On the Complexity of Some Problems on Groups Input as
Multiplication Tables

David Mix Barrington* Peter Kadau®
Klaus-Jorn Lange! Pierre McKenzie®

January 20, 2000

Abstract

The Cayley Group Membership problem (CGM) is to input a groupoid (bi-
nary algebra) G given as a multiplication table, a subset X of G, and an element
t of G, and to determine whether t can be expressed as a product of elements
of X. For general groupoids CGM is P-complete, and for associative algebras
(semigroups) it is NL-complete.

Here we investigate CGM for particular classes of groups. The problem for
general groups is in Sym-L, but any kind of hardness result seems difficult because
it would require constructing the entire multiplication table of a group.

We introduce the complexity class FOLL = FO(loglogn) of problems solvable
by uniform circuit families of polynomial size, unbounded fan-in, and depth O(log
log n). Since parity is not in FOLL, no problem in FOLL can be complete for
any class containing parity, such as NC', L, or SL. But FOLL is not known to
be contained even in SL.

We show that CGM for cyclic groups is in FOLL N L and that CGM for
abelian groups is in FOLL. In a partial extension of the method to solvable
groups, we prove that CGM for groups of constant solvability class is in FOLL
and that CGM for nilpotent groups can be solved by circuits of polynomial size
and depth O((loglogn)?). (Thus the problem for nilpotent groups is provably
not complete for any class containing parity.)

We also consider the problem of testing for various properties of a group
input as a table: we prove that cyclicity and nilpotency can each be tested in
FOLLNL.

Finally, we examine some possible implications of our results for the com-
plexity of iterated multiplication of integers.

*U. Mass. at Ambherst, barring@cs.umass.edu

TUniversitit Tiibingen, kadau@informatik.uni-tuebingen.de

'Universitit Tiibingen, lange@informatik.uni-tuebingen.de

$Université de Montréal and (on sabbatical) in Tiibingen, mckenzie@iro.umontreal .ca

1 Introduction

1.1 The Problem

One of the most natural computational problems on groups is that of membership:
input some formal representation of a group and an element (of some supergroup),
and determine whether the group contains that element. Naturally, the complexity
of this problem varies dramatically with the format chosen to input the group.

If the group is given by generators and relations, the problem has long been
known to be undecidable (see [22, P. 298]), and the case of matrix groups led to the
introduction of Arthur-Merlin games [2, 1]. When the group is given as a set of gener-
ating permutations (and the target is given as a permutation) we get the permutation
group membership problem, the source of deep and beautiful work culminating in an
NC algorithm for the problem that relies on the classification of finite simple groups
(23, 12, 7].

Here we consider a simple and very low-complexity variant of the problem, the
Cayley Group Membership problem, or CGM:

Given: group G prescribed by multiplication table, X C G, ¢ € G.
Question: does t belong to the subgroup (X) generated by X?

CGM is a special case of the more general problem where the multiplication ta-
ble need not be that of a group. With an arbitrary table (for a groupoid, which
need not even be associative) the membership problem was shown to be complete
for polynomial time by Jones and Laaser [17]. If the table obeys the associative
law (a semigroup), Jones et al. showed the membership problem to be NL-complete
[18]. (This completeness result holds even if the semigroups are group-free, making
groups the natural domain to explore further.) Barrington and McKenzie first inves-
tigated the group version of the problem in 1991 [5], noting that CGM reduces to
the undirected graph accessibility problem (UGAP) and is thus in the class SL (the
NC!closure of UGAP). They suggested that CGM might be complete for SL or at
least hard for L, or deterministic logspace. Since then, there has been no progress
on resolving the precise complexity of CGM. It is suggestive that some very simple
problems involving permutation representations of groups are L-complete, such as
that of determining whether a given permutation on n elements is an n-cycle [11].
(This shows that under the right circumstances even cyclic groups can be L-hard to
analyze.) But so far all attempts to exploit these problems to get a hardness proof
have failed.

In this paper we present and exploit a simple new recursive strategy for parallel
computation of powers in a group given by a multiplication table. We show that for
certain groups (abelian, nilpotent, and some solvable groups) the CGM problem can

be solved very quickly in parallel — more quickly than any parallel algorithm can solve
even the parity problem. Using known lower bounds for the parity problem [25] we
then prove, using no unproven assumptions, that CGM for these classes of groups is
not hard for any standard class containing parity, such as SL, L, NC!, or even ACCP.
We conjecture that the problem for solvable groups, and for that matter probably
general groups, also fails to be hard for these classes.

