
On the Complexities of Linear LL(1) and

LR(1) Grammars

�

Markus Holzer Klaus-J�orn Lange

Fakult�at f�ur Informatik, Technische Universit�at M�unchen, Arcisstr. 21,

D{80290 M�unchen,Germany

Abstract

Several notions of deterministic linear languages are considered and compared

with respect to their complexities and to the families of formal languages they

generate. We exhibit close relationships between simple linear languages and the

deterministic linear languages both according to Nasu and Honda and to Ibarra,

Jiang, and Ravikumar. Deterministic linear languages turn out to be special cases

of languages generated by linear grammars restricted to LL(1) conditions, which

have a membership problem solvable in NC

1

. In contrast to that, deterministic

linear languages de�ned via automata models turn out to have a DSPACE(logn)-

complete membership problem. Moreover, they coincide with languages generated

by linear grammars subject to LR(1) conditions.

1 Introduction

There are many close connections between complexity theory and the area of formal lan-

guages and automata. Typical relations of this kind are completeness results for families

of formal languages. Well known examples are:

1. CFL, the family of context-free languages, is NAuxPDA-TIMESPACE (pol; log n)-

complete [17].

2. DCFL, the family of deterministic context-free languages, is complete for the class

DAuxPDA-TIMESPACE (pol; log n) [17].

3. LIN , the family of linear context-free languages, is NSPACE (log n)-complete [16].

4. REG, the family of regular languages, is NC

1

-complete [2].

Here we have to use very \�ne" notions of reducibility in order to treat low-level complex-

ity classes like NC

1

or AC

0

. With respect to the usual logspace reductions the regular

languages, for instance, would trivially be DSPACE (log n)-complete.

This brings us to the aim of this paper: to extend this list with an entry for the

class DSPACE (log n). One natural idea would be to conclude the commuting diagram of

Figure 1.

But Ibarra et al. introduced in [10] a family of deterministic linear languages by im-

posing LL(1)-like conditions on linear context-free grammars and, unfortunately, showed

�

This work was supported by DFG-La 618/1-1.

CFL � NAuxPDA-TIMESPACE (pol; log n) ���! LIN � NSPACE (log n)

?

?

y

?

?

y

DCFL � DAuxPDA-TIMESPACE (pol; log n) ���! \DLIN "

?

� DSPACE (log n)

Figure 1: A commuting diagram?

containment in NC

1

. Since deterministic linear languages contain REG, this implies the

NC

1

-completeness. But if we look again at Figure 1, we see that for (arbitrary) context-

free languages determinism is de�ned via the corresponding automaton model and not

via a grammar type. This makes no di�erence for context-free languages; context-free

LR(1) grammars generate exactly the deterministic context-free languages and context-

free LL(1)-languages, although being a proper subfamily, nevertheless are complete for

the class DAuxPDA-TIMESPACE (pol; log n) (see [17]).

In the following we will show that in the linear case both the automata and the LR(1)

approach yield the validity of Figure 1. This will be done by considering one-turn push-

down automata [6] which execute no push move after the �rst pop operation occurred in

a computation. It is well known that these automata characterize the linear context-free

languages: NPDA

1-turn

= LIN [6]. First of all, we prove that DPDA

1-turn

, the deter-

ministic counterpart of NPDA

1-turn

, coincides with the family of languages generated

by linear context-free grammars restricted by an LR(1) condition. More important, we

will show the DSPACE (log n)-completeness of DPDA

1-turn

. These results demonstrate

that the complexity theoretical equivalence of LR(1) and LL(1) conditions of [17] are no

longer valid in the presence of linear grammars, since here their equivalence would imply

NC

1

= DSPACE (log n). Altogether, we think that this demonstrates that the de�nition

of Ibarra et al. in [10] does not give an adequate notion of a deterministic linear language.

Thus, throughout this paper we will use the term DLIN for languages generated by lin-

ear grammars subjected to an LR(1) condition. This will be justi�ed by the coincidence

of this class with DPDA

1-turn

, the class of languages accepted by deterministic one-turn

pushdown automata.

