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Abstra
t

The Cayley Group Membership problem (CGM) is to input a groupoid (bi-

nary algebra) G given as a multipli
ation table, a subset X of G, and an element

t of G, and to determine whether t 
an be expressed as a produ
t of elements

of X. For general groupoids CGM is P-
omplete, and for asso
iative algebras

(semigroups) it is NL-
omplete.

Here we investigate CGM for parti
ular 
lasses of groups. The problem for

general groups is in Sym-L, but any kind of hardness result seems diÆ
ult be
ause

it would require 
onstru
ting the entire multipli
ation table of a group.

We introdu
e the 
omplexity 
lass FOLL = FO(log logn) of problems solvable

by uniform 
ir
uit families of polynomial size, unbounded fan-in, and depth O(log

log n). Sin
e parity is not in FOLL, no problem in FOLL 
an be 
omplete for

any 
lass 
ontaining parity, su
h as NC

1

, L, or SL. But FOLL is not known to

be 
ontained even in SL.

We show that CGM for 
y
li
 groups is in FOLL \ L and that CGM for

abelian groups is in FOLL. In a partial extension of the method to solvable

groups, we prove that CGM for groups of 
onstant solvability 
lass is in FOLL

and that CGM for nilpotent groups 
an be solved by 
ir
uits of polynomial size

and depth O((log logn)

2

). (Thus the problem for nilpotent groups is provably

not 
omplete for any 
lass 
ontaining parity.)

We also 
onsider the problem of testing for various properties of a group

input as a table: we prove that 
y
li
ity and nilpoten
y 
an ea
h be tested in

FOLL \ L.

Finally, we examine some possible impli
ations of our results for the 
om-

plexity of iterated multipli
ation of integers.

�

U. Mass. at Amherst, barring�
s.umass.edu

y

Universit�at T�ubingen, kadau�informatik.uni-tuebingen.de

z

Universit�at T�ubingen, lange�informatik.uni-tuebingen.de

x

Universit�e de Montr�eal and (on sabbati
al) in T�ubingen, m
kenzie�iro.umontreal.
a

1



1 Introdu
tion

1.1 The Problem

One of the most natural 
omputational problems on groups is that of membership:

input some formal representation of a group and an element (of some supergroup),

and determine whether the group 
ontains that element. Naturally, the 
omplexity

of this problem varies dramati
ally with the format 
hosen to input the group.

If the group is given by generators and relations, the problem has long been

known to be unde
idable (see [22, P. 298℄), and the 
ase of matrix groups led to the

introdu
tion of Arthur-Merlin games [2, 1℄. When the group is given as a set of gener-

ating permutations (and the target is given as a permutation) we get the permutation

group membership problem, the sour
e of deep and beautiful work 
ulminating in an

NC algorithm for the problem that relies on the 
lassi�
ation of �nite simple groups

[23, 12, 7℄.

Here we 
onsider a simple and very low-
omplexity variant of the problem, the

Cayley Group Membership problem, or CGM:

Given: group G pres
ribed by multipli
ation table, X � G, t 2 G.

Question: does t belong to the subgroup hXi generated by X?

CGM is a spe
ial 
ase of the more general problem where the multipli
ation ta-

ble need not be that of a group. With an arbitrary table (for a groupoid, whi
h

need not even be asso
iative) the membership problem was shown to be 
omplete

for polynomial time by Jones and Laaser [17℄. If the table obeys the asso
iative

law (a semigroup), Jones et al. showed the membership problem to be NL-
omplete

[18℄. (This 
ompleteness result holds even if the semigroups are group-free, making

groups the natural domain to explore further.) Barrington and M
Kenzie �rst inves-

tigated the group version of the problem in 1991 [5℄, noting that CGM redu
es to

the undire
ted graph a

essibility problem (UGAP) and is thus in the 
lass SL (the

NC
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losure of UGAP). They suggested that CGM might be 
omplete for SL or at

least hard for L, or deterministi
 logspa
e. Sin
e then, there has been no progress

on resolving the pre
ise 
omplexity of CGM. It is suggestive that some very simple

problems involving permutation representations of groups are L-
omplete, su
h as

that of determining whether a given permutation on n elements is an n-
y
le [11℄.

(This shows that under the right 
ir
umstan
es even 
y
li
 groups 
an be L-hard to

analyze.) But so far all attempts to exploit these problems to get a hardness proof

have failed.