We also consider the complexity of testing a group multiplication table to see
whether the group is cyclic or nilpotent. Both these problems can be solved in
O(loglogn) parallel time, meaning that neither of them can be hard for any class
containing parity.

Finally, if p is a prime number the group of integers modulo p is one where the
binary multiplication operation is easy to calculate but calculation of powers is an
interesting problem (as is its inverse, the discrete logarithm problem). We examine
the implication of our new strategy for the calculation of powers and discrete logs in
parallel, and the related problems of iterated multiplication and division for arbitrary
integers.

1.2 The Model of Computation

We will be measuring the complexity of problems primarily as the parallel time re-
quired to solve them with a polynomial number of processors. This is equivalent
[16, 15, 6, 4] to (a) the depth of a boolean circuit of polynomial size and unbounded
fan-in solving the problem, or (b) the quantifier depth of a formula in first-order logic
expressing the problem.

Consider the multiplication table of a group (or semigroup) to be input as an n by
n array of numbers, each in the range from 1 to n. The number in the (i, 7) position
of this array represents the element obtained by multiplying ¢ times j, where elements
of the group are labeled 1 through n. A particular table represents a group if and
only if it satisfies three familiar properties: it must be associative, have an identity,
and have an inverse for each element. Each of these properties may be expressed by
a first-order formula where variables range over elements in the group and there are
atomic formulas to represent equality of elements and the group operation:

Vo :Vy:Vz:((z-y)-2z)=(z-(y-2))
Jz:Vy:(z-y)=(y z)=y
Ve:3y:Vz: ((z-y) -2) ==z

As shown in [6], a property can be expressed by a fixed first-order formula of this
kind if and only if it can be tested by a logtime-uniform circuit family of constant
depth, unbounded fan-in and polynomial size, i.e., if and only if it is in the circuit

complexity class (logtime-uniform) ACY. Thus the three group axioms, as well as
other properties such as commutativity, are testable for a multiplication table in
ACO.

Immerman [16, 15, 4] has developed a formalism whereby families of first-order
formulas may be defined to express properties outside of AC?. Given the necessary
conventions for reusing variables, we can define a formula with a quantifier block in
front which is syntactically iterated d(n) times on input of size n and then followed
by some fixed formula. If the formula contains a constant number of variables each
ranging from 1 to n, it can express a property if and only if it can be tested by
a (logtime uniform) circuit family of polynomial size, unbounded fan-in, and depth
O(d(n)). Such circuit families are equivalent in power to CRCW PRAMs with a
polynomial number of processors and depth O(d(n)). For example, quantifier depth
O(logn) corresponds to the circuit complexity class AC!, which contains such other
classes as L, SL, NL, and LOGCFL. In this paper we will be particularly interested
in the class FOLL, which consists of the languages expressible with quantifier depth
O(loglogn) — this class contains AC?, is contained within AC!, but is not known to
be comparable to L, SL, or NL.

A convenient way to prove the existence of a formula with an iterated quantifier
block is to give a recursive definition of a property and show that it closes within a
certain number of steps (see [16, 15] for more detail on this). For example, consider
the property “a’ = b” in a group given as a multiplication table, where 7 is at most
n, the order of the group. The familiar recursive definition of this predicate using
repeated squaring says that “a’ = b” is true if either:

(i =0)A(b=e),

(i =i) Ao =),
Je:(ac=b) A (a' ! =¢),

or .
Je: (cc = b) A (a? =).

Since this definition is guaranteed to close in O(logn) iterations, it allows us to
construct a circuit of depth O(logn) computing this predicate for all values of a, b,
and 7, where a node on level ¢ is set to true if and only if one of the above conditions
holds for the predicates on level t — 1. (In effect, we can think of the circuit as filling
in entries of a dynamic programming table for all the values of a, b, and i.)

