(Maj[<]).

4.1. Simulation of Counting Quantifiers

A consequence of Theoref?? is the expressibility of

As another consequence, we can express for eachifixed
the modular counting quantifie¥/od” in Maj[<]. For in-
stance, we have

Mod> ® <=3, ,2+z2+z=y A 3,¥ ®.

Hence the

L(Maj[<]):

Corollary 4.6 {w € {a,b}*|#q(w)is
L(Mod Qa(x)) € L(Maj[<]).

Hence £(Maj[<]) is not contained inL(FO[+]) or
L(FO[+, #]).

parity language is in

odd} =

5. Order is not definable in Maj[+]

We now indicate how to proof that the order predicate is
not definable by addition and multiplication. The main idea
is that predicates like + y = 2 or x x y = z aresimplein
comparison with the order predicate: giverandy there is
exactly one value fot which fullfils t4+y = z orzxy = z.

In contrast, for giverx there are in general many different
values fory which fullfil =z < y.

For the proof we use the following notation: @ is
a formula with free variable§zy, x5, -+ , 2} andw €
{x1, "+, %i—1,%iy1," -, 2 Of lengthn := |w| then
Tz, (W) = (Wgy=1 E @, -+, Wy, =n = P) € {0, 1}

For a positive integer we say that a 0-1-vectaris r*-
simple if #; (v) < r andv isr~-simple if #¢(v) < r.

If ®(xq,---,xx) IS @ numerical predicate ovér free
variables (i.e. not using th@,(.) predicates), then we say
that ¢ is r-simpleiff for all 1 < ¢ < k and allw €
a* x {1’1, g1, L1, ,Jlk} the VeCtOIIILI;.,mi (’LU) is
rT-simple or if all these vectors are -simple. We call®
simpleiff & is r-simple for some positive integer If ¢ is
r-simple, then so is:®.

In the following we proof that simple numerical predi-

the counting quantifier, which answers a question posed bycates together with majority quantifiers can only define sim-

Schweickardt (p])*.
Corollary 4.4 For arbitrary ® we have:

H:yd) =

(3y17y2SLMAX/2J+1 Y1+ Yo = y/\giyl,l A TTUT <I>) 7

where3;¥! and 3% have been conststructed in Exam-
ple ?~.

Since TQ = L(FO + 37Y[<, +, «])we get as another
consequence:

Corollary 4.5 TC = L(Maj[<,])

1 In the notation of Schweickardt we geFOunM[<] =
FOunM|<,+] = FOunC|[<]

ple predicates. The proof is inspired by the methods used in
Lautemann et al.] Theorem 4.16).

Theorem 5.1 Let A/ be a set of simple numerical predi-
cates. Then every numerical predicate definablifimj [A]
is simple.

Proof: Let ® be aMaj[N] formula not using th&),(.)
predicates. The proof thatis simple is done via induction
over the term structure @f.

® € NV :if ® is atomic thend is simple by the assump-
tions.

® = —¥ :the negation of a simple predicate is simple.

O =T, AV, :Let¥; ber;-simple. Sincel'p ., (w) is the
bitwise conjunction offy, ,, (w) andTy, ., (w) is is
easy to see thabk is r; + ro-simple.

® = Maj, ¥ : by inductionV is t-simple for some posi-
tive integert. If the variablez doesn’t occurr freely in
¥ then® is equivalent tol and we are done. Other-
wise we have thal'y . (w,,.—;) is t*-simple for ev-
ery w or t~-simple for everyw. HenceL(May, ¥)
is either finite or cofinite since it contains either all
words of length larger tha®¢ or only words of length
bounded by2t. Henced is 2t-simple.

O
Since addition and multiplicatidrare simple numerical

predicates, while the order predicate is not, we get the fol-

lowing consequence:

Corollary 5.2 The order predicate< is not definable in
Mag[+,).

6. Properties of Maj[<]

In this section we investigate the clad&\/a;j[<]) under

Observe that this counterexample is over a binary alpha-
bet. In contrastF'O[<, P] fullfils the crane beach condi-
tion with respect to languages over a binary alphabet for ar-
bitrary setP of numerical predicates?)]).