It is remarkable to �nd these relations again when considering one-counter instead

of one-turn automata. It is well known that ROCL, the family of languages recognized

by nondeterministic one-counter automata [7], i.e.: pushdown automata with a singleton

pushdown alphabet, is NSPACE (log n)-complete (see e.g. [18]). It is quite easy to modify

our construction concerning the DSPACE (log n)-completeness of DPDA

1-turn

into a

deterministic one-counter automaton accepting a DSPACE (log n)-complete set, which

implies the DSPACE (log n)-completeness of D-ROCL. In this context it is interesting

that Chang et al. showed in [4] that the the simultaneous restriction of a deterministic

pushdown automaton to be both one-turn and one-counter makes the resulting word

problem NC

1

-recognizable.

In the next section we introduce the necessary notions. In Section 3 we prove a close

relationship between simple linear and deterministic linear languages de�ned by Nasu

and Honda [15] and Ibarra, Jiang, and Ravikumar [10]. In Section 4 we show that linear

LL(1) languages and deterministic one-turn counter languages are NC

1

-complete. The

main result is given in Section 5. There we show that DLIN , the class of languages

accepted by deterministic one-turn pushdown automata, is DSPACE (log n)-complete.

Moreover this class coincides with the class of languages generated by linear LR(1) gram-

mars. In addition we get that D-ROCL, the class of deterministic counter languages, is

DSPACE (log n)-complete, too. Open questions are discussed in the last section.

2 Preliminaries

The reader is assumed to be familiar with basic notions of formal language (see e.g. [9])

and complexity theory (see e.g. [1, 18]). In addition we use the following notations:

De�nition 1 A context-free grammar G = (N;T; P; S) is linear if and only if all produc-

tions in P are of the form:

A! u

1

Bv

1

j u

2

for A;B 2 N , and u

1

; u

2

; v

1

2 T

�

.

In the following languages generated by linear grammars are referred to linear lan-

guages, and the class of linear languages to LIN .

Let � denote the string of length zero. We say that G is �-free if and only if it has no

productions of the form A ! �. A string of � 2 (N [T)� is called a sentential form if

S

�

) �, where

�

) denotes the usually derivation relation.

To characterize the complexity of linear languages, we deal with the complexity classes

DLOGT IME, NC

1

, and DSPACE (log n). For a de�nition of this classes see, e.g. [1].

To study the relative complexity of problems it is helpful to use very weak reductions.

Completeness are always meant with respect to DLOGT IME reducibilities, like they

were introduced by Buss in [3], unless otherwise stated.

3 Deterministic Linear Languages

In this section we consider the de�nitions of deterministic linear languages of Nasu and

Honda and Ibarra, Jiang, and Ravikumar and show a close relation to simple linear

languages.

De�nition 2 [15] A linear grammar G = (N;T; P; S) is NH-deterministic linear if and

only if all productions in P are of the form:

A! aBu j a

for A;B 2 N , a 2 T , u 2 T

�

, and furthermore for any A 2 N and a 2 T , there is at most

one production A! a� for � 2 NT

�

[f�g in P .

In the following languages generated by NH-deterministic linear grammars are referred

to NH-deterministic linear languages, and the class of NH-deterministic linear languages

to DLIN

NH

.

Remark: A context-free grammar is a simple grammar [12] if and only if all produc-

tions are of the form

A! a

1

�

1

j : : : j a

n

�

n

for a

i

2 T , �

i

2 (N [T)

�

with 1 � i � n then a

i

6= a

j

for i 6= j. Obviously, a grammar G

is NH-deterministic linear if and only if G is a linear and a simple grammar.

Note that in [10] Ibarra, Jiang, and Ravikumar de�ned a notion of linear determin-

ism as well. A language L is IJR-deterministic linear if and only if it is generated by

some context-free grammar G = (N;T; P; S) with the property, that any of the three

productions

A! u

1

B

1

v

1

j u

2

B

2

v

2

j u

3

for A;B

1

; B

2

2 N and u

1

; u

2

; u

3

; v

1

; v

2

2 T

�

are in P , then u

i

is not a pre�x of u

j

for i 6= j.

The class of IJR-deterministic linear languages is referred to DLIN

IJR

.

Theorem 3 DLIN

NH

= DLIN

IJR

n ff�gg.

Sketch of Proof: \�" Obviously. \�" First we use the fact, that for a IJR-

deterministic linear language L the following hold: � 2 L if and only if L = f�g. Therefore

S ! � does not occur in the production set of the grammar. Now with standard tech-

niques one can construct a �-free IJR-deterministic linear grammar and then out of this

a simple linear one. Then the claim obviously follows. 2

4 The Complexity of Linear LL(1) Languages

In this section we show that NH-deterministic linear languages coincide with �-free linear

LL(1) languages, and that there exists a NC

1

-complete linear LL(1) language. The notion

of LL(1) grammars was introduced by Lewis and Stearns [14].