In this paper we present and exploit a simple new re
ursive strategy for parallel


omputation of powers in a group given by a multipli
ation table. We show that for


ertain groups (abelian, nilpotent, and some solvable groups) the CGM problem 
an
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be solved very qui
kly in parallel { more qui
kly than any parallel algorithm 
an solve

even the parity problem. Using known lower bounds for the parity problem [25℄ we

then prove, using no unproven assumptions, that CGM for these 
lasses of groups is

not hard for any standard 
lass 
ontaining parity, su
h as SL, L, NC

1

, or even ACC

0

.

We 
onje
ture that the problem for solvable groups, and for that matter probably

general groups, also fails to be hard for these 
lasses.

We also 
onsider the 
omplexity of testing a group multipli
ation table to see

whether the group is 
y
li
 or nilpotent. Both these problems 
an be solved in

O(log log n) parallel time, meaning that neither of them 
an be hard for any 
lass


ontaining parity.

Finally, if p is a prime number the group of integers modulo p is one where the

binary multipli
ation operation is easy to 
al
ulate but 
al
ulation of powers is an

interesting problem (as is its inverse, the dis
rete logarithm problem). We examine

the impli
ation of our new strategy for the 
al
ulation of powers and dis
rete logs in

parallel, and the related problems of iterated multipli
ation and division for arbitrary

integers.

1.2 The Model of Computation

We will be measuring the 
omplexity of problems primarily as the parallel time re-

quired to solve them with a polynomial number of pro
essors. This is equivalent

[16, 15, 6, 4℄ to (a) the depth of a boolean 
ir
uit of polynomial size and unbounded

fan-in solving the problem, or (b) the quanti�er depth of a formula in �rst-order logi


expressing the problem.

Consider the multipli
ation table of a group (or semigroup) to be input as an n by

n array of numbers, ea
h in the range from 1 to n. The number in the (i; j) position

of this array represents the element obtained by multiplying i times j, where elements

of the group are labeled 1 through n. A parti
ular table represents a group if and

only if it satis�es three familiar properties: it must be asso
iative, have an identity,

and have an inverse for ea
h element. Ea
h of these properties may be expressed by

a �rst-order formula where variables range over elements in the group and there are

atomi
 formulas to represent equality of elements and the group operation:

8x : 8y : 8z : ((x � y) � z) = (x � (y � z))

9x : 8y : (x � y) = (y � x) = y

8x : 9y : 8z : ((x � y) � z) = z

As shown in [6℄, a property 
an be expressed by a �xed �rst-order formula of this

kind if and only if it 
an be tested by a logtime-uniform 
ir
uit family of 
onstant

depth, unbounded fan-in and polynomial size, i.e., if and only if it is in the 
ir
uit
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omplexity 
lass (logtime-uniform) AC

0

. Thus the three group axioms, as well as

other properties su
h as 
ommutativity, are testable for a multipli
ation table in

AC

0

.

Immerman [16, 15, 4℄ has developed a formalism whereby families of �rst-order

formulas may be de�ned to express properties outside of AC

0

. Given the ne
essary


onventions for reusing variables, we 
an de�ne a formula with a quanti�er blo
k in

front whi
h is synta
ti
ally iterated d(n) times on input of size n and then followed

by some �xed formula. If the formula 
ontains a 
onstant number of variables ea
h

ranging from 1 to n, it 
an express a property if and only if it 
an be tested by

a (logtime uniform) 
ir
uit family of polynomial size, unbounded fan-in, and depth

O(d(n)). Su
h 
ir
uit families are equivalent in power to CRCW PRAMs with a

polynomial number of pro
essors and depth O(d(n)). For example, quanti�er depth

O(log n) 
orresponds to the 
ir
uit 
omplexity 
lass AC

1

, whi
h 
ontains su
h other


lasses as L, SL, NL, and LOGCFL. In this paper we will be parti
ularly interested

in the 
lass FOLL, whi
h 
onsists of the languages expressible with quanti�er depth

O(log log n) | this 
lass 
ontains AC

0

, is 
ontained within AC

1

, but is not known to

be 
omparable to L, SL, or NL.