2 Preliminaries

2.1 Notation

All groups in this paper will be considered to be input as their Cayley representation,
consisting of an n by n table of numbers, each number in the range from 1 through n.
(Thus the total size of the input is n2 logn bits, so all our resource bounds defined in
terms of n apply equally well to the true input size.) In logical terms, our formulas
will have an atomic formula “ab = ¢” whose boolean value indicates whether the
product of @ and b in the group is ¢. (For convenience, we will represent the group
operation by concatenation as is usual in group theory.)

2.2 FOLL

For the purposes of this extended abstract, we rely on the intuitive presentation of
descriptive complexity given in Subsection 1.2 above. The formal details can be found
in [16, 15, 4].

In this paper we show a number of problems to be in the complexity class
FO(loglogn), and take the liberty of giving this class the name FOLL. Of course, to
add to the proliferation of named complexity classes requires some justification. We
believe that interest in FOLL is warranted for the following reasons:

e the present work describes some non-trivial upper bounds showing natural prob-
lems to be in it,

e membership of a problem in FOLL precludes its being hard for the more con-
ventional small classes such as TC? (this is justified below),

e the relationship of FOLL to the standard hierarchy of parallel complexity classes
(e.g., [10, 4]) is unclear, so that the inclusion chain

FO(constant) = ACY ¢ FOLL C FO(logn) = AC!,
which follows from [24], deserves closer scrutiny.

Indeed, AC! seems to be the smallest conventional complexity class known to
contain FOLL. In particular, none of the classes in the inclusion chain

ACCY C TC® C NC! C L € NL C (LOGCFL U DET) (1)

are known to contain FOLL.
On the other hand, by the Smolensky bound [25], the PARITY function is not
computable by unbounded fan-in circuits of depth d and size o(2(1/ 2)”1/2‘1), even if

the circuit family is non-uniform and we allow mod-3 gates along with ANDs and
ORs. It follows that polynomial-size circuits require depth Q(logn/(loglogn)) to
compute PARITY, and thus that the class FO(#(n)) does not contain PARITY unless
t(n) = Q(logn/(loglogn)). It follows that

Proposition 2.1 FOLL contains no well-known class above AC®, and in particular,
no class from the inclusion chain (1). The same is true of FO(t(n)) for t(n) =

o(logn/(loglogn)).

3 Results

3.1 A double-barrelled recursive strategy

Our central observation is that the inductive definition of the power predicate “a = b*”
in terms of repeated squaring can be improved so that it closes in only O(loglogn)
steps. We begin by giving the definition of this predicate in terms of first-order
formulas involving (1) values of the power predicate with exponents smaller than
i, (2) the atomic predicate “ab = ¢” for multiplication in the group, and (3) the
operations of addition and multiplication on numbers in the range from 0 to n:

ea=0Wiffa=e

ea=>bliffa=0b

e a="bif3j k,ce,dsuchthat i =j+k, c=0,d=">bF a=cd
o a ="b'if 35, k,c such that i = jk, c =, a = .

We must now argue that this first-order inductive definition closes in O(loglogn)
steps if we require 7 < n. This is because (a) if i is not a power of two, we can
choose j and k such that « = j + k and j and k each have at most half as many ones
in their binary expansions as does i (rounding up), and (b) if 7 is a power of two,
we can write ¢ = jk where j and k are each powers of two and have logs at most
half that of ¢ (rounding up). Since the logs of both logi and of the number of ones
in ¢’s binary expansion are bounded by loglogn, we reach the base case in at most
2log logn phases.

Using [16, 15, 4] we conclude:

Proposition 3.1 For all a and b in the group and all i < n, the predicate “a = b*”
can be calculated in FOLL.

Note that this predicate is also easily computable in L, deterministic logspace, by
successively computing b, b, b?, ... up to b’ and comparing the result to a.

3.2 Testing group properties

Cayley groups are a special case of permutation groups because the regular repre-
sentation of a group G, i.e. as a permutation group on itself, is explicitly given by
the Cayley table of G. Although permutation groups have been studied extensively,
none of the upper bounds known for permutation group problems are strong enough
for our purposes. In fact, even the divide-and-conquer group decomposition strategy
which was ultimately used in solving the permutation group membership and many
related problems [7] in NC is not applicable in our setting because even a mere logn
iterative steps is out of reach.