De�nition 4 [14] A linear grammar G = (N;T; P; S) is linear LL(1) if and only if for

every nonterminal A 2 N and all sentential forms S

�

) uAv, with u; v 2 T

�

, and all

distinct productions A! �

1

and A! �

2

in P the condition

FIRST

G

(�

1

v) \ FIRST

G

(�

2

v) = ;

holds, where FIRST

G

(�) is de�ned as

FIRST

G

(�) := f a 2 T j �

�

) a� for some � 2 (N [T)

�

g [f� j �

�

) � g

In the following languages generated by (�-free) linear LL(1) grammars are referred to

(�-free) linear LL(1) languages, and the class of (�-free) linear LL(1) languages to (�-free)

LINLL(1).

Using a result of Kurki-Suonio [13], we obtain:

Theorem 5 DLIN

NH

= �-free LINLL(1).

Proof: \�" By de�nition it is clear that every NH-deterministic linear language is �-

free linear LL(1). \�" Using a result of Kurki-Suonio [13] we know that every �-free LL(1)

language generates a simple language. Since this result holds true for linear languages,

and simple linear languages are obviously NH-deterministic linear, the claim follows. 2

Remark: Obviously DLIN

NH

� DLIN

IJR

� LINLL(1) and each inclusion is a

proper one, which is shown by the following languages: f�g 2 DLIN

IJR

nDLIN

NH

and

fw j w 2 f0; 1g

�

g 2 LINLL(1) n DLIN

IJR

.

The aim of this paper is to characterize complexity classes in terms of linear languages,

i.e. we are interested in completeness results. In [10] it was shown that DLIN

IJR

� NC

1

,

but a carefully analysis shows that this inclusion holds for linear LL(1) languages as well.

Theorem 6 [10] LINLL(1) � NC

1

.

Now for NC

1

-completeness it su�ces to use the result of Barrington, Immerman and

Straubing.

Theorem 7 [2] There is a regular language which is NC

1

-complete

1

.

By Theorem 6, 7 and the obvious fact that every regular language is linear LL(1) we

obtain

Theorem 8 There is a linear LL(1) language which is NC

1

-complete.

Corollary 9 LINLL(1) is NC

1

-complete.

Remark: The result of Theorem 8 and 9 holds for both NH-deterministic linear

languages and for IJR-deterministic linear languages, since the regular language which is

NC

1

-complete is contained in DLIN

NH

. Note that regular and NH-deterministic linear

languages are incomparable.

Remark: In [4] it was shown that D-ROCL

1-turn

, the class of deterministic one-turn

counter languages, belongs to NC

1

. The arguments of Theorem 8 apply here as well and

hence these languages are NC

1

-complete, too.

5 The Complexity of Linear LR(1) Languages

In this section we study the complexity of linear LR(1) languages. We show that this

class of languages coincides with the class of languages acceptable by deterministic one-

turn pushdown automata, and that there exists a DSPACE (log n)-complete linear LR(1)

language. The notion of LR(1) grammars was introduced by Knuth [11].

1

Usually the result was shown for AC

0

-reductions, but it is possible to use DLOGT IME ones.

De�nition 10 [9, 11] A linear grammar G = (N;T; P; S) is linear LR(1) if and only if

the following condition holds for every string u�aw

1

, with u;w

1

2 T

�

, � 2 (N [T)

�

, and

a 2 T , such that S$

�

) u�aw

1

2

. If the next to the last step of the above derivation is

uAaw

1

, so that S$

�

) uAaw

1

) u�aw

1

and there is some other word u�aw

2

with w

2

2 T

�

such that S$

�

) vBw) u�aw

2

then u = v, A = B, and w = aw

2

.

In the following languages generated by linear LR(1) grammars are referred to deter-

ministic linear languages, and the class of deterministic linear languages to DLIN .

The second class of linear languages investigated in this section is a restriction of the

class of linear languages LIN resp. of the class of languages acceptable by nondetermin-

istic one-turn pushdown automata.

De�nition 11 A language L is a deterministic one-turn pushdown language if and only

if L is accepted by some one-way deterministic one-turn pushdown automata. Through-

out this paper the class of deterministic one-turn pushdown languages is referred to

DPDA

1-turn

.