A 
onvenient way to prove the existen
e of a formula with an iterated quanti�er

blo
k is to give a re
ursive de�nition of a property and show that it 
loses within a


ertain number of steps (see [16, 15℄ for more detail on this). For example, 
onsider

the property \a

i

= b" in a group given as a multipli
ation table, where i is at most

n, the order of the group. The familiar re
ursive de�nition of this predi
ate using

repeated squaring says that \a

i

= b" is true if either:

(i = 0) ^ (b = e);

(i = i) ^ (a = b);

9
 : (a
 = b) ^ (a

i�1

= 
);

or

9
 : (

 = b) ^ (a

i=2

= 
):

Sin
e this de�nition is guaranteed to 
lose in O(log n) iterations, it allows us to


onstru
t a 
ir
uit of depth O(log n) 
omputing this predi
ate for all values of a, b,

and i, where a node on level t is set to true if and only if one of the above 
onditions

holds for the predi
ates on level t� 1. (In e�e
t, we 
an think of the 
ir
uit as �lling

in entries of a dynami
 programming table for all the values of a, b, and i.)
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2 Preliminaries

2.1 Notation

All groups in this paper will be 
onsidered to be input as their Cayley representation,


onsisting of an n by n table of numbers, ea
h number in the range from 1 through n.

(Thus the total size of the input is n

2

logn bits, so all our resour
e bounds de�ned in

terms of n apply equally well to the true input size.) In logi
al terms, our formulas

will have an atomi
 formula \ab = 
" whose boolean value indi
ates whether the

produ
t of a and b in the group is 
. (For 
onvenien
e, we will represent the group

operation by 
on
atenation as is usual in group theory.)

2.2 FOLL

For the purposes of this extended abstra
t, we rely on the intuitive presentation of

des
riptive 
omplexity given in Subse
tion 1.2 above. The formal details 
an be found

in [16, 15, 4℄.

In this paper we show a number of problems to be in the 
omplexity 
lass

FO(log log n), and take the liberty of giving this 
lass the name FOLL. Of 
ourse, to

add to the proliferation of named 
omplexity 
lasses requires some justi�
ation. We

believe that interest in FOLL is warranted for the following reasons:

� the present work des
ribes some non-trivial upper bounds showing natural prob-

lems to be in it,

� membership of a problem in FOLL pre
ludes its being hard for the more 
on-

ventional small 
lasses su
h as TC

0

(this is justi�ed below),

� the relationship of FOLL to the standard hierar
hy of parallel 
omplexity 
lasses

(e.g., [10, 4℄) is un
lear, so that the in
lusion 
hain

FO(
onstant) = AC

0

� FOLL � FO(log n) = AC

1

;

whi
h follows from [24℄, deserves 
loser s
rutiny.

Indeed, AC

1

seems to be the smallest 
onventional 
omplexity 
lass known to


ontain FOLL. In parti
ular, none of the 
lasses in the in
lusion 
hain

ACC

0

� TC

0

� NC

1

� L � NL � (LOGCFL [DET) (1)

are known to 
ontain FOLL.

On the other hand, by the Smolensky bound [25℄, the PARITY fun
tion is not


omputable by unbounded fan-in 
ir
uits of depth d and size o(2

(1=2)n

1=2d

), even if
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the 
ir
uit family is non-uniform and we allow mod-3 gates along with ANDs and

ORs. It follows that polynomial-size 
ir
uits require depth 
(logn=(log log n)) to


ompute PARITY, and thus that the 
lass FO(t(n)) does not 
ontain PARITY unless

t(n) = 
(logn=(log log n)). It follows that

Proposition 2.1 FOLL 
ontains no well-known 
lass above AC

0

, and in parti
ular,

no 
lass from the in
lusion 
hain (1). The same is true of FO(t(n)) for t(n) =

o(log n=(log log n)).

3 Results

3.1 A double-barrelled re
ursive strategy

Our 
entral observation is that the indu
tive de�nition of the power predi
ate \a = b

i

"

in terms of repeated squaring 
an be improved so that it 
loses in only O(log log n)

steps. We begin by giving the de�nition of this predi
ate in terms of �rst-order

formulas involving (1) values of the power predi
ate with exponents smaller than

i, (2) the atomi
 predi
ate \ab = 
" for multipli
ation in the group, and (3) the

operations of addition and multipli
ation on numbers in the range from 0 to n:

� a = b

0

i� a = e

� a = b

1

i� a = b

� a = b

i

if 9j; k; 
; d su
h that i = j + k, 
 = b

j

, d = b

k

, a = 
d

� a = b

i

if 9j; k; 
 su
h that i = jk, 
 = b

j

, a = 


k

.