As in most other work on the complexity of group problems, it is sensible to
investigate groups by starting with the “easiest” groups, and working our way up
to the “more complicated”. Standard results [22] about the structure of groups
provide the basis for this approach. The most basic kind of group is cyclic, generated
by a single element. The abelian groups are direct products of cyclic groups, and
the nilpotent and solvable groups are successively more complicated compositions of
abelian groups. In most settings solvable groups are substantially easier to work
with than general, non-solvable groups. (For example, the iterated multiplication
problem in a fixed solvable group is in ACC?, while iterated multiplication in a fixed
non-solvable group is complete [3] for NC1.)

Even cyclic groups can pose non-trivial computational problems. For example, it
is L-complete to determine whether a permutation of n elements is a single cycle, even
if it is known to be the product of at most two disjoint cycles [11]. Testing whether
a Cayley group is cyclic is clearly doable in L, and the logspace algorithm looks like
an inherently sequential process. With our new parallel algorithm, however, we can
show that this problem is not hard for logspace:

Theorem 3.2 Testing a Cayley group for cyclicity is in FOLLN L.

Proof. By Proposition 3.1, in FOLL N L we can compute the predicate a = b’
for any elements a and b and any number ¢ < n. A group is cyclic, by definition, iff
JgVaTi(a = ¢'). This is a first-order formula using an atomic predicate in FOLL N L.
Since FOLL and L are each closed under FO(or AC?) reductions, we are done.]

Corollary 3.3 Testing a Cayley group, or even an arbitrary multiplication table, for
being that of a cyclic group is hard for none of the classes occurring in the inclusion
chain (1).

Abelianness of a group is a first-order property as the commutativity axiom is
first-order. The next property to consider is that of being a nilpotent group. Here
again, the power predicate is enough for us:

Theorem 3.4 A group given by Cayley table can be tested for nilpotency in FOLLNL.

Proof. For any prime number p, we define a p-element to be an element whose
order is a power of p. To determine the p-elements in a group, we need to compute
the orders of elements and do some simple number theory on numbers smaller than
n. The former is first-order definable from the power predicate:

o(a) =m & (@™ =e) AVj(0 < j<m—al #e)

and is thus in FOLLNL. The latter is in FO: since (log n)-bit numbers can be added
and multiplied in FO, the predicates “p is a prime smaller than n” and “m <n and
no prime other than p divides m” can be expressed in FO. Our FOLL NL nilpotency
test then follows from a group-theoretic lemma: [

Lemma 3.5 A finite group G is nilpotent iff, for each prime p dividing |G|, the set
of p-elements in G is a group.

Proof. See the Appendix. [

The power predicate does not seem to be of much help in testing solvability of a
Cayley group. The best solvability test known to the authors is in LOGCFL, using a
stack to look for a non-trivial iterated commutator whose existence shows the group
to be non-solvable.

3.3 The CGM Problem

Recall that the Cayley group membership problem (CGM) is to input a Cayley group
G, a set of elements X, and a target element ¢, and to determine whether ¢ is in the
subgroup of G generated by X. We now consider the subcases of CGM for each of our
classes of groups. Note that even the simplest case of CGM(cyclic) was conjectured
to be logspace-hard in [5].

Theorem 3.6 CGM(cyclic groups) is in FOLLNL and (since it is in FOLL) is hard
for none of the classes occurring in the inclusion chain (1).

Proof. Using the FOLL N L power predicate, we can find a generator g for the
group G and compute, for each h € X, the unique integer i < |G| such that ¢g* = h.
The least common multiple [of these discrete logarithms can be expressed in FO,
and t € (X) iff the discrete logarithm of ¢ divides .]

We now turn to the case of abelian groups, but we first formulate a useful struc-
tural property:

Definition 3.7 A family of groups has the f(n) power basis property if any set X
of generators for a group G of order n from the family has the property that every
element of G is a product of at most f(n) powers of elements of X.

Example. The family of all groups trivially has the n power basis property because
any element a group G of order n generated by a set X = {g1,...,gr} is of course
expressible as H?Zlgfj for some m < n.

Lemma 3.8 Abelian groups have the logn power basis property.