On the other hand we havd aj[<, +] = Maj[<] and
hence

Proposition 6.2 Maj[<, +] fullfils the Crane Beach con-
dition.

6.2. Satisfiability is undecidable

In this subsection it will be shown that the satisfiabil-
ity of Maj[<] formulae is undecidable. It is possible to do
this directly, e.g. by a reduction from the emptiness prob-
lem for two-counter automata. Instead, in the followingthi
is shown forF’O[+] formulae. This result stresses the im-
portance of the&),, (i) predicates, since without them the de-
cidability follows from the decidability of Presburger At

three aspects. First we consider the role of numerical pred-mMetic.
icates. Then it is shown, that the emptiness problem (which| emma 6.3 Satisfiability for FO[-+] over words is unde-

is here the satisfiability problem df/ aj[<] formulae over
words) is undecidable. Finally, a close relationship td TC
languages is exhibited.

6.1. Crane Beach properties of majority logics

Barrigton et al. investigated the role of numerical pred-
icates and introduced th@rane Beach Conjecturg?]). A
languagel. C ¥* is said to have a neutral letter if there is
ac € X such that for alke,y € ¥* we havery € L iff
xcy € L.

If X is a logic andP a set of numerical predicates we
say that¥'[<, P] fullfils the Crane-Beach-Conditioiff ev-
ery languagd. in £L(X[<,P]) which has a neutral letter is
amember oL (X[<])

cidable.

Proof: The predicates,+1, MIN, MAX are definable

in FO[+] and thus can be used freely. We use the unde-
cidability of the emptiness problem of deterministic linea
bounded automata (DLBA). We consider the configurations
of an accepting computation of some DLBA The sym-

bol at positior in configuration at timeé+ 1 is uniquely de-
termined by the three symboils at position 1,7, andi + 1

at timet. We assume the positiofisandn + 1 to contain

a special marker symbol $. Since the simulated machine is
deterministic there is mapping : I'* — T which deter-
mins for every triple of possible symbols at some position
i —1,4,7 + 1 the validsymbol at position in next config-
uration. Now we consider the language of all valid compu-

As a consequence of the results of Lautemann et al. wetationsL4 C $(I'*$)*. We havew € L if and only if w

get:

Proposition 6.1 The Crane Beach condition fails for
Magj[<, +, .

Proof: we know by P] L := {a"’|n > 1} is in
L(Maj[<,*]) \ L(Maj[<]). Now let L’ be the language
L shuffled with a neutral letter. Obviously, L’ is in uni-
form TC? = £L(Maj[<, #]). On the other hand, we know by

the previous lemma, that we can express first-order quan-
tifiers by majority quantifiers. Hence we can intersect any 4

language subset of som& with the set’* for any subal-
phabet”’. SinceL = L' N a* the languagd.’ cannot be a
member ofL(Maj[<]). O

2 If the variables would range ovef0,---,n — 1} instead of
{1, -+ ,n} multiplication would no longer be simple sinbe i = 0
for all <. But the following expresibility result still would hold.

fulfills the following conditions:
1. w starts and ends with a $-symbol.

2. There is a natural numbérsuch that between any
two adjacent $-symbols there are preciselgon-$-
symbols, That iscw = $wiSwe$ - - - wi$ for somek
and somav; € I'.

3. w; is the coding of an initial configuration of begin-
ning with the starting state,.

wy, 1S the coding of an accepting configuration 4f
containing the accepting staje.

5. Foreachl < j < k wj4 is the coding of the succes-
sor configuration of the configuration codedby.

This can be expressed by the following formula:

Qs(Min) A Qs(Maz)A

3, (vy(Q$(y> =y = Maz Vv (Qs(y +x) A

vy<z<y+w _‘QSB(Z))/\

3, (v = MIN + 17 Qu(w)A

d,. (y+2=MAX Ay <2< MAX AQy, (2)A

A

(A,B,C)ers

(Qa(z —1) AQB(2) A Qc(z +1)

= Qra,B,0) (2 + l’))

O
Since the methods proving CorollaP? were consstruc-
tive we get:

Corollary 6.4 Satisfiability is undecidable fo\/aj[<]
over words.