We must now argue that this �rst-order indu
tive de�nition 
loses in O(log log n)

steps if we require i � n. This is be
ause (a) if i is not a power of two, we 
an


hoose j and k su
h that i = j + k and j and k ea
h have at most half as many ones

in their binary expansions as does i (rounding up), and (b) if i is a power of two,

we 
an write i = jk where j and k are ea
h powers of two and have logs at most

half that of i (rounding up). Sin
e the logs of both log i and of the number of ones

in i's binary expansion are bounded by log log n, we rea
h the base 
ase in at most

2log logn phases.

Using [16, 15, 4℄ we 
on
lude:

Proposition 3.1 For all a and b in the group and all i � n, the predi
ate \a = b

i

"


an be 
al
ulated in FOLL.

Note that this predi
ate is also easily 
omputable in L, deterministi
 logspa
e, by

su

essively 
omputing b, b

2

, b

3

, . . . up to b

i

and 
omparing the result to a.
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3.2 Testing group properties

Cayley groups are a spe
ial 
ase of permutation groups be
ause the regular repre-

sentation of a group G, i.e. as a permutation group on itself, is expli
itly given by

the Cayley table of G. Although permutation groups have been studied extensively,

none of the upper bounds known for permutation group problems are strong enough

for our purposes. In fa
t, even the divide-and-
onquer group de
omposition strategy

whi
h was ultimately used in solving the permutation group membership and many

related problems [7℄ in NC is not appli
able in our setting be
ause even a mere logn

iterative steps is out of rea
h.

As in most other work on the 
omplexity of group problems, it is sensible to

investigate groups by starting with the \easiest" groups, and working our way up

to the \more 
ompli
ated". Standard results [22℄ about the stru
ture of groups

provide the basis for this approa
h. The most basi
 kind of group is 
y
li
, generated

by a single element. The abelian groups are dire
t produ
ts of 
y
li
 groups, and

the nilpotent and solvable groups are su

essively more 
ompli
ated 
ompositions of

abelian groups. In most settings solvable groups are substantially easier to work

with than general, non-solvable groups. (For example, the iterated multipli
ation

problem in a �xed solvable group is in ACC

0

, while iterated multipli
ation in a �xed

non-solvable group is 
omplete [3℄ for NC

1

.)

Even 
y
li
 groups 
an pose non-trivial 
omputational problems. For example, it

is L-
omplete to determine whether a permutation of n elements is a single 
y
le, even

if it is known to be the produ
t of at most two disjoint 
y
les [11℄. Testing whether

a Cayley group is 
y
li
 is 
learly doable in L, and the logspa
e algorithm looks like

an inherently sequential pro
ess. With our new parallel algorithm, however, we 
an

show that this problem is not hard for logspa
e:

Theorem 3.2 Testing a Cayley group for 
y
li
ity is in FOLL \ L.

Proof. By Proposition 3.1, in FOLL \ L we 
an 
ompute the predi
ate a = b

i

for any elements a and b and any number i � n. A group is 
y
li
, by de�nition, i�

9g8a9i(a = g

i

). This is a �rst-order formula using an atomi
 predi
ate in FOLL\L.

Sin
e FOLL and L are ea
h 
losed under FO(or AC

0

) redu
tions, we are done.

Corollary 3.3 Testing a Cayley group, or even an arbitrary multipli
ation table, for

being that of a 
y
li
 group is hard for none of the 
lasses o

urring in the in
lusion


hain (1).

Abelianness of a group is a �rst-order property as the 
ommutativity axiom is

�rst-order. The next property to 
onsider is that of being a nilpotent group. Here

again, the power predi
ate is enough for us:
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Theorem 3.4 A group given by Cayley table 
an be tested for nilpoten
y in FOLL\L.

Proof. For any prime number p, we de�ne a p-element to be an element whose

order is a power of p. To determine the p-elements in a group, we need to 
ompute

the orders of elements and do some simple number theory on numbers smaller than

n. The former is �rst-order de�nable from the power predi
ate:

o(a) = m$ (a

m

= e) ^ 8j(0 < j < m! a

j

6= e)

and is thus in FOLL\L. The latter is in FO: sin
e (log n)-bit numbers 
an be added

and multiplied in FO, the predi
ates \p is a prime smaller than n" and \m � n and

no prime other than p divides m" 
an be expressed in FO. Our FOLL\L nilpoten
y

test then follows from a group-theoreti
 lemma:

Lemma 3.5 A �nite group G is nilpotent i�, for ea
h prime p dividing jGj, the set

of p-elements in G is a group.