Proof. Let B = {by,...,b;} be an arbitrary set of generators for G. Let G; be
the subgroup of G generated by {b1,...,b;}. Let X be the set of elements b; such that
G; is different from G;_1. (Note that since each distinct group G; has at least twice
as many elements as its predecessor, the size of X is at most logn. This argument
works for an arbitrary group, showing that any generating set has a subset of size at
most logn that also generates.)

Renumber the elements of X as {z1,...,z;} and let H; be the subgroup spanned
by {z1,...,z;}. It is clear by induction that each group H; is equal to the corre-
sponding group Gy generated by the elements {b1,...,by = z;}, so that the entire set
X generates G. Thus any element of G can be written as a product of elements of
X, and since G is abelian this product can be rearranged into a product z{ ... x;j,
a product of length at most logn as desired. [

Theorem 3.9 CGM(abelian) is in FOLL.
Proof. Consider the following sets of elements defined inductively:

Yo = {2':zx€X,i<n}
Yiin = {yz:y,2€Yi}

The set Y; contains all products of at most 2° powers of elements of X. Since G,
and the subgroup of G' generated by X, have the logn power basis property, Yiogiogn
contains all products of at most log n powers of elements of the power basis and hence
contains the entire subgroup generated by X.

Membership in the set Yj is first-order definable from the power predicate and X
and is thus in FOLL. Since Yj;1 is first-order definable from Y;, Yiog10p is definable
from Yp, and thus from X in FOLL. We need merely check whether the target element
tis in Yioglogn- []

Note that this second FOLL algorithm, unlike the first one for the power predi-
cate, cannot (as far as we know) be simulated in L. We thus do not know whether
CGM(abelian) is in L.

Nilpotent groups are parametrized by nilpotency class. In the full paper we will
define this notion and prove that nilpotent groups of class d have the O(logd n) power
basis property. Hence CGM for nilpotent groups of class d is in FO(d loglogn),
following the proof of Theorem 3.9. In particular, CGM for nilpotent groups of class
O(1) is in FOLL. These results, however, are subsumed by the following treatment of
solvable groups (as a group’s solvability class is no greater than its nilpotency class).

Solvability of a finite group can be defined in terms of the derived series, where
group GO is G and group Gt ig defined to be the commutator subgroup of G,
the group generated by all elements of G() of the form z 'y 1zy. A group is solvable
iff G@ is the trivial group for some d, and is defined to be solvable of class d if d is
the smallest number making this true. We show that our approach to deciding CGM
extends to some solvable groups:

Theorem 3.10 CGM(groups of solvability class O(1)) is in FOLL. CGM for groups
of solvability class d(n) is in FO(d(n)loglogn).

Proof. See the Appendix. [

A general solvable group of order n may have solvability class Q(logn), so this
result does not improve on the FO(logn) existing algorithm for CGM for any group.
But nilpotent groups cannot have such a large solvability class, according to the
following result (proved by Thérien [26], possibly well-known):

Theorem 3.11 [26] Any nilpotent group of order n has solvability class O(loglogn).

Corollary 3.12 CGM(nilpotent) is in FO((loglogn)?), and hence is not hard for
any class in the inclusion chain (1).

We conjecture that these results are not the best possible, and that in fact
CGM(solvable) may be in FOLL. The question also remains whether the CGM prob-
lem for general groups is easier than the best known upper bound of SL. Might this
problem be in L, or solvable in o(logn) parallel time? Any hardness results for these
problems would appear to require the reduction to construct a multiplication table
for a group — this has so far been an insurmountable problem even for a reduction
from PARITY.

3.4 Arithmetic of small numbers

One of the outstanding open problems in complexity theory is the complexity of
integer division and iterated multiplication of integers. These and related problems
were shown to be in P-uniform TC® by Beame, Cook, and Hoover [8], but are not

10

known to be in L-uniform TC? or in L itself. The non-uniformity of this algorithm
depends on the need to compute discrete logarithms modulo many different primes.

A related, slightly easier problem (see [21]) is to multiply » numbers, each of
O(logn) bits, modulo another number of O(logn) bits. This is known to be in L and
in L-uniform TCO?, but not in NC' or logtime uniform TCP.