Observe that the satisfiability dfO[<] formulae is de-
cidable by their constructive equivalence to starfree lagu
sets.

The results of this subsection indicate tBg#'O[+]) be-
have like a typical low—level complexity class: the morphic
images of L(FO[+]) are the recursively enumerable sets
and the nonerasing morphic images are containétPiand
containNP-complete problems.

6.3. Translating from TC® to £(Maj[<])

In this section the relationship between TGind
L(Maj[<]) will be investigated and a translational re-
sult between these two classes established. Sincde=TC
L(Maj[<,*]) this means to simulate the multiplica-
tion predicater x y = z. We do this by attaching to the
input word an advice string which provides enough infor-
mation to do multiplication.

Construction 6.5 Let X be a finite alphabet and, 1, $,
and ¢ be new symbols not iR. For every nonnegative in-
tegern we define the following words: let; be 1 iffi di-
videsj, and O otherwise fol < 4,5 < n. SetM,,; :
Ai1Q52 * ** Qin and Mn = $Mn1$Mn2$ s Mnn For

w € ¥* of lengthn := |w| define the transformation
T : % — £90,1,8} ¢ by T(w) := wM), Ml €
¥*{0,1,$}*cT. In particular, the empty word is mapped to
$c. ThenT (w) is of length2n? + 3n + 2 for n := |w|.

Lemma 6.6 The setl'(X*) is in L(FO[+])

Proof: Using the abbreviation explainend in the preliminar-
ies we will build aF'O[+] formula ¥, expressing the fol-
lowing facts, which characterize the wordsIig~*): There

is aposition: in the input word to which the variable
points such that the input word is ¥/~1${0, 1, $, c}*. We
then demand that between every t§xsymbols there is a
0/1-word of lengthi — 1 and that this word is of the form
(071)*0*. And finally, we require, that this word, if it is not
the last one, is followed by one beginning wi¢h 1. Thus,
the formula has the following formb,:=

3. (Vi @507 Qs@) A Vo0 ~Qsw)n

Yy Qsw) = ((@Quly+2) A Vizyia Qul2)V
(Q$(3/ +x) A v1§z<ac Q0,13 ()N

3z<z Ql(y + Z) A v1§#<z QO(y + /~L)/\

v1§H<mfz (Qi(y+ 1) = Qiy +p+ 2))A

(Qely+r+1)= (Qi(y+z+2z+1)A

V1§u<z+1 Qoy+z+ “)))>)

O
We now construct the announced tranlationfo® +
Maj[<,«] formulae intoF'O + Maj[<] formulae:

Theorem 6.7 There is a computable function
T FO + Maj[<,+,%x] — FO + Majl<,+]
such that for eacl#'O + Maj[<, *] formula® we have

Vo wkd e T(w) = T(3).

In addition, we havel(®) C T'(X*). HenceL(7 (®))
T(L(®)).

Proof: The mappind/” will be defined inductively over the
termstructure ofp. During the translation we have to re-
place the multiplication predicate by som#uj[<] formula
using the advice and we have to make quantifiers to work
now over the word(w).

We first describe how to simulate multiplication. Let
T(w) = wM,c™~| be the input word and let the vari-
able y point to the $-symbol in T'(w) where the sub-
word M,,; begins. Then we can express that fact that
points to position: (in shortz = I(y)) by the formula
Qs(y) A Q1(y + x) AVi<.<a Qoly + 2). Using this new
predicatel we can express the relatian y = z by a for-
mulaZ(z,y, z) as follows: we require the existence ot'a
such that: = I(2'), that is withz’ we are looking in the rel-
evant row of the advice. Bf); (2’ + z) we require, that:

dividesz and we make sure that /x| = y holds by requir-
ing that|{1 < u <z | Q1(2 +)} = y. The last equation
is assured by:

Vo Qu(z") = (Maj, (n<yvp>2") e

Maj, (' <p <2 4+2AQ1(p)Vu>2"))

We now define for eack € Maj[<, +,] inductively
over the term structure 6b a FO + Maj[<,+] formula
T'(®) which is modelled byr'(w) iff @ is fullfilled by
w. The idea is to simulate multiplication with the help of
the {0, 1, $} T cT—suffix of T'(w) and to keep all predicates
working on theX*—prefix. Define7’(®) by the following
case distinctions according to the structurebof

z <y :7'(®) =z < y remains unchanged.
r+y=2z:T'(®):=x+y = zremains unchanged.
xxy =2z :7T'(®):=E(z,y, 2) as defined above.
Qu(z) 1 T'(®) := Q.(z) remains unchanged.