Proof. See the Appendix.

The power predi
ate does not seem to be of mu
h help in testing solvability of a

Cayley group. The best solvability test known to the authors is in LOGCFL, using a

sta
k to look for a non-trivial iterated 
ommutator whose existen
e shows the group

to be non-solvable.

3.3 The CGM Problem

Re
all that the Cayley group membership problem (CGM) is to input a Cayley group

G, a set of elements X, and a target element t, and to determine whether t is in the

subgroup of G generated by X. We now 
onsider the sub
ases of CGM for ea
h of our


lasses of groups. Note that even the simplest 
ase of CGM(
y
li
) was 
onje
tured

to be logspa
e-hard in [5℄.

Theorem 3.6 CGM(
y
li
 groups) is in FOLL\L and (sin
e it is in FOLL) is hard

for none of the 
lasses o

urring in the in
lusion 
hain (1).

Proof. Using the FOLL \ L power predi
ate, we 
an �nd a generator g for the

group G and 
ompute, for ea
h h 2 X, the unique integer i < jGj su
h that g

i

= h.

The least 
ommon multiple l of these dis
rete logarithms 
an be expressed in FO,

and t 2 hXi i� the dis
rete logarithm of t divides l.

We now turn to the 
ase of abelian groups, but we �rst formulate a useful stru
-

tural property:
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De�nition 3.7 A family of groups has the f(n) power basis property if any set X

of generators for a group G of order n from the family has the property that every

element of G is a produ
t of at most f(n) powers of elements of X.

Example. The family of all groups trivially has the n power basis property be
ause

any element a group G of order n generated by a set X = fg

1

; : : : ; g

k

g is of 
ourse

expressible as �

m

j=1

g

e

j

i

j

for some m � n.

Lemma 3.8 Abelian groups have the logn power basis property.

Proof. Let B = fb

1

; : : : ; b

k

g be an arbitrary set of generators for G. Let G

i

be

the subgroup of G generated by fb

1

; : : : ; b

i

g. Let X be the set of elements b

i

su
h that

G

i

is di�erent from G

i�1

. (Note that sin
e ea
h distin
t group G

i

has at least twi
e

as many elements as its prede
essor, the size of X is at most log n. This argument

works for an arbitrary group, showing that any generating set has a subset of size at

most log n that also generates.)

Renumber the elements of X as fx

1

; : : : ; x

j

g and let H

i

be the subgroup spanned

by fx

1

; : : : ; x

i

g. It is 
lear by indu
tion that ea
h group H

i

is equal to the 
orre-

sponding group G

`

generated by the elements fb

1

; : : : ; b

`

= x

i

g, so that the entire set

X generates G. Thus any element of G 
an be written as a produ
t of elements of

X, and sin
e G is abelian this produ
t 
an be rearranged into a produ
t x

e

1

1

: : : x

e

j

j

,

a produ
t of length at most logn as desired.

Theorem 3.9 CGM(abelian) is in FOLL.

Proof. Consider the following sets of elements de�ned indu
tively:

Y

0

= fx

i

: x 2 X; i � ng

Y

i+1

= fyz : y; z 2 Y

i

g

The set Y

i


ontains all produ
ts of at most 2

i

powers of elements of X. Sin
e G,

and the subgroup of G generated by X, have the logn power basis property, Y

log log n


ontains all produ
ts of at most log n powers of elements of the power basis and hen
e


ontains the entire subgroup generated by X.

Membership in the set Y

0

is �rst-order de�nable from the power predi
ate and X

and is thus in FOLL. Sin
e Y

i+1

is �rst-order de�nable from Y

i

, Y

log log n

is de�nable

from Y

0

, and thus fromX in FOLL. We need merely 
he
k whether the target element

t is in Y

log log n

.