The following proposition shows that the class of deterministic linear languages and

the class of deterministic one-turn pushdown languages coincide.

Proposition 12 DLIN = DPDA

1-turn

.

Sketch of Proof: \DLIN � DPDA

1-turn

" In [9], Theorem 12.8, it was shown, that

every context-free LR(k) language, is accepted by some deterministic pushdown automata

M . If we use a linear

3

instead of a context-free language, it is easy to see that the only

part whyM is not a one-turn pushdown is, because between two pop moves the pushdown

height could increase by several push moves. Since the number of push moves between

two pop moves is bounded by l, where l is the longest right hand side of a production

in the linear LR(1) grammar, one can show that M can be modi�ed in such a way, by

handling a constant number of pushdown symbols in the �nite control of M , that M

works as an one-turn pushdown.

\DLIN � DPDA

1-turn

" In [9], Theorem 12.9, it was shown that every language L

which is accepted by a deterministic pushdown automaton, is generated by a LR(1) gram-

mar. This grammar is constructed according to the standard method for constructing a

context-free grammar from a pushdown automaton. If we use a one-turn pushdown in-

stead of a pushdown automaton, the standard method leads us to a context-free grammar

instead of a linear one. Therefore we construct a linear grammar G from the one-turn

pushdown according to the method used in e.g. [8], Theorem 5.7.1. Now using the same

arguments as in [9], Theorem 12.9, one can show that G is linear LR(1). 2

The following two propositions establish the DSPACE (log n)-completeness of DLIN .

Proposition 13 DLIN � DSPACE (log n).

2

Let $ be a new symbol which belongs to T .

3

Note that at each step of M there is at most one symbol on the pushdown which corresponds to a

nonterminal in the LR(1) grammar. This fact is essential for the proof.

Proof: Let L be a deterministic linear language. Then by Proposition 12 there exists

a one-way deterministic one-turn pushdown automata A with L = L(A)

4

. The Turing

machineM that simulates A works on input w as follows:

It starts the simulation in the initial con�guration of A. ThenM can directly simulate

A only by knowing the surface con�guration

5

and the pushdown height of A, as long

as A makes no pop move. After A has made a pop move, M computes the new top

symbol of the pushdown by a resimulation of A up to the current pushdown height. The

pushdown symbol in the reached surface con�guration will become the new top symbol of

the pushdown and the simulation of A can be continued. If during the whole simulation

A accepts w, M halts and accepts.

It is easy to see that L(M) = L(A) and that M is a deterministic logspace bounded

Turing machine. 2

Before we come to the next proposition, we consider a restricted version of a well

known DSPACE (log n)-complete problem.

De�nition 14 The graph accessibility problem for ordered graphs with out-degree one,

for short 1GAP

o

, is de�ned as the set of all codings hGi of graphs G = (V;E) with the

properties:

1. There exists a k 2 IN

0

such that V = f1; 2; : : : ; 2

k

g.

2. The graph has out-degree one; This means that if (i; j) 2 E and (i; l) 2 E then

j = l.

3. The graph is ordered; This means that if (i; j) 2 E then i < j for 1 � i � 2

k

� 1

and i = j for i = 2

k

.

4. In the graph there is way from the node 1 to the node 2

k

; This means that there exists

i

1

; i

2

; : : : ; i

t

2 V such that i

1

= 1, i

t

= 2

k

, and (i

j

; i

j+1

) 2 E for all 1 � j � t� 1.

By Cook and McKenzie [5] we obtain:

Theorem 15 [5] 1GAP

o

is DSPACE (log n)-complete

6

.

In the de�nition of 1GAP

o

, we left open the coding hGi of a graph G. Since every

vertex has at most one successor, one can code the graph G = (V;E) with vertex set

V = f1; 2; : : : ; 2

k

g for some k 2 IN

0

, by the string

hGi := block(1)$

2

k

block(2)$

2

k

: : :$

2

k

block(2

k

)#

2

k

where block(i) for i 2 V is de�ned as block(i) := 0

2

k

�j

1

j

if (i; j) 2 E, and block(i) := 0

2

k

otherwise.

Now we can show that there is a deterministic linear language which is hard for

DSPACE (log n).

4

We can assume that A changes the pushdown height during one step at most by one symbol.