Since the predicate “ab = ¢ (mod m)” is in FO = AC® when a,b,c,m are
O(logn)-bit numbers, the table for the multiplicative group of Z,, is available in
FO. Hence we can identify a generator and compute discrete logs modulo m in
FOLL. To do iterated multiplication we need to (i) compute the discrete logs of all
the inputs, (ii) add them modulo ¢(m), and (iii) raise the generator to the result.
Computing ¢(m) is doable in FO. Tterated addition of integers is in logtime-uniform
TCO.

We thus have a uniform parallel algorithm that places this problem in any class
that contains both FOLLand FO+MAJ. Unfortunately uniform NC! is not known (or
even suspected) to contain FOLL.

A related question is how close we can come to iterated multiplication modulo
O(log n)-bit integers in, say, logtime-uniform NC' or TCC. If our integers each have
O((logn)/(loglogn)) bits, then FOLL operations on these numbers can be performed
in uniform NC!. Thus we can calculate discrete logs for these moduli, add them in
uniform TCY C NC!, and thus perform iterated multiplication in uniform NC!. In
the full paper we will discuss these and related applications of our FOLL algorithms.

4 Conclusions and Open Problems

We have introduced a new complexity class FOLL, and shown several problems in-
volving groups presented as multiplication tables to be in it. This class is located
somewhere between AC” and AC!, yet seems incomparable with the more conven-
tional complexity classes in that complexity spectrum. We note that this “strange
complexity” of Cayley group problems is not unprecedented: the Cayley group iso-
morphism problem [19] is one of the only problems known to be solvable in polylog-
arithmic space but apparently not in polynomial time.

The obvious question is whether our FOLL upper bounds extend to more com-
plicated groups, such as all solvable groups or even general groups. Our power basis
property may be of independent interest. There is also the question of whether solv-
ability of a group can be checked in FOLL or by some other fast parallel algorithm.

11

5

Acknowledgements

The authors thank Denis Thérien for several very helpful discussions. Some of these,
and much other fruitful work on this project, occurred at a Dagstuhl seminar in
November 1999 attended by three of the authors.

References

[1] L. Babai, Trading group theory for randomness, in Proc. 17th ACM STOC (1985), pp.
421-429.

[2] L. Babai and E. Szemerédi, On the complexity of matrix group problems I, Proc. 25th
IEEE FOCS (1984), pp. 229-240.

[3] D.A.M. Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC'. J. Comput. System Sci., 38:150-164, 1989.

[4] D.A.M. Barrington and N. Immerman. Time, hardware, and uniformity, in Complezity
Theory Retrospective II, ed. L.A. Hemaspaandra and A.L. Selman, (New York: Springer
Verlag, 1997), pp. 1-22.

[5] D.A.M. Barrington and P. McKenzie, Oracle branching programs and Logspace versus
P, Information and Computation 95 (1991), pp. 96-115.

[6] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NCL.
Journal of Computer and System Sciences, 41:274-306, 1990.

[7] L. Babai, E. Luks and A. Seress, Permutation Groups in NC, Proc. 19th ACM STOC
(1987), pp. 409-420.

[8] P. Beame, S. Cook and J. Hoover, Log depth circuits for division and related problems,
SIAM Journal on Computing, 15(4):994-1003, 1986.

[9] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. STAM
Journal on Computing, 13(2):423-439, May 1984.

[10] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64(1):2-22, 1985.

[11] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.
Journal of Algorithms, 8:385-394, 1987.

[12] M. Furst, J. Hopcroft and E. Luks, Polynomial time algorithms for permutation groups,
Proc. 21st IEEE FOCS (1980), pp. 36—41.

[13] M. Furst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory 17 (1984), pp. 13-27.

[14] C. Hoffmann, Group-theoretic algorithms and graph isomorphism, Springer LNCS vol.

136 (1979).

12

[15]
[16]
[17]
[18]
[19]

[20]

N. Immerman, Descriptive and computational complexity, in Computational Complexity
Theory, ed. J. Hartmanis, Proc. of Symposia in Applied Mathematics 38, (Providence,
RI: American Mathematical Society, 1989), pp. 75-91.

N. Immerman, Descriptive Complezity, (New York: Springer Verlag, 1999).

N. D. Jones and W. T. Laaser, Complete problems for deterministic polynomial time,
Theoretical Computer Science 3 (1977), pp. 105-117.