Note that this se
ond FOLL algorithm, unlike the �rst one for the power predi-


ate, 
annot (as far as we know) be simulated in L. We thus do not know whether

CGM(abelian) is in L.
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Nilpotent groups are parametrized by nilpoten
y 
lass. In the full paper we will

de�ne this notion and prove that nilpotent groups of 
lass d have the O(log

d

n) power

basis property. Hen
e CGM for nilpotent groups of 
lass d is in FO(d log log n),

following the proof of Theorem 3.9. In parti
ular, CGM for nilpotent groups of 
lass

O(1) is in FOLL. These results, however, are subsumed by the following treatment of

solvable groups (as a group's solvability 
lass is no greater than its nilpoten
y 
lass).

Solvability of a �nite group 
an be de�ned in terms of the derived series, where

group G

(0)

is G and group G

(i+1)

is de�ned to be the 
ommutator subgroup of G

(i)

,

the group generated by all elements of G

(i)

of the form x

�1

y

�1

xy. A group is solvable

i� G

(d)

is the trivial group for some d, and is de�ned to be solvable of 
lass d if d is

the smallest number making this true. We show that our approa
h to de
iding CGM

extends to some solvable groups:

Theorem 3.10 CGM(groups of solvability 
lass O(1)) is in FOLL. CGM for groups

of solvability 
lass d(n) is in FO(d(n)log logn).

Proof. See the Appendix.

A general solvable group of order n may have solvability 
lass 
(logn), so this

result does not improve on the FO(log n) existing algorithm for CGM for any group.

But nilpotent groups 
annot have su
h a large solvability 
lass, a

ording to the

following result (proved by Th�erien [26℄, possibly well-known):

Theorem 3.11 [26℄ Any nilpotent group of order n has solvability 
lass O(log logn).

Corollary 3.12 CGM(nilpotent) is in FO((log log n)

2

), and hen
e is not hard for

any 
lass in the in
lusion 
hain (1).

We 
onje
ture that these results are not the best possible, and that in fa
t

CGM(solvable) may be in FOLL. The question also remains whether the CGM prob-

lem for general groups is easier than the best known upper bound of SL. Might this

problem be in L, or solvable in o(log n) parallel time? Any hardness results for these

problems would appear to require the redu
tion to 
onstru
t a multipli
ation table

for a group | this has so far been an insurmountable problem even for a redu
tion

from PARITY.

3.4 Arithmeti
 of small numbers

One of the outstanding open problems in 
omplexity theory is the 
omplexity of

integer division and iterated multipli
ation of integers. These and related problems

were shown to be in P-uniform TC

0

by Beame, Cook, and Hoover [8℄, but are not

10



known to be in L-uniform TC

0

or in L itself. The non-uniformity of this algorithm

depends on the need to 
ompute dis
rete logarithms modulo many di�erent primes.

A related, slightly easier problem (see [21℄) is to multiply n numbers, ea
h of

O(log n) bits, modulo another number of O(log n) bits. This is known to be in L and

in L-uniform TC

0

, but not in NC

1

or logtime uniform TC

0

.

Sin
e the predi
ate \ab � 
 (mod m)" is in FO = AC

0

when a; b; 
;m are

O(logn)-bit numbers, the table for the multipli
ative group of Z

m

is available in

FO. Hen
e we 
an identify a generator and 
ompute dis
rete logs modulo m in

FOLL. To do iterated multipli
ation we need to (i) 
ompute the dis
rete logs of all

the inputs, (ii) add them modulo �(m), and (iii) raise the generator to the result.

Computing �(m) is doable in FO. Iterated addition of integers is in logtime-uniform

TC

0

.

We thus have a uniform parallel algorithm that pla
es this problem in any 
lass

that 
ontains both FOLLand FO+MAJ. Unfortunately uniform NC

1

is not known (or

even suspe
ted) to 
ontain FOLL.

A related question is how 
lose we 
an 
ome to iterated multipli
ation modulo

O(log n)-bit integers in, say, logtime-uniform NC

1

or TC

0

. If our integers ea
h have

O((log n)=(log log n)) bits, then FOLL operations on these numbers 
an be performed

in uniform NC

1

. Thus we 
an 
al
ulate dis
rete logs for these moduli, add them in

uniform TC

0

� NC

1

, and thus perform iterated multipli
ation in uniform NC

1

. In

the full paper we will dis
uss these and related appli
ations of our FOLL algorithms.