5

A surface con�guration of a pushdown automata consists of the position of the input head, the

internal state, and the top symbol of the pushdown.

6

Usually the result was shown for NC

1

-reducibility and for graphs without the restriction that there

exists a k 2 IN

0

such that V = f1; 2; : : : ; 2

k

g. But a careful analysis shows that 1GAP

o

is still

DSPACE (logn)-complete, and it is possible to use DLOGT IME instead of NC

1

-reducibility.

Proposition 16 1GAP

o

is DLOGT IME-reducible to a deterministic linear language.

Proof: On input w = block(1)$

2

k

: : : $

2

k

block(2

k

)#

2

k

let f be the mapping

7

:

f(w) := ((block(1)$

2

k

: : :$

2

k

block(2

k

)#

2

k

)

R

)

2

k

&

2

k

0

2

k

$

2

k

0

2

k

�1

1$

2

k

: : : $

2

k

0

2

1

2

k

�2

#

2

k

;

where block(i) for i 2 V is de�ned as block(i) := 0

2

k

�j+i

1

j�i

if (i; j) 2 E, and block(i) := 0

2

k

otherwise. To show that 1GAP

o

is reducible to a deterministic linear language via f , we

construct a deterministic one-turn pushdown M such that w 2 1GAP

o

if and only if

f(w) 2 L(M) holds.

On an input f(w), M starts by pushing the symbols, which are scanned by the input

head, until the �rst & symbol is reached. Then the & symbols are over read, and from then

on, it goes into a loop where it operates in stages. It (1) uses the information in the words

block(�) in the pushdown to position the input head. More precisely, for every 1 symbol

in the topmost block(�) the input head reads the word f0; 1g

�

$

2

k

. If during this stage the

word f0; 1g

�

#

2

k

is read with the last 1 symbol from the topmost block(�) the machine

M halts and accepts. Otherwise M continues by (2) popping the word f0; 1; $g

�

#

2

k

and

(3) using the information in the word f0g

�

f1g

�

in the rest of the input to position the

pushdown head. More precisely, for every 1 symbol in the currently by the input head

scanned word f0g

�

f1g

�

, it pops the word f0; 1g

�

$

2

k

. After (4) the last 1 symbol was

read by the input head, it scans the afterward word $

2

k

. If during this computation the

pushdown gets empty, or the input head moves to the right of the last # symbol, or M

discovers any syntactic inconsistency in the input, it halts and rejects.

It is evident that M accepts f(w) if and only if w 2 1GAP

o

since the topmost words

block(�) in stage (1) can be used to describe the ordered way through the coded graph w

from the node 1 to the node 2

k

.

Furthermore, f(w) is polynomially bounded and and DLOGT IME-computable since

computing the length of the input in binary representation (see [3]), addition, subtraction

of small numbers, i.e. polynomially bounded numbers, and multiplication, division of

small numbers where the multiplicand or the divisor is a power of two, can be done by a

deterministic Turing machine in time O(log n). 2

Remark: By Proposition 12 it is possible to construct a linear LR(1) grammar

instead of a deterministic one-turn pushdown automaton. The linear LR(1) grammar

H = (fA;B; : : : ; Lg; f0; 1; $;#;&g; P;A) which can be constructed instead of the one-

turn pushdown has the productions

8

:

A! 0A j 1A j $A j #A j $B# B ! $B# j $1C# C ! C0 j C1 j D0 j D1

D ! 0D j 1E$ j F j K& E ! E$ j C$ F ! F j $G1$

G! 0G j 1G j 0H j 1H H ! H0 j $I j #L I ! $I j $G1

J ! 0J j 1J j $J j $D K ! K& j & L! #L j #J0

Now the following theorem can be directly obtained from Proposition 13, and 16:

7

Let w

R

denote the mirror image of w.

8

We did not check H to have the LR(1) condition. Instead we used the UNIX

9

tools yacc and bison,

which stated that H in fact ful�lls the stonger LALR(1) property.

9

UNIX is a registrated trademark of AT&T.

Theorem 17 There is a deterministic linear language which isDSPACE (log n)-complete,

moreover the class DLIN is DSPACE (log n)-complete.