N. D. Jones, E. Lien, and W. T. Laaser. New problems complete for nondeterministic
log space, Math. Systems Theory 10 (1976), pp. 1-17.

R.J. Lipton, L. Snyder, and Y. Zalcstein. The Complexity of Word and Isomorphism
Problems for Finite Groups. Johns Hopkins University (1976).

E.M. Luks and P. McKenzie, Parallel algorithms for solvable permutation groups, J.
Computer and Systems Science 37:1 (1988), pp. 39-62.

P. McKenzie and S. A. Cook, The parallel complexity of the abelian permutation group
membership problem, in Proc. 24th IEEE FOCS (1983), pp. 154-161.

J. Rotman, The theory of groups, 2ed, Allyn & Bacon, Boston, 1973.

C.C. Sims, Computational methods in the study of permutation groups, in Computa-
tional Problems in Abstract Algebra, ed. J. Leech, Pergamon Press (1970), pp. 169-183.

M. Sipser, Borel sets and circuit complexity, Proc. 15th ACM STOC (1983), pp. 61-69.

R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit
complexity, Proc. 19th ACM STOC (1987), pp. 77-82.

D. Thérien, Classification of regular languages by congruences. Ph.D. thesis, University
of Waterloo, Research Report CS-80-19 (1980).

13

6 Technical Appendix

6.1 Proof of Lemma 3.5

A finite group G is nilpotent iff, for each prime p dividing |G|, the set of p-elements
in G is a group.

Let G be nilpotent. Then G is a a direct product IT of p-groups (for various primes
p, see [22, Theorem 5.39]). Hence, for each prime p dividing |G|, the p-elements of
G are precisely the elements whose direct product components outside the p-groups
are trivial. Hence the set of p-elements is a group, isomorphic to the direct product
of the p-groups occurring in II.

Conversely [22, Exercise 4.12], a finite group G having a unique maximal p-
subgroup for each prime divisor p of |G| is the direct product of these maximal
p-subgroups. Hence, if the set of p-elements of G forms a group, then the latter must
be the unique maximal p-subgroup of G. If this holds for each prime p, then G is a
direct product of p-groups, hence nilpotent by [22, Theorem 5.39].

6.2 Proof of Theorem 3.10

CGM for groups that are solvable of class d is in FO(d loglogn). In particular, CGM
for groups that are solvable of class O(1) is in FOLL.

Our algorithm consists of d rounds, each of which performs the following FOLL
operation. As in the proof of Theorem 3.9, we take the current generating set and
close it first under powers and then under products of length O(logn). We must show
that d such rounds, starting from any generating set for any solvable group of class
d, suffice to produce the entire group.

We prove this by induction on d, with the base case of d = 1 being Theorem
3.9. Let G (of order n) be an arbitrary solvable group of class d and let H be G’s
commutator subgroup, so that H is solvable of class d — 1. Let X be an arbitrary set
generating G. Since the elements xH for each z in X generate the quotient group
G/H and G/H is abelian, any element of G is a product of at most logn powers of
elements of X, followed by an element of H. That is, after the first round of closure
under powers and O(logn) length products, our set will contain a representative of
each coset of G/H.

We claim that H has a generating set Y each of whose elements is a product of
O(logn) powers of elements of X. Given this claim, we apply the inductive hypothesis
to H and Y. After d — 1 more rounds, each consisting of closure first under powers
and then under O(logn) products, our set will contain every element of H. Since
every element of G is a product of one of our coset representatives and an element of
H, we are done.

14

To prove the claim, let h be an arbitrary element of H and express h as a product
x1...xp, where each z; is an element of X. (Since X generates G, it also generates
H.) Define yy to be e and then inductively define elements y; such that z; ... z;y; is
in H and y; is a product of O(log n) powers of elements of X. This is possible because
y; need only be in the same coset of G/H as (z1...2;)”", and G/H is abelian and
has the O(logn) power basis property. Note in particular that y, can be taken to be
e, as x1...T¢ = h is already in H.

Now note that x;...zy can be rewritten as

(z191) (1 "w2y2) (yy " 23ys) - - (y; "0

and that each of the parenthesized terms is in H. So H is generated by the set of
terms of the form y~'zz where z is in X and y and z are each products of O(logn)
powers of elements of X. We have proved the claim and thus the theorem.

15