4 Con
lusions and Open Problems

We have introdu
ed a new 
omplexity 
lass FOLL, and shown several problems in-

volving groups presented as multipli
ation tables to be in it. This 
lass is lo
ated

somewhere between AC

0

and AC

1

, yet seems in
omparable with the more 
onven-

tional 
omplexity 
lasses in that 
omplexity spe
trum. We note that this \strange


omplexity" of Cayley group problems is not unpre
edented: the Cayley group iso-

morphism problem [19℄ is one of the only problems known to be solvable in polylog-

arithmi
 spa
e but apparently not in polynomial time.

The obvious question is whether our FOLL upper bounds extend to more 
om-

pli
ated groups, su
h as all solvable groups or even general groups. Our power basis

property may be of independent interest. There is also the question of whether solv-

ability of a group 
an be 
he
ked in FOLL or by some other fast parallel algorithm.

11
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6 Te
hni
al Appendix

6.1 Proof of Lemma 3.5

A �nite group G is nilpotent i�, for ea
h prime p dividing jGj, the set of p-elements

in G is a group.

Let G be nilpotent. Then G is a a dire
t produ
t � of p-groups (for various primes

p, see [22, Theorem 5.39℄). Hen
e, for ea
h prime p dividing jGj, the p-elements of

G are pre
isely the elements whose dire
t produ
t 
omponents outside the p-groups

are trivial. Hen
e the set of p-elements is a group, isomorphi
 to the dire
t produ
t

of the p-groups o

urring in �.

Conversely [22, Exer
ise 4.12℄, a �nite group G having a unique maximal p-

subgroup for ea
h prime divisor p of jGj is the dire
t produ
t of these maximal

p-subgroups. Hen
e, if the set of p-elements of G forms a group, then the latter must

be the unique maximal p-subgroup of G. If this holds for ea
h prime p, then G is a

dire
t produ
t of p-groups, hen
e nilpotent by [22, Theorem 5.39℄.

6.2 Proof of Theorem 3.10

CGM for groups that are solvable of 
lass d is in FO(d log log n). In parti
ular, CGM

for groups that are solvable of 
lass O(1) is in FOLL.

Our algorithm 
onsists of d rounds, ea
h of whi
h performs the following FOLL

operation. As in the proof of Theorem 3.9, we take the 
urrent generating set and


lose it �rst under powers and then under produ
ts of length O(log n). We must show

that d su
h rounds, starting from any generating set for any solvable group of 
lass

d, suÆ
e to produ
e the entire group.

We prove this by indu
tion on d, with the base 
ase of d = 1 being Theorem

3.9. Let G (of order n) be an arbitrary solvable group of 
lass d and let H be G's


ommutator subgroup, so that H is solvable of 
lass d� 1. Let X be an arbitrary set

generating G. Sin
e the elements xH for ea
h x in X generate the quotient group

G=H and G=H is abelian, any element of G is a produ
t of at most logn powers of

elements of X, followed by an element of H. That is, after the �rst round of 
losure

under powers and O(logn) length produ
ts, our set will 
ontain a representative of

ea
h 
oset of G=H.

We 
laim that H has a generating set Y ea
h of whose elements is a produ
t of

O(log n) powers of elements ofX. Given this 
laim, we apply the indu
tive hypothesis

to H and Y . After d � 1 more rounds, ea
h 
onsisting of 
losure �rst under powers

and then under O(log n) produ
ts, our set will 
ontain every element of H. Sin
e

every element of G is a produ
t of one of our 
oset representatives and an element of

H, we are done.
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To prove the 
laim, let h be an arbitrary element of H and express h as a produ
t

x

1

: : : x

`

, where ea
h x

i

is an element of X. (Sin
e X generates G, it also generates

H.) De�ne y

0

to be e and then indu
tively de�ne elements y

i

su
h that x

1

: : : x

i

y

i

is

in H and y

i

is a produ
t of O(log n) powers of elements of X. This is possible be
ause

y

i

need only be in the same 
oset of G=H as (x

1

: : : x

i

)

�1

, and G=H is abelian and

has the O(log n) power basis property. Note in parti
ular that y

`


an be taken to be

e, as x

1

: : : x

`

= h is already in H.

Now note that x

1

: : : x

`


an be rewritten as

(x

1

y

1

)(y

�1

1

x

2

y

2

)(y

�1

2

x

3

y

3

) : : : (y

�1

`

x

`

)

and that ea
h of the parenthesized terms is in H. So H is generated by the set of

terms of the form y

�1

xz where x is in X and y and z are ea
h produ
ts of O(log n)

powers of elements of X. We have proved the 
laim and thus the theorem.
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