Remark: Obviously deterministic counter machines can be simulated by deterministic

logspace bounded Turing machines (see also the remark after Corollary 9). With the same

idea as in the proof of Proposition 16 one can show that the class of deterministic counter

languages, for short D-ROCL, is DSPACE (log n)-complete, too. Note that ROCL, the

class of nondeterministic counter languages, is NSPACE (log n)-complete (see e.g. [18]),

but for nondeterministic one-turn counter languages a completeness result, like in the

deterministic case, remains open.

6 Conclusions

We introduced the notion of a deterministic linear language via LR(1) restrictions of linear

grammars. The adequacy of this concept is re
ected by its equivalence withDPDA

1-turn

.

This approach leads to family of deterministic linear languages with a DSPACE (log n)-

complete word problem, which �ts in nicely into the framework of completeness-results

like [16, 17] (see Figure 1). In contrast to that both the deterministic linear languages ac-

cording to Ibarra, Jiang, and Ravikumar [10] and those according to Nasu and Honda [15]

are based on linear grammars restricted by an LL(1) condition. The word problem corre-

sponding to this approach leads to apparently simpler complexities, unless we believe in

NC

1

= DSPACE (log n). Thus contrasting the case of general context-free grammars, LL

conditions seem to be too restrictive in connection with linear grammars, where they spoil

the \sequential" character of linear languages as it is expressed by the NSPACE (log n)-

completeness of LIN [16] or the DSPACE (log n)-completeness of DLIN .

One-counter languages are similar to linear languages with respect to complexity. This

is expressed by the well-known NSPACE (log n)-completeness of ROCL (see e.g. [18]) and

theDSPACE (log n)-completeness of D-ROCL which follows along the lines of Proposition

16. We leave it as an open question to �nd grammatical representations of this fact using

LR (or LL) conditions. In this connection it should be remarked that Chang, Ibarra,

Jiang, and Ravikumar [4] put the membership problem of D-ROCL

1-turn

into NC

1

.

This leaves open the complexity of ROCL

1-turn

.

7 Acknowledgments

The authors would like to thank U. Vollath for helpful comments on the UNIX

9

tools yacc

and bison.

References

[1] J. L. Balc�azar, J. D

�

iaz, and J. Gabarr�o. Structural Complexity I, volume 11 of EATCS

Monographs on Theoretical Computer Science. Springer, 1988.

[2] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC

1

.

Journal of Computer and System Sciences, 41:274{306, 1990.

[3] S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proc. 19th

Ann. ACM Symp. on Theory of Computing, pages 123{131, 1987.

[4] J. H. Chang, O. H. Ibarra, T. Jiang, and B. Ravikumar. Some classes of languages

in NC

1

. Information and Computation, 90:86{106, 1991.

[5] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.

Journal of Algorithms, 8:385{394, 1987.

[6] S. Ginsburg and E. H. Spanier. Finite-turn pushdown automata. SIAM Journal on

Computing, 4(3):429{453, 1966.

[7] S. A. Greibach. An in�nite hierarchy of context-free languages. Journal of the

Association for Computing Machinery, 16:91{106, 1969.

[8] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[9] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Automata.

Addison-Wesley, 1968.

[10] O. H. Ibarra, T. Jiang, and B. Ravikumar. Some subclasses of context-free languages

in NC

1

. Information Processing Letters, 29:111{117, October 1988.

[11] D. E. Knuth. On the translation of languages from left to right. Information and

Control, 8:607{639, 1965.

[12] A. Korenjak and J. Hopcroft. Simple deterministic languages. In IEEE Conference

Record 7th Annual Symposium Switching Automata Theory, pages 36{46, 1966.

[13] R. Kurki-Suonio. Notes on top-down languages. Bit, 9:225{238, 1969.

[14] P. Lewis and R. Stearns. Syntax-directed transduction. Journal of the Association

for Computing Machinery, 15:465{488, 1968.

[15] M. Nasu and N. Honda. Mappings induced by PGSM-mappings and some recur-

sively unsolvable problems of �nite probabilistic automata. Information and Control,

15:250{273, 1969.

[16] I. H. Sudborough. A note on tape-bounded complexity classes and linear context-

free languages. Journal of the Association for Computing Machinery, 22(4):499{500,

October 1975.

[17] I. H. Sudborough. On the tape complexity of deterministic context-free languages.

Journal of the Association for Computing Machinery, 25:405{414, 1978.

[18] K. Wagner and G. Wechsung. Computational Complexity. Mathematics and its

applications (East Europeans series). VEB Deutscher Verlag der Wissenschaften,

Berlin, 1986.