-0 T(D) = -T(D).

Uy ATy T(DR) :=T' (V1) AT/ (T2)

3,0 T(P):=3,; Qu(x) ANT'(T)

Vo U T (®) =V, 2 Qxu(z) VT'(T)

Maj, ¥ : T'(®) := Maj, (Qc(z) v (T'(¥) A Qs (x)))

The idea of the last entry is that exactly half of the pos#ion
in the advice carry the symbel Thus a majority fod over

w is transformed into a majority faf’(®) overT(w). Our
anticipated formula is now defined by

T((I)) = T’((I)) A Woo,

Because of (7 (?))

T(L(®)) we have

L(®) # 0 = L(T(®)) # 0

i.e.: @ is satisfiable iff7 () is satisfiable. Hence we get an-
other proof for the undecidability of the satisfiability pro
lem of Maj[<] formulae.

If T(L) € L(Maj[<]) C TC" we can construct a T
circuit acceptingL sinceT is obviously a T&-computable
function. Hence we have:

Corollary 6.8 For each language L we have
LeTC & T(L) € L(Maj[<]).

Observe, that this construction does not work to give a
corresponding translation froMO[+, %] into FO[+] since
we make essential use of the majority quantifier when sim-
ulating multiplication by th&(z, y, z) predicate.

7. Open Questions

In the first order framework it is possibl to represent cir-
cuit depth by alternation depth of first oder quantifierssThi
doesn’'t seem to work with majority gates and quantifiers,
since these are not idempotent, i.e.: majority over pags ar
more powerful than nested majorities over single variables
So the question remains, how to represent circuit depth of
threshold circuits in the majority logic framework.

Another question concerns lower bounds. The separa-
tion of uniform circuit classes like NCand TC is one of
the major open problems of theoretical computer science.
These classes are defined with the help of the BIT-predicate,
or equivalently with addition and multiplication. What hap
pens if we drop multiplication? It should be possible to sep-
arate modular counting from majority and the later from
NC!-circuits (resp. arbitrary finite group quantifiers) if we
use onlyF'O[+]-uniformity (resp.FO + X<, +] logic).

Acknowledgements

| thank Andreas Krebs for pointing out Corolla®p to
me. Further | thank Pascal Tesson and Denis Therien for
fruitful discussions about the topic.

References

[1] D.A. Barrington, N. Immerman, and H. Straubing. On unifo
mity within NC*. J. Comp. System Scit1:274-306, 1990.
D.A. Barrington, Immerman N., Lautemann C., Schweiltard
N., and Therien D. The crane beach conjecturelnlfEEE
Symposium on Logic in Computer Scienpages 187-196,
2001.

[3] C. Lautemann, P. MCKenzie, T. Schwentick, and H. Volimer
The descriptive complexity approach to logcfl.Comp. Sys-
tem Sci. 62:629-652, 2001.

[4] C. Lautemann, T. Schwentick, and D. Therien. Logics for
context-free languages. In the 8th International Worship on
Computer Science Logioumber 933 in LNCS, pages 205—
216. Springer, 1994.

[5] Troy Lee. Is multiplication harder than addition? antétical

definability over finite structures. Master’s thesis, lngg for

Logic, Language, and Computation, 2001. (in Amsterdam).

N. Schweickardt. On the Expressive Power of First—Order

Logic with Built—In Predicates. Dissertation, Johannese@u

berg Universiat in Mainz, 2001.

H. Straubing. Finite Automata, Formal Logic, and Circuit

Complexity Birkhauser, 1994.

(2]

[6]

[7]

